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Preface

Aims and Scope

The aim of this book is to teach foundational topics in stochastic dynamics such as
stability, ergodicity, and dynamic programming, with applications from economics
and finance. As we travel down this path, we will delve into a variety of related fields,
including simulation and numerical methods, fixed point theory, stochastic process
theory, function approximation, and coupling.

In writing the book I had two main goals. First, I wanted to show that sound un-
derstanding of relevant mathematical concepts leads to effective algorithms for solv-
ing real world problems. Second, I wanted the book to be enjoyable to read, with an
emphasis on building intuition. Hence the material is driven by examples—I believe
the fastest way to grasp a new concept is through studying examples—and makes ex-
tensive use of programming to illustrate ideas. Running simulations and computing
equilibria helps bring abstract concepts to life.

The primary intended audience is advanced undergraduate and, especially, be-
ginning graduate students in economics. However, the techniques discussed in the
second half of the book add some shiny new toys to the standard tool kit used for eco-
nomic modeling, and as such they should be of interest to advanced graduate students
and researchers. The book is as self-contained as possible, given space constraints.

Part I of the book covers material that all well-rounded graduate students should
know. The style is relatively mathematical, and those who find the going hard might
start by working through the exercises in appendix A. Part II is significantly more
challenging. In designing the text it was not my intention that all of those who read
part I should go on to read part II. Rather, part II is written for researchers and grad-
uate students with a particular interest in technical problems. Those who do read the
majority of part II will gain a very strong understanding of infinite-horizon dynamic
programming and (nonlinear) stochastic models.

How does this book differ from other textbooks? There are several books on com-
putational macroeconomics and macrodynamics that treat related topics. In compar-
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ison, this book is not specific to macroeconomics. It should be of interest to (at least
some) people working in microeconomics, operations research, and finance. Second,
computation and theory are tightly integrated. When numerical methods are dis-
cussed, I have tried to emphasize mathematical analysis of the algorithms. Readers
will acquire a strong knowledge of the probabilistic and function-analytic framework
that underlies proposed solutions.

Like any text containing a significant amount of mathematics, the notation piles
up thick and fast. To aid readers I have worked hard to keep notation minimal and
consistent. Uppercase symbols such as A and B usually refer to sets, while lowercase
symbols such as x and y are elements of these sets. Functions use uppercase and low-
ercase symbols such as f , g, F, and G. Calligraphic letters such as A and B represent
sets of sets or, occasionally, sets of functions. Proofs end with the symbol □.

I provide a table of common symbols on page xiii. Furthermore, the index begins
with an extensive list of symbols, along with the number of the page on which they
are defined.

Solutions, Code, and Online Resources

Solutions to exercises, code, and online resources for the textbook can be found at

https://johnstachurski.net/edtc.html

Solutions to most of the exercises are collected in a PDF that’s freely available to all
readers. You will also find an online code book that accompanies this text, created us-
ing Jupyter Book. The code book contains Python code that generates the figures and
runs computations discussed herein. Solutions to exercises involving computation are
also included in the code book.1

Additional related code can be found at https://quantecon.org. The code there
includes Python and Julia implementations of algorithms discussed in this text, such
as routines for simulation of Markov chains and solution of Markov decision pro-
cesses.
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open, reproducible science. EBP is generously supported by the Alfred P. Sloan Foundation.
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Chapter 1

Introduction

In economic dynamics we find beautiful theory and challenging computational prob-
lems, both of which have great practical significance. What more could we ask for
when seeking an exciting research field?

As an example of practical significance, at the time of writing, the COVID-19 pan-
demic is ongoing, with restrictions on movement and activities slowly being relaxed
as vaccination rates increase. The question being debated in policy circles is: how fast
should restrictions be eased relative to expansion of vaccinations across the popula-
tion? Is an 80% vaccination rate for adults sufficient for the end of personal restric-
tions, or should we wait for higher? How many fatalities will we have to tolerate?

Economists are heavily involved in this modeling exercise. For the general public,
accurate modeling by these and other researchers is, without exaggeration, a matter
of life and death.

The debate on how to act is intense partly because predictions vary with the as-
sumptions and simplifications inserted into each model. Different research teams ap-
proach modeling in different ways and produce different numbers. This is not neces-
sarily a failure of the modeling process, since creating a distribution of beliefs across
outcomes based on an ensemble of models is a reasonable strategy for evaluating pro-
posed policies.1

Modeling pandemics is difficult because it involves both evolution of the pathogen
and, more critically, assumptions about human behavior. The choices individuals
make in the way they live their social and work lives have enormous impact on the
spread of infection. Predicting human behavior is hard, particularly since those hu-
mans making decisions are themselves basing their choices on forecasts of the future

1The only problem with this idea is that politicians seem to put full probability mass on model predic-
tions that they believe will bolster their electoral prospects.

3
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consequences of individual and collective decisions. On top of these problems, we
also must contend with shocks to the system, such as mutations of the virus, changes
in the policies of other countries, progress in treatments, and so on.

While modeling pandemics involves a specific form of dynamics, the discussion
above sounds much like a vast range of economic modeling problems. The outcomes
we observe in economic systems depend on individual choices and the aggregate im-
pact of those choices. Moreover, there is feedback not just from individual choices to
aggregate outcomes, but also from aggregate outcomes to individual choices (e.g., as-
set prices depend on investment decisions and investment decisions depend on asset
prices).

Significantly, individual choices are made on the basis of both current conditions
and beliefs held by the individuals in question over future conditions. Hence beliefs
are part of the feedback loop. At the same time, individual and aggregate condi-
tions are influenced by external shocks, which affect both current outcomes and be-
liefs about the future.

To handle such complexity, we need computational muscle power and careful,
well-constructed theory. Theory guides us not just in building models, but also in
designing algorithms to facilitate efficient computation. This algorithmic theory is
becoming more important every year, since clever algorithms can revolutionize what
is possible on the existing set of hardware.

In this first chapter we explore some of the foundations of dynamic modeling from
a high-level perspective. In subsequent chapters we will return to all of the themes
raised here and analyze them in detail.

1.1 Stochastic Dynamics

This section introduces finite Markov models and hints at their vast range of applica-
tions.

