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Abstract. This paper provides conditions for bounding tail probabilities in

stochastic economic models in terms of their transition laws and shock dis-

tributions. Particular attention is given to conditions under which the tails

of stationary equilibria have exponential decay. By way of illustration,

the technique is applied to a threshold autoregression model of exchange

rates.
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1 Introduction

This paper provides bounds on probabilities of tail events in terms of

model primitives. By definition, tail events occur only infrequently, but

their impact can be large. A classic example is fluctuations in asset prices.

For example, the stock market crash on 19th October 1987 saw the Dow

Jones Industrial Average drop by 22% in one day, eliminating nearly US$1

trillion in market capitalization. The financial crisis that engulfed many

Asian economies in the middle of 1997 likewise led to sharp devaluations

in the exchange rates of several Asian currencies, with far-reaching eco-

nomic consequences.

Thus, one application of our results is in the modeling of financial vari-

ables. As observed by Mandelbrot (1963), heavy tails are found in many

kinds of market returns data.1 The property of having heavy tails is often

associated with “chaotic” or highly nonlinear behavior in the model which

describes motion of the system (see, for example, Lux, 1998; or Pellicer-

Lostao and López-Ruiza, 2010). One of the contributions of this paper is

1For a more recent overview of the literature see Rachev (2001).
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to show that a large class of highly nonlinear and discontinuous models

in fact generate marginal and stationary distributions with exponentially

decreasing tails. As a result, these models can not represent time series

which empirically are observed to feature heavy tails.

Another potential application of this research is when the state variable is

itself a distribution. For example, it often happens that in macroeconomic

dynamics one wishes to study a situation where each entity in a given

economic model has a vector of endogenously evolving attributes, such as

income, wealth, asset holdings, human capital, wage rate, and so on. The

state of the economy is given by the distribution of these attributes across

the population. In this case, the size of the distribution tails provides a

measure of dispersion.

Our focus is on the broad class of economic models that can be represented

as time-homogeneous Markov chains, with discrete time parameter and

continuous state spaces. The methodology developed here is based on a

generalized “drift condition”. Our condition complements the more stan-

dard affine drift conditions used extensively in the existing literature to
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establish stability, stationarity and ergodicity of stochastic processes.2 It is

the source of the tail bounds derived in the paper.

Previously, Borovkov (1998, Theorem 3.1) also studied bounds on the tails

of the marginal distributions of Markov chains. His bounds are not di-

rectly comparable with those given here. The main difference is in the

conditions on the primitives used to derive the bounds. Our technique

is intended to fit the kind of equilibrium structure typically available in

economic models. For example, in our exchange rate application, the drift

is due to arbitrage, which pushes the rate towards its purchasing power

parity equilibrium.

Section 2 formulates the problem. Section 3 sets out the drift condition and

derives some of its immediate consequences. Section 4 gives a number of

applications which illustrate the method.

2See, for example, Meyn and Tweedie (2009), or Borovkov (1998).
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2 Formulation of the Problem

Consider an economic process, the state vector of which takes values in

space S, a Borel subset of Rn. The law of motion is given by

Xt+1 = h(Xt, ξt+1), X0 = x0 ∈ S, {ξt}∞
t=0

IID∼ ϕ. (1)

The vectors {Xt} all take values in S, the shocks ξt take values in Z, a

Borel subset of Rk, and h is a measurable function mapping S × Z → S.

The shocks are generated on probability space (Ω, F , P), and E is the ex-

pectations operator corresponding to P.3

For topological space T, we let B(T) denote the Borel sets, and P(T)

denote the probability measures on (T, B(T)). The common distribution

of ξt is denoted by ϕ ∈ P(Z), while that of Xt is denoted by ψt ∈ P(S).

3In time series modeling and macroeconomic dynamics it is common to deal with

seemingly more complex models than (1). For example, Xt+1 might depend on

Xt, . . . , Xt−j for some j, and the shocks might themselves be correlated of some finite

order. However, such models can always be rewritten in the form of (1) by suitably ex-

panding the number of state variables. As a result, in all of what follows we concentrate

only on models with this simple first order representation (1).
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Also, 1B is the indicator function of B. Thus, for example, E 1B ◦ Xt =

ψt(B) holds for every B ∈ B(S).

Given elements µ and ν in P(T), their total variation distance is defined

as

‖µ− ν‖TV := sup
B∈B(T)

|µ(B)− ν(B)|.

