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Structure of the Seminar

? Day 1

1. Introduction to Discrete Stochastic Processes
2. Deterministic Dynamics
3. Stochastic Dynamics via Markov Operators

? Day 2

4. Stability of Markov Processes
5. Applications
6. Empirics of Stochastic Growth
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Part 1: Discrete Stochastic Processes

? Choice under uncertainty

? Finite horizon control

? Extending to the infinite horizon

? Introduction to stochastic growth
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Choice under uncertainty

Let S be a set of outcomes.

Outcomes are random. A typical distribution over S is F .

Let PS be the space of all distributions on S.

We cannot choose outcomes. Rather, our actions influence probabilities of
outcomes.

According to this we can rank actions.
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A typical example of choice:

Choose action g.

This affects probabilities of outcomes: selects Fg ∈PS.

Assess value of action as

U(g) = E(vg|Fg) ≡
∫
S

vg(s)Fg(ds), (1)

where vg is a function from S to R.

This induces an order on space of actions G.
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Finite horizon control

State variable is x ∈ X. Control is u ∈ U .

After observing xt, controller chooses ut, and then update by

xt+1 = h(xt, ut, εt). (2)

The process then repeats.

Shocks εt are i.i.d.

Total reward is

E

[
T−1∑
t=0

βtr(xt, ut) + w(xT )

]
. (3)
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The general control problem is to find a sequence of feasible control
policies gt : xt 7→ ut to solve

max
(gt)

E
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The general control problem is to find a sequence of feasible control
policies gt : xt 7→ ut to solve

max
(gt)

E

[
T−1∑
t=0

βtr(xt, ut) + w(xT )

]
(4)

subject to
xt+1 = h(xt, ut, εt), t = 0, . . . , T − 1. (5)

and
x0 ∼ ϕ0. (6)

What is the relation to theory of choice under uncertainty? What is the
meaning of E here?
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A two period example:

max
g
E

[
0∑
t=0

βtr(xt, g(xt)) + w(x1)

]
(7)

subject to
x1 = h(x0, g(x0), ε0), x0 ∼ ϕ0. (8)

Since h and the distribution of ε0 is known, for each g we can calculate
the conditional distribution of x1 given x0. Call it fg(x1|x0).
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What is the joint distribution Fg(x0, x1) of x0 and x1?

We have

fg(x1|x0) =
Fg(x0, x1)
ϕ0(x0)

=⇒ Fg(x1, x0) = fg(x0|x1)ϕ0(x0).

Let S = X ×X.

Then Fg ∈PS for all g.
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Also, let vg be the real function on S = X ×X defined by

vg(x0, x1) =
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Also, let vg be the real function on S = X ×X defined by

vg(x0, x1) =
0∑
t=0

βtr(x0, g(x0)) + w(x1) (9)

Problem is then

max
g
E(vg|Fg) = max

g

∫
S

vg(s)Fg(ds). (10)
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Same idea for any T ∈ N.

Each (g0, . . . , gT−1) determines the conditional distributions via

xt+1 = h(xt, gt(xt), εt) =⇒ fgt(x
′|x). (11)

From these we can build the joint distribution Fg over x0, . . . , xT .

The set of outcomes S is XT , and Fg ∈PS.

This is the meaning of

max
g
E

[
T−1∑
t=0

βtr(xt, g(xt)) + w(xT )

]
=
∫
S

vg(s)Fg(ds). (12)
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Extending to the infinite horizon

Same principle for T =∞,

maxE

[ ∞∑
t=0

βtr(xt, ut)

]
(13)

subject to
xt+1 = h(xt, ut, εt). (14)

The problem is stationary, so choose just one g.
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Each g determines
xt+1 = h(xt, g(xt), εt), (15)

which implies a stationary conditional distribution fg(x′|x).

Determines a unique joint distribution Fg over (xt)∞t=0.

Now S = XN, and Fg ∈PS.

Solve

max
g
E

[ ∞∑
t=0

βtr(xt, g(xt))

]
=
∫
S

vg(s)Fg(ds). (16)
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Introduction to stochastic growth

Modern deterministic growth theory begins with Solow (QJE, 1956), Swan
(Economic Record, 1956).

Optimal savings case treated by Cass (RE Stud., 1965) and Koopman
(Pontif. Acad. Sci., 1965)

Stochastic optimal savings case first treated by Brock and Mirman (JET,
1972).

Making suitable analogous definitions, they show that all of the results of
the deterministic case carry over.
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Basic model with representative agent:

At time 0 income x0 is drawn from ϕ0 by nature and given to the agent.

The agent divides x0 between consumption c0 and savings. Consumption
gives utility u(c0). Consumption is the control.

Savings equals both investment and capital stock x0 − c0 (depreciation is
total).