1.1.1 Markov Dynamics

To understand what I am about to discuss—and what most of the book is about—you
need to be familiar with Markov models. For now I will restrict attention to “finite”
Markov models, often called Markov chains. Some of what follows might be familiar
to you but I recommend you skim it anyway.

Markov chains are the simplest nontrivial class of stochastic dynamic systems. At
the same time, the theory of Markov chains is far from trivial. Markov chains play
central roles in fields as diverse as quantum mechanics, biology, artificial intelligence,
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Figure 1.1 A simple Markov model

management science, finance, sociology and, of course, economics. An enormous
number of dynamic systems can be accurately replicated with Markov chains.

Later we will cover the formal theory of Markov chains, as well as general state
Markov processes, in great detail. For now, let’s look at an example. Consider fig-
ure 1.1. We imagine that a household can be in one of three states: poor, rich, or
middle class. The arrows show the transition probabilities over one year. For exam-
ple, a rich household has a 10% probability of becoming poor in one year, while a poor
household has a 90% chance of remaining poor.

What could we deduce from this simple model if we were to take its numbers
seriously? One way to address this question is to consider what would happen to a
large population of households that follows these dynamics. In particular, we can run
a simulation where we assign households to states according to some specified initial
distribution (the fraction of households in each state at the start of the simulation run)
and then update each one independently according to the probabilities in figure 1.1.

Figure 1.2 shows the results of such a simulation, with 1,000 households. The dis-
tribution ψ0 = (p1, p2, p3) in the title of each subfigure indicates the share of house-
holds in each state (poor, middle, rich) at the start of time. The bar graph below the
title shows the distribution (i.e., share of population in each state) at the end of the
simulation run, after updating each household 100 times.

The most striking result of the simulation is that the final distribution is indepen-
dent of the initial distribution. Later we will prove that this result is exactly what we
should expect, given the dynamics specified in figure 1.1: for this model, there is a
unique distribution ψ, called the stationary distribution of the model, such that the
distribution of the population across states always converges to ψ as the population
size and time go to +∞, regardless of the initial distribution.

One reason convergence to the unique stationary distribution is important is that
it provides a firm prediction from the model. If the system we are observing has been
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Figure 1.2 Distribution of population after 100 periods

evolving for some time, then we expect the observed distribution across states at the
current time to match ψ. While this might or might not hold when we observe the
system, we still value the fact that the model makes a firm prediction. Models that
make strong predictions are falsifiable, and this property lies at the heart of scientific
analysis.2

Of course, models that predict a unique long-run outcome, independent of initial
conditions, are not the only models of interest in economics. Sometimes dynamics
are “path dependent,” meaning that initial conditions never cease to exert influence
on future outcomes. One commonly cited example in the popular science literature is
the standard Latin script keyboard layout, called the QWERTY keyboard, which was
designed in 1873. While more efficient layouts have been proposed since, all have
failed to capture significant market share.

We can modify the class transition model discussed above to generate path depen-
dence. For example, figure 1.3 shows another version of the model, but now there is
no route out of poverty. In the language of Markov chains, poor is an absorbing state.

2For example, Wikipedia asserts that “Astrology is a pseudoscience that claims to divine information
about human affairs and terrestrial events by studying the movements and relative positions of celestial
objects.” On what basis can we assert that astrology is a pseudoscience? The answer is that astrology
makes no falsifiable predictions.
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Figure 1.3 No route out of poverty

We will see other examples of absorbing states soon, in a classic model of segregation.
Before moving on to larger and more interesting models, there is another idea we

can introduce here, which is one of the core topics of stochastic dynamic modeling.
I am referring to the concept of ergodicity, which was formalized in part by Ludwig
Boltzmann (1844–1906) in his work on statistical mechanics. Loosely speaking, for a
dynamic system, ergodicity is said to hold if time series averages coincide with cross-
sectional averages.

To clarify this concept in the setting of Markov chains, consider again the model of
class dynamics in figure 1.1. This is the first set of probabilities we studied, where the
long run cross-sectional distribution was calculated by simulation in figure 1.2. There
is another way to calculate this distribution: if we take a single household and record
the fraction of time that it spends in each state over a very long simulation run, the
distribution, shown in figure 1.4, is identical in the limit to the one we obtained in
figure 1.2.

In the setting of this model, ergodicity means that a long-lived household will ex-
perience the different states of the model in proportion to their probability under the
cross-sectional (stationary) distribution. In contrast, the path dependent model in fig-
ure 1.3 is not ergodic. For example, the experience of an initially poor household will
be continuous poverty, even when the cross-sectional distribution indicates a large
fraction of the population is either middle class or rich.

Because expectations are computed from probabilities, when ergodicity holds we
can also recover cross-sectional expectations from time series. For example, for some
arbitrary function h, we have

1
T

T

∑
t=1

h(Xt) ≈
1
M

M

∑
i=1

h(X′
i)

Here (Xt)T
t=1 is a time series generated by the model and (X′

i)
M
i=1 is a large population

simulated according to the model, at some fixed point in time (that is, a cross-section).
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Figure 1.4 Fraction of time spent in each state by a single household

For example, if h(x) = x, then the claim is that the time series sample mean can be
used to compute the population mean and vice versa.

Ergodicity is a fundamental concept that plays a key role in economics, finance,
and econometrics, as well as many other fields. We return to the study of ergodicity
in chapter 4. As well as presenting theory, we will also run simulations that show
ergodicity in action.

1.1.2 Interacting Particle Systems

One unrealistic feature of the model of class transitions discussed in §1.1.1 is that
households do not interact. Instead, each one updates completely independently of
all others. In practice, households interact both directly—for example, by influencing
each other’s choices—and indirectly, by contributing to the determination of aggre-
gate quantities and prices. Economists and statisticians are steadily building tools to
help us understand these interactions.

In this section, we begin to consider interaction between agents in a Markov set-
ting. However, the first model we consider, called the Ising model, is from statistical
mechanics rather than economics. It is one of a family of models called “interact-
ing particle systems.” In these systems, individual entities, or particles, influence the
behavior of neighboring particles, and these local interactions shape macro-level out-
comes. Even though the model is not from economics, you might already have a sense
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Figure 1.5 A spin configuration in the plane (light = −1 and dark = +1)

of its relevance: we can start to identify individuals, households, and firms with the
“particles” in the model.