For {µn}∞
n=0 ⊂ P(T) and µ ∈ P(T) we say that µn converges to µ if

‖µn − µ‖TV → 0 as n → ∞. If {Xn}∞
n=0 and X are T-valued random

variables, we say that Xn converges to X if the distribution of Xn converges

to that of X.4

We also define stationary distributions and ergodicity. A probability ψ∗ ∈

P(S) is called stationary for (1) iff

∫ [∫
1{h(x, z) ∈ B}ϕ(dz)

]
ψ∗(dx) = ψ∗(B), ∀B ∈ B(S).

If the current (i.e., time t) distribution is ψ∗, then the left hand side gives

the probability that Xt+1 ∈ B. Thus, if ψ∗ satisfies this equation, then this

4Convergence in total variation is stronger than convergence in distribution in the

usual sense. See, for example, Stokey, Lucas and Prescott (1989, Chapters 10–11).
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probability is ψ∗(B), which is the same as it is today. Since this holds for

all B, we have ψt = ψt+1 = ψ∗.

The process (1) is called ergodic if it has a unique stationary distribution

ψ∗ ∈ P(S), and, in addition, ψt converges to ψ∗ for every x0 ∈ S. It is

geometrically ergodic if, moreover, ‖ψt − ψ∗‖TV = O(ρt) for some ρ < 1.

3 A Drift Condition

We begin with a drift condition that can be used to bound the tails of the

marginal distributions ψt, and of the stationary distribution ψ∗ when it

exists. To state the condition, let w : S → R+ be a given measurable func-

tion. To the extent that w(x) converges rapidly to infinity as ‖x‖ → ∞,

bounds on Ew(Xt) restrict the tails of the distribution ψt. For example, if

w(x) = e‖x‖, then Chebychev’s inequality yields

P{‖Xt‖ > r} = P{e‖Xt‖ > er} ≤ e−r Ee‖Xt‖ = e−r Ew(Xt). (2)

One implication is that if Ew(Xt) = Ee‖Xt‖ is finite, then we have P{‖Xt‖ >

r} = O(e−r), and ψt has exponentially decreasing tails.

Taking w : S → R+ as given, we introduce the following condition on w
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and the process (1).

Condition 3.1. There exists an increasing concave function κ : R+ → R+

such that ∫
w[h(x, z)]ϕ(dz) ≤ κ[w(x)] for all x ∈ S.

This drift condition is a generalization of the standard drift condition used

in the Markov process literature (see, e.g., Meyn and Tweedie, 2009), where

κ is an affine function with slope less than one.

Example 3.1. Consider a one-sector optimal growth model with savings

function σ. Suppose for simplicity that depreciation is total between peri-

ods, and capital stock evolves according to the rule

kt+1 = h(kt, ξt+1) := σ[ f (kt, ξt+1)],

where f is a production function and {ξt} is an IID sequence of produc-

tivity shocks with distribution ϕ. As is conventional, we assume that f is

concave and increasing in its first argument. Seeking a bound on the first

moment, we take w(x) = x. If the agent cannot borrow then savings is

limited by current income, and σ(x) ≤ x. In this case, we have

∫
w[h(k, z)]ϕ(dz) =

∫
σ[ f (k, z)]ϕ(dz) ≤

∫
f (k, z)ϕ(dz).
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Defining κ(x) =
∫

f (x, z)ϕ(dz), this becomes

∫
w[h(k, z)]ϕ(dz) ≤ κ(k) = κ[w(k)].

Since k is arbitrary and κ is concave and increasing, we see that Condi-

tion 3.1 is satisfied.

Using Condition 3.1, we can state the following proposition.

Proposition 3.1. Let {Xt}∞
t=0 be the S-valued stochastic process defined by (1),

and let w : S→ R+ be given. If Condition 3.1 holds, then

E w(Xt) =
∫

wdψt ≤ κt[w(x0)] (t ∈N).

Here κt is the t-th composition of κ with itself.

Proof of Proposition 3.1. Let {Ft}∞
t=0 be the natural filtration for {ξt}∞

t=0,

and fix any t ∈N. By definition,

E [w ◦ Xt+1 |Ft] = E [w ◦ h(Xt, ξt+1) |Ft].

Since Xt is Ft-measurable and ξt+1 is independent of Ft, we obtain

E [w ◦ Xt+1 |Ft] =
∫

w ◦ h(Xt, z) ϕ(dz).
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Applying Condition 3.1, we then have the bound

E [w ◦ Xt+1 |Ft] ≤ κ ◦ w ◦ Xt P-almost surely.

∴ E [w ◦ Xt+1] ≤ E [κ ◦ w ◦ Xt].