Through investing x0 − c0, agent receives at the start of next period
income f(x0 − c0, ε0).

The process now repeats.
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The problem is to choose a consumption policy g : x→ c to maximize

E

[ ∞∑
t=0

βtu(g(xt))

]
(17)

subject to
xt+1 = f(xt − g(xt), εt). (18)

Each g selects a joint distribution Fg over RN. Let vg be the function∑
t β

tu(g(xt)) from R
N to R. Solve

max
g

∫
S

vg(s)Fg(ds). (19)
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In practice, characterization of the optimal policy is as follows.

Let f, u be smooth, concave and have all other nice properties.

Theorem (Mirman–Zilcha). An optimal consumption policy g exists and
is unique. It satisfies

u′(g(x)) = β

∫
u′[g(f(x− g(x))z)]f ′(x− g(x))zψ(dz) (20)

for all x ≥ 0.
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A simple example (Stokey, Lucas and Prescott, Sec. 2.2):

Let u(c) = ln c, f(k) = kα, α < 1, ε lognormal with ln ε ∼ N(0, 1).

In this case we can deduce that g(x) = (1− s)x for some constant s, in
which case

xt+1 = (sxt)αεt = Cxαt εt. (21)

Taking logs gives the linear-Gaussian AR(1) system

x̃t+1 = ax̃t + b+ ε̃t, a < 1. (22)

Back to top



18

Part 2: Deterministic Dynamics

? Semidynamical systems

? Stability and equilibrium

? Brouwer-Schauder fixed point theorem

? Banach contraction theorem

? Contractions and compactness

? Lagrange stability and contractions
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Semidynamical systems

Dynamic system evolves in a space X

Time is discrete: x0 ∈ X, x1 ∈ X,...

The system is autonomous (a difference equation):

xt+1 = g(xt), x0 ∈ X, g : X → X. (23)

Thus x1 = g(x0), x2 = g(g(x0)) ≡ g2(x0),..., xt = gt(x0).
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Definition. A semidynamical system is a space X and a map g sending X
into X. Write (X, g).

Definition. The trajectory of x ∈ X under g is the sequence {gt(x)}t≥0.

gg

xt+2xt+1xt
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Definition. A semidynamical system is a space X and a map g sending X
into X. Write (X, g).

Definition. The trajectory of x ∈ X under g is the sequence {gt(x)}t≥0.

xt+2

xt+1 = g(xt)

xt
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Stability and equilibrium

Let a semidynamical system (X, g) be given.

Definition. A steady state or equilibrium for (X, g) is a fixed point of g
on X. That is, g(x∗) = x∗.

Definition. For fixed point x∗ of g on X, the stable set Sg(x∗) of x∗ is all
points x ∈ X such that the trajectory of x converges to x∗.

Definition. Equilibrium x∗ is called stable if Sg(x∗) contains an open
neighborhood of x∗.

Definition. It is globally stable if Sg(x∗) = X.
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Brouwer-Schauder fixed point theorem

Theorem. Let X be a subset of a normed linear space. If X is compact
and convex, and, in addition, g is continuous on X, then (X, g) has at
least one equilibrium.
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Banach contraction theorem

Definition. Let (X, g) be a semidynamical system, with X a subset of a
normed linear space. Map g is called a Banach contraction if there exists a
λ < 1 such that

‖g(x)− g(y)‖ ≤ λ‖x− y‖. (24)

Note that along the trajectory {gt(x)} from x,

‖gt+1(x)− gt(x)‖ ≤ λ‖gt(x)− gt−1(x)‖

≤ λ2‖gt−1(x)− gt−2(x)‖

≤ λt‖g(x)− x‖.
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Theorem. If X is complete and g a Banach contraction, then (X, g) has a
unique and globally stable equilibrium.

Proof:

The sequence is Cauchy and hence convergent to some x∗, because of

‖gt+1(x)− gt(x)‖ ≤ λt‖g(x)− x‖.

The point x∗ is a fixed point.

The fixed point is unique.
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Contractions and compactness

Definition. Call g strongly contracting on X if

‖g(x)− g(y)‖ < ‖x− y‖, ∀x 6= y (25)

which is weaker than

‖g(x)− g(y)‖ ≤ λ‖x− y‖, λ < 1. (26)

Note that strongly contracting does not imply existence of f.p. (e.g. speed
is 1 + 1/n).
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Uniqueness: Let x 6= y both be equilibria. Then ‖g(x)− g(y)‖ = ‖x− y‖,
and also ‖g(x)− g(y)‖ < ‖x− y‖. Contradiction.