The Ising model is one of the foundational models of ferromagnetics in particular
and phase transitions more generally. Evolution within the basic model takes place
on a lattice of points in the plane, denoted below by L. Magnetization at each point
in the lattice is in one of two spin states, up or down, which we identify with +1 and
−1, respectively. Thus the state of the system at any given point of time is a particular
configuration of spins across lattice points. Mathematically, such a configuration is a
map from the lattice to the set {+1,−1}. The state space for the model, denoted here
by S, is the set of all such maps. A typical element of S is usually denoted by σ and
called a spin configuration. A small example is shown in figure 1.5.

The main systematic force governing dynamics within the model is that magnets
that are close prefer to be aligned in the same direction. In thermodynamics, how-
ever, the model is never completely at rest at normal temperatures, due to continuous
fluctuation of individual molecules. Hence physicists, in describing the equilibrium
of the system, refer not to a fixed spin configuration, but rather to a distribution over
S, the set of all configurations. The equilibrium distribution tells the frequency at
which different spin configurations are likely to be observed as we continue to view
the system.
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Under standard assumptions, the equilibrium distribution takes the form

ψ(σ) = c exp

(
J
2 ∑

i∈L
∑
j∼i

σ(i)σ(j)

)
(σ ∈ S)

Here ψ(σ) is the probability assigned to the configuration σ in equilibrium, σ(i) ∈
{−1,+1} is the spin on lattice point i ∈ L, while i ∼ j indicates that i and j are
neighbors. The value c is a positive constant and J is inverse to the temperature.3

In line with our discussion above, ψ puts large mass on configurations where many
neighbors have the same sign (in which case σ(i)σ(j) is positive).

Most of the challenges associated with the Ising model are due to the fact that
the state space is very large. There are 2m possible spin configurations, where m is the
number of points in the lattice. When the lattice is even moderately large, this number
is enormous. So if we want to compute an expectation such as

Eψh := ∑
σ∈S

h(σ)ψ(σ) (1.1)

where ψ is the equilibrium distribution and h is some function of interest, the sum
cannot be calculated directly, even with massively powerful computers.

As a result, mathematicians and physicists have developed other approaches to
evaluating these kinds of expectations. The most important family of methods is those
that are based on Markov chain Monte Carlo (MCMC). The idea behind MCMC is to
design a Markov chain such that ψ, the distribution of interest, is the stationary distribution
of the chain. The next step is to generate a long time series (σ1, σ2, . . . , σT) from the
Markov chain and then approximate the expectation Eψ via the sample mean

Eψ ≈ 1
T

T

∑
t=1

h(σt)

The key concept that connects the cross-sectional average in (1.1) and this time series
average is ergodicity. Thus, the Markov chain Monte Carlo scheme must be designed
in order to produce ergodicity.

These kinds of probabilistic methods have been revolutionary not just in statistical
mechanics, but also in Bayesian statistics and machine learning. While we will not
cover the Monte Carlo methods related to the Ising model in detail, the core ideas of
ergodicity, simulation, and statistical methods in a Markov setting pervade the pages
of this textbook.4

3If J = 0 then the spins are called noninteracting, which returns us to a setting of the independently
evolving entities, such as the households studied in §1.1.1.

4It is worth mentioning that many of the probabilistic arguments for the Ising model, including the
beautiful idea of perfect sampling via coupling from the past, draw on coupling methods, which form a
core part of our stability arguments for Markov chains.
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1.1.3 A Model of Segregation

What does all this have to do with economics? To give one example, let us now de-
scribe a small part of the work of Thomas Schelling, who received the Nobel Prize
in Economic Sciences in 2005.5 The part I refer to is Schelling’s model of residential
segregation (Schelling 1969, 1971), which seems to attract more attention every year
that passes.

Schelling designed his model to help explain the rise and prevalence of segre-
gated neighborhoods in US cities. In particular, beginning in the 1950s, US cities
witnessed large population movements along racial lines. For example, white mid-
dle class households shifted out of inner city areas in cities such as Chicago, Detroit,
and Cleveland. At the same time, black households shifted into these areas, often
from the rural South. By the 2010 census, Chicago’s Washington Park was recorded
as 97% black. These changes to the structure of neighborhoods have had large and
lasting impacts on the distribution of tax revenue, provision of social services, and
other social phenomena.

Schelling’s main insight was that, even if people are comfortable living in mixed
neighborhoods, which contain roughly even quantities of people of both colors, such
neighborhoods are inherently unstable once the model becomes dynamic. Configura-
tions that are unstable are less likely to be observed than stable ones, just as a pendu-
lum pointing straight up (an unstable equilibrium) is observed in the real world less
often than a pendulum pointing straight down (a stable equilibrium). Below we ex-
plore, through modeling and simulation, Schelling’s idea that mixed neighborhoods
are unstable.

In the version of the model we analyze here, the two races are imaginary and
will be called “light people” and “dark people.” The terminology refers only to the
shade of the circles that we use in the figures. Thus, segregation can be along any
recognizable division, including class, education, skin color, etc. Within the model, the
agents—or households—are located on a two-dimensional lattice, like the interacting
particle system discussed in §1.1.2.

Following Schelling’s initial specification, we assume that each household’s satis-
faction with their current location depends on the color of their neighbors. Specifi-
cally, the household will be regarded as happy in their current location whenever at
least half of their neighbors are of the same color as they are. If less than half of their
neighbors are of the same color, the household becomes unhappy and seeks to move.

5Thomas Schelling passed away in 2016, at the age of 95. (It seems that the life expectancy of academic
economists is strongly positively correlated with intelligence and creativity.) My favorite quote regarding
Schelling is this one, by Rajiv Sethi: “[Schelling’s] lack of concern with professional methodological norms
allowed him to generate new knowledge with great freedom, and to make innovations in method that may
end up being even more significant than his specific insights into economic and social life.”
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Figure 1.6 An initial configuration of households

Schelling emphasized the fact that the preferences of each household, as just de-
scribed, are not overtly racist in the following sense: households are perfectly com-
fortable living in a mixed neighborhood. Only when they start to feel isolated do they
wish to move. Hence the assumptions do not rule out prevalence of mixed neigh-
borhoods directly. Survey data and empirical evidence collected over the past few
decades have supported the preferences posed by Schelling.6

Schelling ran his simulation manually, using a chessboard. In our version of the
model, we take the lattice to be all pairs (x, y) of 64 bit floating point numbers in
the unit square [0, 1]× [0, 1]. An initial configuration over the lattice is formed by ran-
domly assigning colors to n households and then randomly assigning each household
to a location (x, y), using an independent bivariate draw from the uniform distribu-
tion. Any locations not selected in this process are regarded as unoccupied. Figure 1.6
shows one typical realization.