Using concavity of κ and Jensen’s inequality yields E [w ◦Xt+1] ≤ κ{E [w ◦

Xt]}. Setting yt := E [w ◦ Xt], this becomes yt+1 ≤ κ(yt). Using the fact

that κ is increasing, we can then iterate backwards to obtain

E [w ◦ Xt] = yt ≤ κt(y0).

Since y0 = E[w ◦ X0] = w(x0), the proof is now done.

Assuming that the process (1) is ergodic and κt converges, we can also

obtain a bound for the stationary distribution of the process.

Proposition 3.2. If, in addition to the conditions of proposition 3.1,

(a) the process (1) is ergodic with stationary distribution ψ∗,

(b) w is continuous, and

(c) κt[w(x0)]→ M as t→ ∞, then

∫
wdψ∗ ≤ M.
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Proof. Assume the conditions of the proposition. Ergodicity implies con-

vergence of ψt to ψ∗ in total variation. In turn, total variation conver-

gence implies that, for every bounded measurable h : S → R, we have∫
hdψt →

∫
hdψ∗. So let sn be the indicator function of the closed ball

of radius n, and let hn := sn · w. Since w is continuous, and therefore

bounded on compact sets, it follows that hn is bounded on S. Moreover,

hn ↑ w pointwise on S. Therefore,

∫
w dψ∗ = lim

n

∫
hn dψ∗ (∵ Monotone Convergence Theorem)

= lim
n

lim
t

∫
hn dψt (∵ hn is bounded and measurable)

≤ lim
n

lim
t

∫
w dψt ≤ lim

n
lim

t
κt[w(x0)] = M.

4 Additive Shock Models

We now specialize (1) to the common case where the shock ξt is additive.

Precisely, we assume that the state space S is equal to Rn, that ξt also takes

values in S, and that h(x, z) = g(x) + z, where g : S → S is a measurable
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function. Thus,

Xt+1 = g(Xt) + ξt+1, X0 = x0 ∈ S, {ξt}∞
t=0

IID∼ ϕ. (3)

Let Br := {x ∈ S : ‖x‖ ≤ r}, and let {Xt}∞
t=0 be the sequence defined by

(3). As before, let ψt be the distribution of Xt. Applying proposition 3.1,

we now show that, under a growth condition on g and an exponential

bound on the tails of ξt, the marginal distributions of the process {Xt}∞
t=0

have exponentially decreasing tails.

Proposition 4.1. If

∃ c ∈ R+ and γ ∈ (0, 1) such that, ∀ x ∈ S, ‖g(x)‖ ≤ c + γ‖x‖, (4)

then, for all t ∈N and all r > 0, we have

ψt (S \ Br) = P{‖Xt‖ > r} ≤
[

ec
∫

e‖z‖ϕ(dz)
] 1

1−γ

eγt‖x0‖−r. (5)

The growth condition (4) permits g to be discontinuous and highly non-

linear. It is equivalent to the statement that there exists a hypersphere

B ⊂ S = Rn centered on the origin such that ‖g(x)‖ is bounded for x ∈ B,

and on the complement of B the map g is contracting, in the sense that

∃γ ∈ (0, 1) such that ‖g(x)‖ ≤ γ‖x‖ for all x ∈ S \ B. Similar restrictions
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have been used elsewhere in economic modeling. See, for example, Duffie

and Singleton (1993).

Proof of Proposition 4.1. If
∫

e‖z‖ϕ(dz) = ∞ then the bound is trivial, so

suppose instead that this term is finite. We claim that Condition 3.1 is

satisfied for w(x) := e‖x‖ and

κ(s) := βsγ, where β := ec
∫

e‖z‖ϕ(dz).

(Since γ ∈ (0, 1), this function is concave and increasing.) To verify the

claim, we must prove that

∫
exp(‖g(x) + z‖)ϕ(dz) ≤ κ(e‖x‖) = βeγ‖x‖.

By the growth condition (4) we have

‖g(x) + z‖ ≤ ‖g(x)‖+ ‖z‖ ≤ c + γ‖x‖+ ‖z‖.

∴
∫

exp(‖g(x) + z‖)ϕ(dz) ≤ ec
∫

e‖z‖ϕ(dz)eγ‖x‖ = βeγ‖x‖.

∴
∫

w[g(x) + z]ϕ(dz) ≤ κ[w(x)].