Existence: Define r : X → R by r(x) = ‖g(x)− x‖. Evidently r
continuous. Since X is compact, r has a minimizer x∗. But then
g(x∗) = x∗, because

g(x∗) 6= x∗ =⇒ r(g(x∗)) = ‖g2(x∗)− g(x∗)‖ < ‖g(x∗)− x∗‖ = r(x∗),
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Theorem. Let (X, g) be strongly contracting. If X is compact, then the
system has a unique and globally stable equilibrium.

Uniqueness: Let x 6= y both be equilibria. Then ‖g(x)− g(y)‖ = ‖x− y‖,
and also ‖g(x)− g(y)‖ < ‖x− y‖. Contradiction.

Existence: Define r : X → R by r(x) = ‖g(x)− x‖. Evidently r
continuous. Since X is compact, r has a minimizer x∗. But then
g(x∗) = x∗, because

g(x∗) 6= x∗ =⇒ r(g(x∗)) = ‖g2(x∗)− g(x∗)‖ < ‖g(x∗)− x∗‖ = r(x∗),

in which case g(x∗) is the minimizer.

Convergence: Not proved, but true.
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Lagrange stability and contractions

What if X is not compact?

Definition. Semidynamical system (X, g) is called Lagrange stable if the
trajectory of x is precompact for every x ∈ X.

Example: xt+1 = axt depends on a ≤ 1 or a > 1.

Theorem. If semidynamical system (X, g) is both Lagrange stable and
strongly contracting, then it has a unique and globally stable equilibrium.

Note that Lagrange stability substitutes for compactness.
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Sketch of proof:

Pick x ∈ X. Let γ(x) be the closure of the trajectory.

Note that γ(x) is compact.

Also, g maps γ(x) into γ(x).

Note that g is contracting on γ(x).

Hence a fixed point exists in γ(x).
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Part 3: Stochastic Dynamics via Markov Operators

? The general Markov operator

? Construction from perturbed systems

? Equilibrium and stability

? Example: the AR(1) model
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The general Markov operator

We want to study something like this:

xt+1 = g(xt, εt). (27)

How can we apply techniques for deterministic systems?

The method: transform this into deterministic system on an infinite
dimensional space called L1.
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As before, X is some space. Transform X into a measure space
(X,BX, µ).

In general, X a subset of R, BX is the Borel sets, and µ is Lebesgue
measure.

Let L1(µ) be all of the integrable functions on X.

The deterministic model is a semidynamical system in X, but the
stochastic version is a semidynamical system in L1(µ)!
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So what is L1(µ) like?

As usual, L1(µ) is a normed linear space (Banach lattice).

The norm is ‖f‖ ≡
∫
X
|f |dµ =

∫
|f(x)|dx.

Let D(µ) be all the f in L1(µ) such that f ≥ 0 and integral is 1. What
are these functions called...? The density functions on X!

A Markov operator is an operator P : L1(µ)→ L1(µ) such that

f ∈ D(µ) =⇒ Pf ∈ D(µ). (28)
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Construction from perturbed systems

Consider the (very common macroeconomic) model

xt+1 = g(xt, εt). (29)

Assume that

1. εt an r.v. taking values in X.

2. uncorrelated over time

1. identically distributed by ψ ∈ D(µ).
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We can construct a conditional distribution Γ(xt+1, xt) for xt+1 given xt
and knowledge of g, ψ.

xt+2

xt+1

g(xt+1)

g(xt)

xt
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Example: AR(1). X = R, xt+1 = a ·xt+ b+ εt, where ψ standard normal.

In this case how is Γ?

Clearly

Γ(xt, xt+1) = (2π)−1/2 exp
[
−(xt+1 − (a · xt + b))2

2

]

Assume throughout that Γ(x, ·) always a density.
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Assume now that the initial condition x0 is drawn from ϕ0 ∈ D(µ).

What is the marginal distribution ϕ1 of x1?

By the law of total probability,

ϕ1(x1) =
∫

Γ(x0, x1)ϕ0(x0)dx0. (30)

And similarly,

ϕ2(x2) =
∫

Γ(x1, x2)ϕ1(x1)dx1. (31)
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More generally,

ϕt+1(xt+1) =
∫

Γ(xt, xt+1)ϕt(xt)dxt. (32)

So now define an operator P mapping L1(µ) into itself, where if f is in
L1(µ) then Pf ∈ L1(µ) is defined by

Pf(y) =
∫

Γ(x, y)f(x)dx. (33)

Then ϕt+1 = Pϕt. Alternatively, ϕt = P tϕ0.
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Pϕ(y)dy =
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Γ(x, y)ϕ(x)dx

]
dy (34)

=
∫ [∫

Γ(x, y)dy
]
ϕ(x)dx (35)

=
∫
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39

Note that ϕ ∈ D(µ) =⇒ Pϕ ∈ D(µ):∫
Pϕ(y)dy =

∫ [∫
Γ(x, y)ϕ(x)dx

]
dy (34)

=
∫ [∫

Γ(x, y)dy
]
ϕ(x)dx (35)

=
∫
ϕ(x)dx = 1. (36)

Therefore (D(µ), P ) is a semidynamical system!!
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To recap, take a deterministic system xt+1 = g(xt), x ∈ X.