At each turn, one of the n agents is selected randomly, with uniform probability.
If the household is happy, no change occurs. If the household is unhappy, a new
location (x′, y′) is selected randomly, with x′ and y′ being drawn independently from
a uniform distribution. If the household is happy at (x′, y′), the turn stops. If not, a
new location is selected and the process repeats until the household is happy.

Note the similarity to the Ising model. In the latter, local interactions are through

6See, for example, Clark and Fossett (2008) or Card et al. (2008).
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Figure 1.7 An absorbing state with significant segregation

magnetic effects. Magnets that are close prefer to be aligned in the same direction.
Similarly, in the Schelling model, households that are close prefer to be of the same
race. (In other related models, such as voter models, agents prefer to be close to those
who share the same opinions.)

Let’s now look at how the system evolves when run according to the dynamics
specified above. The set of neighbors for a given household is defined to be the clos-
est 10 households, measured by Euclidean distance. Thus, a household is happy if
five or more neighbors are of the same color. Households are randomly selected and
updated, as described above. Figure 1.7 shows one realization after 10,000 such up-
dates. Testing the happiness of households at this point, we find that all are happy.
Hence, the system has reached a completely stable configuration: no further move-
ment occurs.

The most interesting result is that the residential pattern has gone from completely
mixed (figure 1.6) to significantly segregated. Moreover, repeating the simulation any
number of times produces a similar result (as you can verify using the code in the
accompanying Jupyter code book). Hence, mixed neighborhoods are unstable and
segregated neighborhoods are stable.

What is the intuition behind this result? In essence, there is a positive feedback
effect associated with each move. When a light household moves from an unhappy
location to a happy one, it makes the neighborhood that it left darker and its new
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location lighter. Dark households in the new location might now find themselves
outnumbered and hence shift to a darker location. This chain reaction continues, with
every move destabilizing mixed neighborhoods and reinforcing segregation.

Unlike many economic research exercises, Schelling is not just rationalizing what
we already observe with a mathematical model. In fact, the segregation produced by
the Schelling model is a classic example of an emergent phenomenon: a macro-level
pattern not inherent in individual choices, as a result of interactions between these
individuals. Schelling himself emphasized the importance of such phenomena within
economics (Schelling 1969):

Economists are familiar with systems that lead to aggregate results that
the individual neither intends nor needs to be aware of, the results some-
times having no recognizable counterpart at the level of the individual.
The creation of money by a commercial banking system is one; the way
that savings decisions cause depressions or inflations is another.

Schelling’s model shows how the decisions of many agents, combined with re-
source constraints, can aggregate in surprising and important ways.7

1.1.4 A Markov Perspective

At this point, let us turn back to Markov chains and try to provide a more formal
interpretation of the dynamics in the Schelling model. The model as described is
indeed a Markov chain. For the state space S, we take the set of all configurations of
households across the unit square. We can express S as the set of all mappings σ from
L := all pairs of 64 bit floating point numbers in [0, 1]× [0, 1] to E := {0, 1, 2}. Here 0
represents light, 1 represents dark, and 2 represents unoccupied.

This state space is astronomically large—larger than the number of atoms in the
known universe. Nevertheless, it is finite, and the process we used to update from
current state σt, which is the current configuration of households, to next period state
σt+1, depends only on the current state and independent draws of random numbers.
This is the essence of the Markov property.

As we simulated the system, we noticed that it soon converges to a state where all
households are happy. In the language of Markov chains, such convergence indicates
that we have reached an absorbing state. As we saw in our discussion of class transi-
tions in §1.1.1, existence of an absorbing state means that the dynamics of the model
fail to be ergodic.

7Another example, which is related to savings, recessions, and inflation, is the story of the Capitol Hill
baby sitting co-op, originally related by Sweeney and Sweeney (1977), and popularized in a series of articles
by Paul Krugman.
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On reflection, the fact that the neighborhood structure becomes fixed and unchang-
ing, due to arrival at an absorbing state, contradicts what we observe in real life.
Neighborhoods are constantly in flux. This is reminiscent of the Ising model, where,
at normal temperature ranges, fluctuations at the atomic level continue to perturb the
system.

To allow for constant flux, let us now make a small modification to the model:
every time a household is updated, the process runs as before but, in addition, once
the update has occurred, the color of the household is flipped with small probability ϵ.
This loosely captures the idea that, when households move across cities—or perhaps
out of cities while others move in—the move can be for reasons other than homophilic
(same-race) preference.

The most significant aspect of this change is that the model is now ergodic. How
can we be certain of this fact given the enormous size of the state space? The reasoning
is from the theory of Markov chains. In essence, there is now sufficient “mixing” to
ensure that the current state can evolve into any other possible state once enough time
has elapsed. We will study exactly how mixing generates convergence and ergodicity
in chapter 4.

Figures 1.8–1.9 show some results generated by simulating under the modified up-
date rule, with ϵ set to 0.01. Figure 1.8 is the initial configuration and figure 1.9 is the
result of 500,000 updates. In interpreting figure 1.9, it is important to remember that
the displayed configuration is not an absorbing state, since continuous mixing implies
that the neighborhoods always shift. Nonetheless, the general pattern is representa-
tive of other simulations under the same update rule: the additional mixing intro-
duced by the flip modification leads to more segregation, rather than less. (Compare
figure 1.9 with figure 1.7, which exhibits less severe segregation under the original
Schelling dynamics.)

Why would additional mixing lead to more segregation? Doesn’t mixing tend
to break up segregated neighborhoods? The basic intuition is that mixing shocks—
and hence destabilizes—configurations that are only partially stable. The segregation
generated under the original Schelling dynamics is not particularly extreme. Hence it
can still be destabilized by shocks to the system.