Apply Proposition 3.1 now yields

E e‖Xt‖ = E w(Xt) ≤ κt[w(x0)] = β∑t
i=0 γi

[w(x0)]
γt

. (6)
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Since w(x0) = e‖x0‖ and β∑t
i=0 γi ≤ β1/(1−γ), we then have

E e‖Xt‖ ≤ β1/(1−γ)eγt‖x0‖ =

[
ec
∫

e‖z‖ϕ(dz)
] 1

1−γ

eγt‖x0‖.

The bound (5) now follows from (2).

Condition (4) also has stability implications. In particular, if the condition

holds and the shock process is sufficiently mixing, then global stability ob-

tains. These kinds of results are well-known, and the next result provides

details. (A full proof is given in the appendix.)

Theorem 4.1. Let {Xt}∞
t=0 be the sequence defined by (3). If (4) holds, E‖ξt‖ <

∞ and, in addition, the distribution ϕ admits a density representation that is

continuous and strictly positive on S, then {Xt}∞
t=0 is geometrically ergodic.

Under the conditions of theorem 4.1, the stationary distribution ψ∗ of the

state variable (and the long-run equilibrium of the system) inherits a tail

bound similar to (5).

Proposition 4.2. Let {Xt}∞
t=0 be the sequence defined by (3). If the conditions of

theorem 4.1 hold, then ψ∗ satisfies

ψ∗ (S \ Br) ≤
[

ec
∫

e‖z‖ϕ(dz)
] 1

1−γ

e−r (r ≥ 0). (7)
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As above, we are using the notation Br := {x ∈ S : ‖x‖ ≤ r}. Note that,

in contrast to (5), this bound does not depend on x0.

Proof of Proposition 4.2. The proof can be obtained from proposition 3.2,

but in this case the result also follows directly from (5). If
∫

e‖z‖ϕ(dz) = ∞

then the bound is trivial, so let us suppose that this term is finite. Fix r ≥ 0.

Using ergodicity and (5), we have

ψ∗ (S \ Br) = lim
t→∞

ψt (S \ Br) ≤
[

ec
∫

e‖z‖ϕ(dz)
] 1

1−γ

lim
t→∞

eγt‖x0‖−r.

Since γ ∈ (0, 1), the proof of (7) is done.

5 Application

As an example, consider the self-exciting threshold autoregression model,

which has found many applications in macroeconomic modeling.5 It has

the form

Xt+1 =
K

∑
k=1

(AkXt + bk)1{Xt ∈ Bk}+ ξt+1, (8)

5See, for example, Hansen (2001), or Taylor (2001).
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where (Bk)
K
k=1 ⊂ B(S) is a partition of S = Rn, each Ak is an n× n matrix,

and each bk is an n × 1 vector. The structure of the model is such that

when the state is in the region Bk, the state variable follows the regime

x 7→ Akx + bk. This structure allows for significant nonlinearities.

Without any loss of generality, suppose that the first 1, . . . , J elements of

the partition (Bk)
K
k=1 are unbounded, and the remaining J + 1, . . . , K are

bounded. Let B be the union of the bounded elements BJ+1, . . . , BK. Ev-

idently g is bounded on bounded sets, so a := supx∈B ‖g(x)‖ is finite.

Finally, set b := sup1≤k≤J ‖bk‖, and ρ := max1≤k≤J ρk, where ρk is the spec-

tral radius of Ak.

Proposition 5.1. Let {Xt}∞
t=0 be defined by (8), with X0 = x0 ∈ S given.

If ρ < 1, and if the distribution of ξt is multivariate normal, then {Xt}∞
t=0 is

geometrically ergodic, and the tail bounds (5) and (7) hold when c := a + b and

γ := ρ.

Proof. We need to show that (4) holds for

c = a + b, γ = ρ, and g(x) =
K

∑
k=1

(Akx + bk)1Bk(x).
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For x /∈ B we have

‖g(x)‖ =
∥∥∥∥∥ J

∑
k=1

(Akx + bk)1Bk(x)

∥∥∥∥∥
≤ sup

1≤k≤J
‖Akx + bk‖ ≤ sup

1≤k≤J
‖Akx‖+ sup

1≤k≤J
‖bk‖ ≤ ρ‖x‖+ b.

On the other hand, for x ∈ B we have ‖g(x)‖ ≤ a by definition. As a

result, whether x ∈ B or x ∈ S \ B we have

‖g(x)‖ ≤ a + ρ‖x‖+ b = c + γ‖x‖.

This confirms that (4) holds with c := a + b and γ := ρ. Moreover, since

the distribution of ξt is Gaussian, the conditions of theorem 4.1 are clearly

satisfied. This implies both geometric ergodicity and the tail bounds (5)

and (7).