This is a semidynamical system (X, g).

gg

xt+2xt+1xt
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Now consider xt+1 = g(xt, εt). Calculate Γ, and hence P :
Pf(y) =

∫
Γ(x, y)f(x)dx.

This returns us to a semidynamical system (D(µ), P ).

PP
ϕ2ϕ1ϕ0
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Equilibrium and stability

Traditional definition of stochastic equilibrium is just our definition for
semidynamical system (D(µ), P ).

For example, Brock and Mirman (JET, 1972) study growth model
generating sequence of r.v.s {kt}. kt ∼ ϕt.

They define stochastic equilibrium as a ϕ∗ with

ϕ∗(xt+1) =
∫

Γ(xt, xt+1)ϕ∗(xt)dxt. (37)

But this just means a ϕ∗ ∈ D(µ) s.t. Pϕ∗ = ϕ∗.
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Part 4: Stability of Markov Processes

? Outline of the method

? Strongly contracting Markov operators

? Application to AR(1)

? Lagrange stability of Markov operators

? Application to AR(1)
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This is a semidynamical system (X, g).

gg

xt+2xt+1xt
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Now consider xt+1 = g(xt, εt). Calculate Γ, and hence P :
Pf(y) =

∫
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This returns us to a semidynamical system (D(µ), P ).
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Analysis of (D(µ), P ).

Recall from Brouwer/Shauder that if there exists a D0 ⊂ D(µ) which is
convex and compact and satisfies P : D0 → D0, then P has a fixed point
in D0.

Recall from Lasota that if P satisfies

‖Pϕ′ − Pϕ′′‖ < ‖ϕ′ − ϕ′′‖, ∀ϕ′ 6= ϕ′′

and {P tϕ} is precompact, ∀ϕ ∈ D(µ), then exists unique, globally stable
equilibrium
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Strongly contracting Markov operators

Proposition. If Γ(x, y) > 0 for all x, y, then P is strongly contracting.

Intuition... I don’t know

Proof...
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<
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‖Pϕ′ − Pϕ′′‖ = ‖P (ϕ′ − ϕ′′)‖

=
∫
|
∫

Γ(x, y)[ϕ′(x)− ϕ′′(x)]dx|dy

<

∫ ∫
|Γ(x, y)[ϕ′(x)− ϕ′′(x)]|dx dy

=
∫ ∫

Γ(x, y)|ϕ′(x)− ϕ′′(x)|dx dy

=
∫ ∫

Γ(x, y)|ϕ′(x)− ϕ′′(x)|dydx

=
∫ ∫

Γ(x, y)dy|ϕ′(x)− ϕ′′(x)|dx

= ‖ϕ′ − ϕ′′‖.
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Application to AR(1)

Example: AR(1). X = R, xt+1 = a ·xt+ b+ εt, where ψ standard normal.

Recall that

Γ(xt, xt+1) = (2π)−1/2 exp
[
−(xt+1 − (a · xt + b))2

2

]
> 0.

Hence the AR(1) process is strongly contracting.

Corollary. At most one equilibrium
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Lagrange stability of Markov operators

When is the collection {P tϕ} precompact for all ϕ ∈ D(µ)?

More generally, when is D0 ⊂ D(µ) precompact?

Precompact is in a sense like “bounded”...

This set is not precompact: {ϕn}, ϕn ∼ N(n, 1), n ∈ N.

Rule this out by tightness:

D0 is tight if ∀ε > 0, ∃K compact such that
∫
Kc ϕ < ε whenever ϕ ∈ D0.
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52

This set is not precompact: {ϕn}, ϕn ∼ N(0, 1/n), n ∈ N.

Rule this out by a kind of upper bound.



52

This set is not precompact: {ϕn}, ϕn ∼ N(0, 1/n), n ∈ N.

Rule this out by a kind of upper bound.

Lasota-Stachurski Theorem.



52

This set is not precompact: {ϕn}, ϕn ∼ N(0, 1/n), n ∈ N.

Rule this out by a kind of upper bound.

Lasota-Stachurski Theorem. Let P be a M.O. on D(µ) with kernel Γ.



52

This set is not precompact: {ϕn}, ϕn ∼ N(0, 1/n), n ∈ N.

Rule this out by a kind of upper bound.