(Numerous optimization algorithms use some form of randomization for essen-
tially the same purpose—to continue to explore the whole domain of the objective
function rather only follow local dynamics. Only following local dynamics leads to
local optimizers that might be a long way from the global optimizer—just as the prin-
ciple of “always walking uphill” might not lead to the top of the highest mountain in
a fixed geographical area containing many hills.)
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Figure 1.8 Another initial configuration of households
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Figure 1.9 The result of iteration with low-level mixing
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1.2 Where to From Here?

We will not return to the Schelling model, since it is only one of many interesting
models that we wish to understand. However, the underlying concepts and the set of
questions that the model raises will continue to direct us as we expand our knowledge
of stochastic dynamics and computing. In the rest of this section we provide further
guidance on the next steps in our journey.

1.2.1 General State Space

All of the Markov models we have dealt with so far have a finite state space. We
also need to consider Markov models where the state space is infinite. While many
concepts and principles persist across this transition, there are some major differences.
Hence we must invest effort in learning about both.

Let’s begin with a very simple Markov system on the real lineR. It takes the form

Xt+1 = aXt + b + Wt+1, where Wt+1
IID∼ N(0, 1) (1.2)

Here X0 is a given constant and a, b ∈ R are parameters. This system is typically
called the Gaussian AR(1) model. It is important to note for what follows that Xt and
Wt+j are independent for all j ≥ 1, since Wt+j only affects Xt+j and after.

Despite the uncountable state space, the system in (1.2) is easy to analyze. For
starters, every Xt is normally distributed.

Exercise 1.1 Prove this. (Note: Solutions to exercises are available. See page x.)

One of the many nice things about normal distributions is that they are determined
by only two parameters, the mean and the variance. If we can find these parameters,
then we know the distribution. So suppose that Xt ∼ N(µt, vt), where the constants
µt and vt are given. If you are familiar with manipulating means and variances, you
will be able to deduce from (1.2) that Xt+1 ∼ N(µt+1, vt+1), where

µt+1 = aµt + b and vt+1 = a2vt + 1 (1.3)

Paired with initial conditions µ0 and v0, these laws of motion pin down the sequences
(µt)t≥0 and (vt)t≥0, and hence the distribution N(µt, vt) of Xt at each point in time. A
sequence of distributions starting from Xt ∼ N(1.0, 1.0) is shown in figure 1.10. The
parameters are a = 0.9 and b = 1.0.

In the figure it appears that the distributions are converging to some kind of limit-
ing distribution. This is due to the fact that |a| < 1, which implies that the sequences
in (1.3) are convergent. The limits are

µ∗ := lim
t→∞

µt =
b

1 − a
and v∗ := lim

t→∞
vt =

1
1 − a2 (1.4)
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Figure 1.10 Sequence of marginal distributions

Hence the distribution N(µt, vt) of Xt converges to N(µ∗, v∗).8 Note that this “equi-
librium” is a distribution rather than a single point—just like the Ising model, as well
as the Schelling model with added mixing that we discussed in §1.1.4.

All this analysis depends, of course, on the law of motion (1.2) being linear, and
the shocks being normally distributed. How important are these two assumptions
in facilitating the simple techniques we employed? The answer is that they are both
critical, and without either one we must start again from scratch.

To illustrate this point, let’s briefly consider the threshold autoregression model

Xt+1 =

{
A1Xt + b1 + Wt+1 if Xt ∈ B ⊂ Rn

A2Xt + b2 + Wt+1 otherwise
(1.5)

Here Xt is n× 1, Ai is n× n, bi is n× 1, and (Wt)t≥1 is an IID sequence of normally dis-
tributed random n× 1 vectors. Although, for this system, the departure from linearity
is relatively small (in the sense that the law of motion is at least piecewise linear), anal-
ysis of dynamics is far more complex. Through the text we will build a set of tools that
permit us to analyze nonlinear systems such as (1.5), including conditions used to test
whether the distributions of (Xt)t≥0 converge to some stationary (i.e., limiting) distri-
bution. We also discuss how one should go about computing the stationary distribu-

8What do we really mean by “convergence” here? We are talking about convergence of a sequence of
functions to a given function. But how to define this? There are many possible ways, leading to different no-
tions of equilibria, and we will need to develop some understanding of the definitions and the differences.
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Figure 1.11 Stationary distribution

tions of nonlinear stochastic models. Figure 1.11 shows the stationary distribution of
(1.5) for a given set of parameters, based on such a computation.

Now let’s return to the linear model (1.2) and investigate its sample paths. Fig-
ure 1.12 shows a simulated time series over 250 periods. The initial condition is
X0 = 14, and the parameters are as before. The horizontal line is the mean µ∗ of the
stationary distribution. The sequence is obviously correlated, and not surprisingly,
shows no tendency to settle down to a constant value. On the other hand, the sample
mean X̄t := 1

t ∑t
i=1 Xi seems to converge to µ∗, as shown in figure 1.13.

The convergence of X̄t certainly does not follow from the classical law of large
numbers, since (Xt)t≥0 is neither independent nor identically distributed. Instead, it
follows from ergodicity, which we discussed previously in the context of finite Markov
chains. We will prove this fact later in the text.

To give a sense of why ergodicity matters here, suppose that our simple model is
being used to represent a given economy over a given period of time. Suppose fur-
ther that the precise values of the underlying parameters a and b are unknown, and
that we wish to estimate them from the data. The method of moments technique pro-
poses that we do this by identifying the first and second moments with their sample
counterparts. That is, we set

first moment = µ∗(a, b) =
1
t

t

∑
i=1

Xt

second moment = v∗(a, b) + µ∗(a, b)2 =
1
t

t

∑
i=1

X2
t

The right-hand side components 1
t ∑t

i=1 Xt and 1
t ∑t

i=1 X2
t are collected from data, and
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the two equalities are solved simultaneously to calculate values for a and b.
The underlying assumption that underpins this whole technique is ergodicity. We

will need to think hard about how to establish this property, especially when we go
beyond the linear Gaussian model. As part of this journey, we will invest in learning
some of the foundations of probability theory.