To illustrate this result, consider Taylor’s (2001) study of exchange rate

dynamics and purchasing power parity (PPP). He uses a threshold au-

toregression of the form

Xt+1 =



−θ + π(Xt + θ) + ξt+1, if Xt < −θ;

Xt + ξt+1, if − θ ≤ Xt ≤ θ;

θ + π(Xt − θ) + ξt+1, if Xt > θ.

(9)
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Here X represents the proportional deviation of the real exchange rate

from PPP. The idea of the model is that trade frictions result in a “band

of inaction,” given here by [−θ, θ]. In this band, transaction costs imply

that no arbitrage is possible. Outside [−θ, θ] there is drift back towards

the band, assuming that π ∈ [0, 1). The shock sequence {ξt} is taken to be

IID and N(0, σ2).

Using the notation preceding Proposition 5.1, we can set B = [−θ, θ],

whence a = supx∈B |g(x)| = θ, and

b = sup{|(1− π)θ|, |(−π + 1)θ|} = (1− π)θ,

so that c = a + b = (2− π)θ. Also, ρ is the slope coefficient π. Applying

these constants to Proposition 5.1 gives the equilibrium bound

ψ∗ (S \ Br) ≤
[

e(2−π)θ
∫

e‖z‖ϕ(dz)
] 1

1−π

e−r, (10)

where ψ∗ is the stationary distribution associated with (9).

6 Appendix

Proof of Theorem 4.1. Combining Theorem 15.0.1 and Lemma 15.2.8 in Meyn

and Tweedie (2009), the Markov chain {Xt}∞
t=0 generated on S by (3) is ge-
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ometrically ergodic whenever it is irreducible, aperiodic, precompact sets

are petite, and there exists a coercive function V : Rn → R+ and positive

constants L and λ such that λ < 1 and

∫
V[g(x) + z]ϕ(dz) ≤ λV(x) + L for all x ∈ Rn. (11)

(For definitions of irreducibility, aperiodicity, petite sets and coercive func-

tions, see Meyn and Tweedie (2009, §4.2.1, §5.4.3, §5.5.2 and §9.4.1 respec-

tively). A sufficient condition for a Markov chain to be irreducible and

aperiodic is that any set B ∈ B(S) of positive Lebesgue measure can be

reached in one step from any x ∈ S with positive probability, which is to

say that ∫
1{g(x) + z ∈ B}ϕ(z)dz =

∫
B−g(x)

ϕ(z)dz > 0.

This is immediate from the assumption that ϕ > 0 almost everywhere.

For a set C ∈ B(S) to be petite it is sufficient that there exists a measurable

function f : S→ [0, ∞) with
∫

S f > 0 and

x ∈ C implies ϕ(y− g(x)) ≥ f (y), ∀y ∈ S. (12)

Let C be any bounded set, and let δ := infx,y∈C×C ϕ(y − g(x)). If C has

positive measure, and if δ > 0, then we can take f := δ1C, because if
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x ∈ C then by the definition of δ we have ϕ(y− g(x)) ≥ f (y) = δ1C(y).6

But δ > 0 must always hold for bounded C, because if C is bounded then

it must be contained in some ball of size L, so that when (x, y) ∈ C×C we

have

‖y− g(x)‖ ≤ ‖y‖+ ‖g(x)‖ ≤ ‖y‖+ c + γ‖x‖ ≤ c + (1 + γ)L =: M.

Thus δ = infx,y∈C×C ϕ(y − g(x)) ≥ inf‖z‖≤M ϕ(z), which is strictly pos-

itive because ϕ is strictly positive and continuous. We conclude that all

bounded sets of positive measure are petite. Since subsets of petite sets

are petite, it follows that all bounded sets are petite. Since the state space

is Rn, the bounded sets and the precompact sets are identical. We have

now shown that all precompact sets are petite.

It remains only to show the existence of a coercive function V : Rn → R+

and positive constants L and λ such that λ < 1 and (11) holds. A function

V is coercive if its sublevel sets are precompact. Since x 7→ ‖x‖ has this

6Consider the two cases y ∈ C and y /∈ C.
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property we take V(x) = ‖x‖. In view of (4), we have

∫
‖g(x) + z‖ϕ(dz) ≤ ‖g(x)‖+

∫
‖z‖ϕ(dz)

≤ c + γ‖x‖+
∫
‖z‖ϕ(dz) = λ‖x‖+ L,

where λ := γ and L := c +
∫
‖z‖ϕ(dz). Since γ < 1 by assumption, the

proof is now done.
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