Lasota-Stachurski Theorem. Let P be a M.O. on D(µ) with kernel Γ.
Let ϕ ∈ D(µ). If

1. exists continuous h such that Γ(x, y) ≤ h(y),



52

This set is not precompact: {ϕn}, ϕn ∼ N(0, 1/n), n ∈ N.

Rule this out by a kind of upper bound.

Lasota-Stachurski Theorem. Let P be a M.O. on D(µ) with kernel Γ.
Let ϕ ∈ D(µ). If

1. exists continuous h such that Γ(x, y) ≤ h(y), and

2. {P tϕ} is tight,



52

This set is not precompact: {ϕn}, ϕn ∼ N(0, 1/n), n ∈ N.

Rule this out by a kind of upper bound.

Lasota-Stachurski Theorem. Let P be a M.O. on D(µ) with kernel Γ.
Let ϕ ∈ D(µ). If

1. exists continuous h such that Γ(x, y) ≤ h(y), and

2. {P tϕ} is tight,

then {P tϕ} is precompact
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Application to AR(1)

Recall again the example where X = R,

xt+1 = a · xt + b+ εt, ε ∼ N(0, 1). (38)

In this case

Γ(x, y) = (2π)−1/2 exp
[
−(y − (a · x+ b))2

2

]

But this is ≤ (2π)−1/2, so... exists continuous h such that Γ(x, y) ≤ h(y)
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How about tightness?

Definition: ∀ε > 0, ∃K compact such that
∫
Kc P

tϕ < ε, ∀t ∈ N.

Consider again AR(1) example.

Proposition. Let X = R, and let

xt+1 = a · xt + b+ εt, ε ∼ N(0, 1). (39)

Let P be the associated Markov operator. If |a| < 1, then P tϕ is tight for
every Gaussian ϕ ∈ D(µ).
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Chebychev inequality: If ξ is an r.v. on R, then

Prob(|ξ| ≥ r) ≤ E|ξ|
r
, ∀r > 0. (40)

Therefore, for each t, xt satisfies

∫
[−r,r]c

P tϕ(x)dx ≤ Eϕ|xt|
r

, ∀r > 0. (41)

If ∃M <∞ s.t. Eϕ|xt| ≤M for all t then we are done.
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Since |x| ≤ 1 + x2,

E|xt| ≤ 1 + Ex2
t

= 1 + (Ext)2 + Vxt [Vxt = Ex2
t − (Ext)2]

= 1 + µ2
t + σ2

t .

But in this case
µt+1 = b+ aµt, µ0 = Ex0. (42)

σ2
t+1 = 1 + a2σ2

t , σ2
0 = Vx0. (43)

Therefore, a < 1 implies tightness
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Part 5: Applications

? The stochastic growth model

? Stability in the increasing returns model
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The stochastic growth model

Recall that problem is to choose a consumption policy g : x→ c to
maximize

E

[ ∞∑
t=0

βtu(g(xt))

]
(44)

subject to
xt+1 = f(xt − g(xt))εt. (45)

Recall that if optimal g exists then

u′(g(x)) = β

∫
u′[g(f(x− g(x))z)]f ′(x− g(x))zψ(dz). (46)
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The state space is X = (0,∞)

We assume that...

The utility function u satisfies u′ > 0, u′′ < 0, u′(0) =∞, preferably
nonnegative and bounded.

The production function satisfies f(0) = 0, f ′ > 0, f ′′ < 0, f ′(0) =∞,
f ′(∞) = 0.

The shocks are i.i.d. and have density function ψ.

Under these assumptions g exists and is unique.
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Prove this model has a unique, globally stable (stochastic) equilibrium.

Case of shock with compact support: ε ∈ [a, b] with prob 1:

• Brock and Mirman (JET, 1972)

• Razin and Yahav (IER, 1979)

• Lucas, Stokey and Prescott (RMED, 1989)

• Hopenhayn and Prescott (Econometrica, 1992)

Unbounded shock: Stachurski (JET, 2002)
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With restrictions on u, f and hence g, we analyze

xt+1 = f(xt − g(xt))εt. (47)

From this we obtain Γ(x, y). In fact by a c-o-v argument,

Γ(x, y) = ψ

(
y

f(x− g(x))

)
1

f(x− g(x))
. (48)

And hence P as per usual

Pf(y) =
∫

Γ(x, y)f(x)dx.
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So now we have a semidynamical system (D(µ), P ).

Recall the general method of Lasota: Existence, uniqueness and global
stability if (D(µ), P ) is strongly contracting and Lagrange stable.

Thus if P satisfies

‖Pϕ′ − Pϕ′′‖ < ‖ϕ′ − ϕ′′‖, ∀ϕ′ 6= ϕ′′

and also {P tϕ} is precompact for all ϕ ∈ D(µ),

then we are done.
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Check first strong contractiveness.