1.2.2 Forward-Looking Agents

The behavioral rule in the Schelling model is very simple: each household chooses to
stay or move depending on the current relative payoff of these two actions. There is
no forward-looking aspect to the decision process. Agents do not concern themselves
with dynamics.

This assumption seems unrealistic. Real estate agents and the media often refer to
“up-and-coming” neighborhoods, or neighborhoods that are “gentrifying.” Both of
these terms are inherently dynamic. Both buyers and sellers make some estimate of
how prices and characteristics in a given area are likely to change.

In other economic settings, expectations over future outcomes are just as impor-
tant. The purchase of any asset involves a consideration of likely future payoffs. The
same is true of accepting or rejecting a job offer. Businesses forecast future revenue
and costs when making investment decisions.

Our baseline assumption in these kinds of scenarios will be that agents act in or-
der to optimize some kind of objective function. Optimization involving present and
future outcomes, subject to constraints on resources, information and processing ca-
pabilities, is both reasonable for many types of actors and sufficiently broad to allow
for a vast range of circumstances and assumptions. Since the objective function and
constraints can include many factors, setting optimization as the baseline is not the
same as insisting that economic agents are hyper-rational or completely selfish.

As such, we will need to consider methods aimed at optimizing various criteria
in stochastic dynamic settings that are typically Markov. These kinds of problems are
called Markov control problems or dynamic programs. They will be one of the main
topics of the text.

When considering forward-looking agents, there is also the issue of rational expec-
tations, which is currently the mainstream paradigm in macroeconomics. To explain
the basic idea in the context of the Schelling model, a rational expectations equilib-
rium would be one with the following properties. First, households make a guess
of the Markov process that drives the entire residential configuration (σt) over time.
Now they choose how to act on the basis of that guess. A rational expectations equi-
librium is a set of decision rules that verifies their guess, in the sense that, under the
choices that obey these decision rules, the macro configuration (σt) does in fact evolve
as they predicted.
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Rational expectations is not as crazy as it sounds. There must be some degree of
consistency between people’s beliefs about aggregate outcomes and what actually oc-
curs. At the same time, it is wise to be skeptical. For example, in the Schelling model,
the idea of imposing rational expectations seems ridiculous, given the enormous com-
plexity of the system. Moreover, in the real world there are many more determinants
of housing choices than just race.

The story is similar for the macroeconomy, which is not only massively complex
but also nonstationary. Institutions, technology and social norms all change. Large
shocks occur. Financial crises suggest that positive feedback loops are important,
which in turn implies that dynamics can be strongly nonlinear. In these settings, it
seems more likely that economic actors who need to forecast aggregate variables sim-
ply extrapolate based on recent experience or follow opinions in their social network.

Although some of the models we treat use rational expectations (see, e.g., com-
modity pricing in §6.3), our focuses is not on rational expectations macroeconomics.
Rather we focus our attention on foundational mathematical and computational skills
that are important for almost all forms of dynamic economic modeling.

1.3 Commentary

Good sources of information on the Ising model include Lindvall (1992) and Kendall
et al. (2005). For a discussion of the connection between the Ising model and the
Schelling model, see Stauffer and Schulze (2007). Our modified Schelling simulation
with added mixing was partly inspired by Zhang (2004), who also studies an ergodic
version of the model. Some innovative recent work on neighborhood dynamics can
be found in Knaap et al. (2019).

The problem of finding the set of neighbors of a given household in the Schelling
problem is closely related to the k-nearest neighbors algorithm, a popular technique
for classification and prediction. I have not pursued this connection, although it does
occur to me that this or one of several other machine learning routines could be em-
ployed to determine where a given household will be happy.

The remarkable paper of Propp and Wilson (1996) proposed a method for ex-
act sampling from the stationary distribution of the Ising model, using what is now
known as “coupling from the past.” Similar ideas could probably be applied to the
ergodic version of Schelling’s model studied above, although I haven’t investigated
this idea.

The style of modeling used by Schelling, combining simulation, simple decision
rules, aggregation and the study of emergent phenomena, is now called “agent-based
computational economics.” Background reading in this field can be found in Tesfat-
sion and Judd (2006), Gallegati et al. (2017), Hommes and LeBaron (2018), Dosi and
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Roventini (2019) and Grabner et al. (2019).
For more on the rational expectations debate, see Akerlof and Shiller (2010).
Other high level material on computational economics includes Kendrick et al.

(2005), Heer and Maussner (2009), Afonso and Vasconcelos (2015), and Fehr and Kin-
dermann (2018).

Code and other information relevant to this chapter can be found at the author’s
website. See page x for more information.





Chapter 2

Programming

Mathematics provides the foundations of our models and of the algorithms we use
to solve them. Computers are the engines that run these algorithms. Computers are
also invaluable for simulation and visualization. Simulation and visualization build
intuition, and intuition completes the loop by feeding into better mathematics. This
chapter provides a brief introduction to scientific computing.

Companion code for this and other chapters is available in the accompanying
Jupyter code book, written in Python (see page x). When the first edition of this book
was published in 2009, the choice of Python was viewed as surprising. But Python
now lies at the heart of a great many applications in engineering, machine learning,
artificial intelligence and data science. It also features an outstanding just-in-time
compiler and easy access to parallelized computation, which we discuss in more de-
tail below.

At the same time, there are other excellent scientific computing environments and
preferences across them vary widely. To avoid constraining the reader, in the current
edition, almost all algorithms presented within in the hardcopy textbook have been
shifted to pseudocode, rather than one specific language.

2.1 Algorithms

In this introductory section we discuss algorithmic foundations and work through
simple examples.

25
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2.1.1 Iteration and Flow Control

Many of the problems we study in this text reduce to a search for algorithms. The
language we will use to describe algorithms is called pseudocode. Pseudocode is an in-
formal way of presenting algorithms for the benefit of human readers, without getting
tied down in the syntax of any particular programming language. It’s a good habit to
begin every program by sketching it first in pseudocode.