Recall that a sufficient condition is Γ(x, y) > 0 everywhere.

But

Γ(x, y) = ψ

(
y

f(x− g(x))

)
1

f(x− g(x))
, (49)

Therefore ψ > 0 everywhere on (0,∞) implies strong contractiveness.

Examples: lognormal, gamma, wiebull, χ-squared, etc.

Note: This is all we need for uniqueness.
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Check next Lagrange stability.

Recall the

Lasota-Stachurski Theorem. Let P be a M.O. on D(µ) with kernel Γ.
Let ϕ ∈ D(µ). If

1. exists continuous h such that Γ(x, y) ≤ h(y), and

2. {P tϕ} is tight,

then {P tϕ} is precompact

We check Condition 1 first.
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Show exists continuous h such that Γ(x, y) ≤ h(y).

We have

Γ(x, y) = ψ

(
y

f(x− g(x))

)
1

f(x− g(x))
, (50)

Suppose that ∃M <∞ with ψ(z)z ≤M , ∀z.

Then on (0,∞),

Γ(x, y) = ψ

(
y

f(x− g(x))

)
y

f(x− g(x))
1
y
≤ M

y
= h(y). (51)
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Regarding the condition ∃M <∞ with ψ(z)z ≤M , ∀z,

Suppose for example that ε is lognormal. Then

ψ(z) = (2πσ2)−1/21
z

exp
[
−(ln z − µ)2

2σ2

]
. (52)

In this case the condition clearly holds.

Same for many common shocks.
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Regarding Condition 2 (tightness), pick any ϕ ∈ D(µ). We need to show
that ∀ε > 0, ∃K compact such that

∫
Kc P

tϕ < ε, ∀t ∈ N.

Evidently following two conditions are sufficient

∀ε > 0, ∃r > 0 s.t.

{∫ ∞
r

P tϕ(x)dx < ε, ∀t ∈ N0

}
(53)

and

∀ε > 0, ∃r > 0 s.t.

{∫ 1/r

0

P tϕ(x)dx < ε ∀t ∈ N0

}
(54)

if we set K = [1/r, r], r sufficiently large.
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We prove only the first condition:

∀ε > 0, ∃r > 0 s.t.

{∫ ∞
r

P tϕ(x)dx < ε, ∀t ∈ N0

}
(55)

In view of the Chebychev inequality∫ ∞
r

P tϕ(x)dx ≤ Eϕxt
r

, ∀r > 0,

need show only that the sequence of real numbers Eϕxt is bounded.
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Eϕxt =
∫ ∞

0

E(xt|xt−1 = x) Prob(xt−1 = x)dx

=
∫ ∞

0

[f(x− g(x))Eεt]P t−1ϕ(x)dx

≤
∫ ∞

0

f(x)EεtP t−1ϕ(x)dx

= Eεt

∫ ∞
0

f(x)P t−1ϕ(x)dx

≤ Eεtf
[∫ ∞

0

xP t−1ϕ(x)dx
]

= Cf [Eϕxt−1].
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Therefore Eϕxt ≤ Cf [Eϕxt−1], and the sequence Eϕxt is bounded, as was
to be proved.

This proves tightness...

which proves Lagragne stability...

This completes proof of global stability!
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Incidentally, why did everyone else use ε ∈ [a, b] with prob 1?

The reason is that the state space is can be taken to be compact, and
hence tightness is trivial. (Intuition next slide.)

By working a bit harder for tightness we can incorporate models with
unbounded state.
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f(x− g(x))b

f(x− g(x))a

M

M

450

x0

xt+1

xt

f(x− g(x))
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Stability in the increasing returns model

The model is a stochastic verion of Azariadis and Drazen (QJE, 1990).
overlapping generations with spillover.

Agents live for two periods, working in the first and living off savings in the
second.

Savings in first period in the following period is combined with the labor of
new generation.

Depreciation is total.
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The production function is

yt = AtF (kt, `t)εσt .

Here ε is uncorrelated and identically distributed as usual.

As before, ε has density ψ.

The exponent σ is ≥ 0.

Note nonstationarity of technology as a result of At.
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Let f(k) = F (k, 1).

Assumption. The function f : [0,∞)→ [0,∞) satisfies f(0) = 0, f ′ > 0,
f ′′ < 0, f ′(0) =∞, f ′(∞) = 0.

In the overlapping generations model, additional assumptions are required
to prevent the economy collapsing to zero output.

Assumption. The inequality kf ′(k) ≤ λf(k) holds everywhere for some
λ < 1.

This says that the capital share of income cannot become arbitrarily close
to total income.
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Optimization:

Assumption. consumer maximize

U(ct, c′t+1) = ln ct + βE ln c′t+1,

subject to
c′t+1 = (wt − ct)(1 + rt+1).

Implies total savings is β/(1 + β) times wt.

Competitive factor markets imply that wt = At[f(kt)− ktf ′(kt)]εσt .
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Regarding process (At), technology depends on economy-wide aggregates;

Thus At = A(kt).

In development, influence of spillovers may be local (Azariadis and Drazen;
Murphy, Shleifer and Vishny, JPE 1989; etc.).

Assumption. rngA(k) compact.

Law of motion is

kt+1 = S(kt)εσt , (56)

where S(k) = DA(k)[f(k)− kf ′(k)].
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For example, the “critical mass” form

A(k) = A1 · 1[0,kb)(k) +A2 · 1[kb,∞)(k),

kb k∗2k∗1

S(kt)

kt+1

kt

450
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For lognormal shock, Γ(k, k′) looks like...

kt+1kt
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Regarding the dynamics of

kt+1 = S(kt)εσt , (57)

Proposition. If σ = 0 then there may be multiple, locally stable equilibria.
However, for every σ > 0, there is a single, unique (stochastic) equilibrium.

Proof: we will show that for any σ > 0, (D(µ), Pσ) is strongly contracting
and Lagrange stable.
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We prove first strong contractiveness.

Recall that a sufficent condition is Γ(k, k′) > 0 everywhere.

But if ε ∼ ψ, then

Γσ(k, k′) = ψ

[(
k′

S(k)

)1
σ

](
k′

S(k)

)1
σ 1
σk′

, (58)

whence ψ > 0 =⇒ Γ > 0.

This is all we need for uniqueness!
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As for Lagrange stability, we prove it using stronger assumptions.

Let us assume that

S

kt+1

kt

450
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More formally, given
kt+1 = S(kt)εσt , (59)

assume that exists α, βi positive with α < 1,

β1k
α ≤ S(k) ≤ β2k

α.

Then Lagrange stable.
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Recall the

Lasota-Stachurski Theorem. Let P be a M.O. on D(µ) with kernel Γ.
Let ϕ ∈ D(µ). If

1. exists continuous h such that Γ(x, y) ≤ h(y), and

2. {P tϕ} is tight,

then {P tϕ} is precompact

Condition 1 holds again for the lognormal shock (we will not check it).
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Regarding condition 2 (tightness):

Chebychev inequality:

Prob(| ln kt| ≥ r) ≤
E| ln kt|

r
, ∀r > 0. (60)

Therefore, for each t,

∫
[exp(−r),exp(r)]c

P tϕ(k)dk ≤ Eϕ| ln kt|
r

, ∀r > 0. (61)

If ∃M <∞ s.t. Eϕ| ln kt| ≤M for all t then we are done.
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We have

Eϕ| ln kt| =
∫ ∞

0

E(| ln kt| given kt−1 = k) Prob(kt−1 = k)dk

=
∫ ∞

0

Eε| ln[S(k)εσ]|P t−1ϕ(k)dk

≤
∫ ∞

0

{| lnS(k)|+ σEε| ln ε|}P t−1ϕ(k)dk.

≤
∫ ∞

0

| lnS(k)|P t−1ϕ(k)dk + σEε| ln ε|.

Note also that
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β1k
α ≤ S(k) ≤ β2k

α =⇒ | lnS(k)| ≤ α| ln k|+M.
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To repeat,

Eϕ| ln kt| ≤
∫
| lnS(k)|P t−1ϕ(k)dk + σEε| ln ε|.

Hence | lnS(k)| ≤ α| ln k|+M implies

Eϕ| ln kt| ≤
∫
α| ln k|P t−1ϕ(k)dk + C

= αEϕ| ln kt−1|+ C.

Which is sufficient for the proof.
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Notice our proof works for any noise level σ.

This is suprising, because when noise level is nearly zero, behavior must be
similar to

kb k∗2k∗1

S(kt)

kt+1

kt

450
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Indeed this is the case: History does not matter, but

5004003002001000

kb

k∗2

k∗1
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Part 6: Empirics of Stochastic Growth

? Some stylized facts

? Fitting the convex model

? Fitting the Azariadis-Drazen model
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Some stylized facts

In the theoretical part of this seminar we have looked at evolution of
densities generated by growth models.

In this section we look at the actual evolution of densities, and try to
predict future evolution.

To do so we must choose an appropriate model.

The convex neoclassical model is rejected.

Instead, we fit and predict with the increasing returns Azariadis-Drazen
model.
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Begin with stylized facts: (Lant Pritchett JEP, 11(3), 1997)

1. What accounts for continued per capita growth and technological
progress of those leading countries at the frontier?

2. What accounts for the few countries that are able to initiate and sustain
periods of rapid growth in which they gain significantly on the leaders?