Our pseudocode rests on the following four constructs:

if–then–else, while, repeat–until, and for

The general syntax for the if–then–else construct is

if condition then
first sequence of actions

else
second sequence of actions

end

The condition is evaluated as either true or false. If found true, the first sequence
of actions is executed. If false, the second is executed. Note that the else statement
and alternative actions can be omitted: If the condition fails, then no actions are per-
formed. A simple example of the if–then–else construct is

if there are cookies in the jar then
eat them

else
go to the shops and buy more
eat them

end

The while construct is used to create a loop with a test condition at the beginning:

while condition do
sequence of actions

end

The sequence of actions is performed only if the condition is true. Once they are
completed, the condition is evaluated again. If it is still true, the actions in the loop
are performed again. When the condition becomes false the loop terminates. Here’s
an example:
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while there are cookies in the jar do
eat one

end

The algorithm terminates when there are no cookies left. If the jar is empty to begin
with, the action is never attempted.

The repeat–until construct is similar:

repeat
sequence of actions

until condition

Here the sequence of actions is always performed once. Next the condition is
checked. If it is true, the algorithm terminates. If not, the sequence is performed
again, the condition is checked, and so on.

The for construct is sometimes called a definite loop because the number of repe-
titions is predetermined:

for element in sequence do
do something

end

For example, the following algorithm computes the maximum of a function f over
a finite set S using a for loop and prints it to the screen.1

set c = −∞
for x in S do

set c = max{c, f (x)}
end
print c

In the for loop, x is set equal to the first element of S and the statement “set
c = max{c, f (x)}” is executed. Next x is set equal to the second element of S, the
statement is executed again, and so on. The statement “set c = max{c, f (x)}” should
be understood to mean that max{c, f (x)} is first evaluated, and the resulting value is
assigned to the variable c.

Exercise 2.1 Modify this algorithm so that it prints the maximizer rather than the
maximum. Explain why it is more useful to know the maximizer.

Let’s consider another example. Suppose that we have two arrays A and B stored

1That is, it displays the value to the user. The term “print” dates from the days when sending output to
the programmer required generating hardcopy on a printing device.
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in memory, and we wish to know whether the elements of A are a subset of the ele-
ments of B. Here’s a prototype algorithm that will tell us whether this is the case:

set subset = True
for a in A do

if a /∈ B then set subset = False

end
print subset

Next, as an example of a more sophisticated problem, suppose we wish to model
flipping a biased coin with probability p of heads and have access to a random number
generator that yields uniformly distributed variates on [0, 1]. The next algorithm uses
these random variables to generate and print the outcome (either “heads” or “tails”)
of ten flips of the coin, as well as the total number of heads.2

set H = 0
for i in 1 to 10 do

draw U from the uniform distribution on [0, 1]
if U < p then // with probability p

print “heads”
H = H + 1

else // with probability 1 − p
print “tails”

end
end
print H

Note the use of indentation, which helps maintain readability of our code.

Exercise 2.2 Consider a game that pays $1 if and only if three consecutive heads
occur within ten flips. Otherwise the game pays zero. Modify the previous algorithm
to generate a round of the game and print the payoff. If you can, write a routine to
run the game 10,000 times and record the outcome. Use this data to make an estimate
of the probability that the game pays $1.

Exercise 2.3 Let b be a vector of zeros and ones. The vector corresponds to the
employment history of one individual, where 1 means employed at the associated
point in time, and 0 means unemployed. Write an algorithm to compute the longest
(consecutive) period of employment.

2What is the probability distribution of this total?
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2.1.2 Application: Bisection

As a more extensive example, let’s look at the bisection algorithm. You have probably
implemented bisection as a child, when you played this game: First, player A thinks of
a secret number n between 1 and 100. Player B must find n with the minimum number
of guesses, receiving only “yes” or “no” replies. The right strategy is for player B to
ask if n ≤ 50. If the answer is yes, then B repeats the same logic on 1, . . . 50 by asking
if n is less than 25. If no, then the logic is repeated in the other direction, by asking if
n is less than 75, and so on.

Here’s the same idea applied to approximating the root of a function f : [α, β] → R,
where f (α) and f (β) have different signs (i.e., f (α) f (β) < 0). We assume here for
convenience that f is continuous and has exactly one root (i.e., one x ∈ (α, β) such
that f (x) = 0). Other inputs to the algorithm are M, a maximal number of iterations
(to bound runtime) and ϵ, a small number. If M is sufficiently large, then the algorithm
finds and prints a value x such that | f (x)| < ϵ.

set i = 1, a = α, and b = β

while i ≤ M do
set c = (a + b)/2 // take the midpoint of the current interval
if | f (c)| < ϵ then

print “Approximate root of f is c”
stop

end
set i = i + 1
if f (c) f (a) < 0 then // signs differ so root is in (a, c)

set b = c // set (a, b) = (a, c) (choose lower subinterval)
else // root not in (a, c) so must be in (c, b)

set a = c // set (a, b) = (c, b) (choose upper subinterval)
end

end
print “Exceeded maximum iteration value M, bisection failed.”

The stop keyword indicates that execution of the algorithm should terminate when-
ever it is encountered. The key piece of logic is that a < b and f (a) f (b) < 0 implies
that the root lies in (a, b). The algorithm works by using this logic to iteratively select
a subinterval of the domain which is half as long as the previous one and guaranteed
to contain the root.

Exercise 2.4 Implement the bisection algorithm in your favorite programming lan-
guage. Test it on the function f (x) = sin(4(x − 1/4)) + x + x20 − 1, over the interval
[0, 1]. The unique root of f on [0, 1] is ≈ 0.408.
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A solution in Python can be found in the code book (see page x).

2.2 Program Design

In this section we discuss how to combine algorithms into programs, considering both
flexibility and efficiency.

2.2.1 User-Defined Functions

Algorithms solve programming problems. Programming involves more than just
implementing algorithms, however. Another issue is design: How should we con-
struct programs that contain multiple interacting algorithms while retaining clarity
and readability as our projects grow?

The first step along the road to good program design is learning to break programs
up using functions. Functions are the primary tool through which programmers im-
plement the time-honored strategy of divide and conquer: problems are split into
smaller subproblems, which are then coded up as functions. The main program then
coordinates these functions, calling on them to do their jobs at the appropriate time.

Functions allow programmers to isolate and test individual algorithms or steps of
logic. Functions also allow programmers to isolate variables to local scope: for most
programming languages, changing the value of variables local to the function does
not affect the value of global variables, even if they share the same name. Finally, due
to their ability to isolate logic and scope, functions can be targeted for optimization by
a compiler—more on this below.