3. What accounts for why some countries fade and lose the momentum of
rapid growth?

4. What accounts for why some countries remain in low growth for very
long periods?
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Also, we can look at the data: (countries with per capita GDP data for
both 1960 and 1990 in the Summers and Heston (1991) PWT5.6)

1. 12 countries that saw income decline between 1960 and 1990. Of these
11 poor–very poor (ave 1960 per capita GDP $968 1985 US dollars).

2. 12 richest countries (≥ $6,000 in 1960) generally grew steadily,
increasing output per person in a narrow band around the average of just
under factor of 2.

3. Regarding rapid take-off, some poor–middle income countries grew
much faster than rich countries (S. Korea ↑ by factor of 7.4; Singapore,
7.1; Hong Kong, 6.6; Taiwan, 6.4; Japan, 4.9; Portugal, 4.2).
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Fitting the convex model

In the simplest possible model,

kt+1 = skαt εt. (62)

Suppose further that k0 ∼ ϕ0, where ϕ0 is lognormal (0, σ2
ε).

Then all of trajectory is lognormal with parameters

µt+1 = ln s+ αµt, µ0 = Ek0. (63)

σ2
t+1 = σ2

ε + α2σ2
t , σ2

0 = Vk0. (64)
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Fitting the Azariadis-Drazen model

Why does the neoclassical model fail?

The main reason is that poverty exhibits severe persistence.

Also, fastest growth rates are found in the middle income countries.

For the same reasons, the Azariadis-Drazen model might be a better fit.

Here we fit, and then use the operator P to project densities into the
future.
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Recall the Azariadis-Drazen model.

1. overlapping generations,

2. threshold externalities.

In the Cobb-Douglas case,

kt+1 = S(kt)εσt , (65)

where, S(k) = D(1− α)A(k)kα.
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This models can be fitted using nonlinear regression.

The data is Penn World Tables version 5.6, GDP per capita.

We assume that all countries have the same model

kt+1 = S(kt)εσt , (66)

We let t = 1965 and t+ 1 = 1990 (25 years for OLG).
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Data is pooled and we regress across all countries i:

ki1990 = S(ki1965)εσ1965, i = 1, . . . 105. (67)

Shock is lognormal and we use maximum likelihood.

The discontinuous version uses the TAR procedure.

The smooth transition version uses STAR.

Implementation of the procedure is in Java.
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Once the model

kt+1 = S(kt)εσt , (68)

is known, we also know the conditional density:

Γσ(k, k′) = ψ

[(
k′

S(k)

)1
σ

](
k′

S(k)

)1
σ 1
σk′

, (69)

and hence the Markov operator

Pf(k′) =
∫

Γ(k, k′)f(k)dk.
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Imagine the following thought experiment.

There are M countries. All of them have the same dynamics, which are
known to us.

At time 0, the “supervisor” picks the initial income for each country
independently from ϕ0, which is unknown to us.

The M initial values y0
m are revealed to us.

The supervisor then updates each country independently to get y1
m.

How should we guess the distribution of y1
m?

Back to top



109

What is the probability that at time 1 a country has income y?



109

What is the probability that at time 1 a country has income y?

By the law of total probability,

ϕ1(y) =
∫

Γ(x, y)ϕ0(x)dx.



109

What is the probability that at time 1 a country has income y?

By the law of total probability,

ϕ1(y) =
∫

Γ(x, y)ϕ0(x)dx.

Thus ϕ1 = Pϕ0.



109

What is the probability that at time 1 a country has income y?

By the law of total probability,

ϕ1(y) =
∫

Γ(x, y)ϕ0(x)dx.

Thus ϕ1 = Pϕ0.

But ϕ0 is unknown to us...
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However, we know the initial distribution of income, which was drawn from
ϕ0.

Hence we can estimate ϕ0 with ϕ̂0.

Suppose that ϕ̂0 → ϕ0 in L1(µ) norm as sample size becomes large.

Then by norm-continuity of P ,

Pϕ̂0 → Pϕ0 = ϕ1.
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In the next two slides we present P 3ϕ1990 and P 5ϕ1990.
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This gives 75 year and 125 year projections for the cross-country income
distribution.
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Kuznets hypothesis: inequality ↑ and then ↓ over time as industrialization
occurs.
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occurs.

Gini coefficient:

g(ϕ) =
∫ ∫

|x− y|ϕ(x)ϕ(y)dxdy.
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Kuznets hypothesis: inequality ↑ and then ↓ over time as industrialization
occurs.

Gini coefficient:

g(ϕ) =
∫ ∫

|x− y|ϕ(x)ϕ(y)dxdy.

Gini coefficient
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