Let’s look at a particular algorithm and how to implement it as a function. The
algorithm we consider is the (discrete) inverse transform method for generating ran-
dom draws from a discrete probability distribution. More specifically, we take S to
be a finite set and ϕ to be a function from S to R+ with the property ∑x∈S ϕ(x) = 1.
Throughout, ϕ(x) represents the “probability assigned to x.” Suppose we have the
ability to generate random variables that are uniformly distributed on (0, 1]. We now
want to generate random draws from S that are distributed according to ϕ.

Let W be uniformly distributed on (0, 1], so that, for any a ≤ b ∈ (0, 1], we have
P{a < W ≤ b} = b − a, which is the length of the interval (a, b].3 Our problem will
be solved if we can implement a function z 7→ τ(z) from (0, 1] to S such that τ(W) has
distribution ϕ. In other words,

P{τ(W) = x} = ϕ(x) for all x ∈ S

3The probability is the same whether inequalities are weak or strict.
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φ(x1) φ(x1) + φ(x2)0 1

I(x1; φ) I(x2; φ) I(x3; φ)

Figure 2.1 Partition (I(x))x∈S created by ϕ

One technique is as follows. First we divide the unit interval (0, 1] into disjoint subin-
tervals, one for each x ∈ S. The interval corresponding to x is denoted I(x) and is
chosen to have length ϕ(x). More specifically, when S = {x1, . . . , xN}, we take

I(xi) := (ϕ(x1) + · · ·+ ϕ(xi−1), ϕ(x1) + · · ·+ ϕ(xi)]

with I(x1) = (0, ϕ(x1)]. You can easily confirm that the length of I(xi) is ϕ(xi) for all
i. Figure 2.1 gives the picture for S = {x1, x2, x3}.

Now consider the function z 7→ τ(z) defined by

τ(z) := ∑
x∈S

x1{z ∈ I(x)} (z ∈ (0, 1]) (2.1)

where 1{z ∈ I(x)} is one when z ∈ I(x) and zero otherwise.

Exercise 2.5 Prove: for all x ∈ S, we have τ(z) = x if and only if z ∈ I(x).

The random variable τ(W) has distribution ϕ. To see this, pick any x ∈ S, and
observe that the τ(W) = x precisely when W ∈ I(x). The probability of this event
is the length of the interval I(x), which, by construction, is ϕ(x). Hence P{τ(W) =
x} = ϕ(x) for all x ∈ S as claimed.

A pseudocode implementation of the function z 7→ τ(z) is given in algorithm 2.1.
A direct Python implementation is shown in listing 2.1. In the accompanying

Jupyter code book we verify via simulation that the function performs as expected.
Similar implementations can be produced in Julia and other scientific computing en-
vironments.

The algorithm displayed in listing 2.1 can be improved upon in practice. For ex-
ample, instead of using for loop, we can apply a variation on the bisection algorithm
from §2.1 to find the interval containing z more efficiently.
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Algorithm 2.1: The function z 7→ τ(z; ϕ)

Data: the set of points S = {x1, . . . , xN} and a distribution ϕ on S
Function τ(z)

set a = 0
for i in 1, . . . , N do

set b = a + ϕ(xi)
if a < z ≤ b then return xi
set a = b

end

def tau(z, S, phi ):
"""
Evaluates tau(z) given array_like S and phi.
"""
a = 0
f o r i, x i n enumerate(S):

b = a + phi[i]
i f a < z <= b:

r e t u r n x
a = b

Listing 2.1 Direct implementation of the function τ
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i nput numpy as np
def tau(z, S, phi ):

i = np. searchsorted (np. cumsum (phi), z)
r e t u r n S[i]

Listing 2.2 Efficient implementation of the function τ

def tau_factory (S, phi ):
Phi = np. cumsum (phi)

def tau(z):
i = np. searchsorted (Phi , z)
r e t u r n S[i]

r e t u r n tau

Listing 2.3 Implementing τ via a closure (factory function)

One such implementation is given in listing 2.2. It applies NumPy’s searchsorted
function, which employs a form of bisection, to the task of locating the correct inter-
val. All common scientific computing environments provide a function analogous to
searchsorted.

Even though the function tau in listing 2.2 is efficient, there are still some im-
provements we can make. For example, it is quite likely that we will want to call
tau at many different z, while holding S and phi fixed. In this case, it would be less
cumbersome if we could pass S and phi once and then call tau with z alone.

In addition, the cumulative sum of phi is recomputed every time the function tau
in listing 2.2 is called. This is clearly inefficient.

Listing 2.3 solves both these problems by employing what’s known as a closure. An
outer function called tau_factory is used to compute the cumulative sum of phi and
create a function tau that acts on this sum and the array S. It then returns the function
tau.

We can create and use the function tau using code such as this:

phi = 0.2, 0.5, 0.3
S = 0, 1, 2
tau = tau_factory (S, phi)
tau (0.1) # only need to supply the parameter z
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Notice how tau retains access to the data S and phi even after the function tau_factory
has finished executing. The outer function is sometimes called a factory function.4

Python, Julia, R, and MATLAB all offer the ability to use closures.

2.2.2 Object-Oriented Programming

Some programming languages, such as Python, support object-oriented programming
(OOP), which essentially means that functions and the data they act on are bundled
together into abstract data types (ADTs). MATLAB and Julia offer variations on this
idea. I personally use Python’s OOP facilities routinely, although I write only small,
lightweight data types for organizing closely related data.

For those who are interested, we now cover several examples of OOP style, using
Python. Readers who prefer procedural styles or other computing environments can
safely skip the remainder of this section.

In Python, a class definition is a blueprint for such an ADT, describing what kind
of data it stores, and what functions it possesses for acting on these data. An object
is an instance of the ADT; an individual realization of the blueprint, typically with its
own unique data. Functions defined within classes are referred to as methods.

To illustrate the key ideas, we will build a simple class to represent and manipulate
polynomial functions. The data in this case are the coefficients (a0, . . . , aN), which
define a unique polynomial

p(x) = a0 + a1x + a2x2 + · · · aN xN =
N

∑
n=0

anxn (x ∈ R)

To manipulate these data we will create two methods, one to evaluate the polynomial
from its coefficients, returning the value p(x) for any x, and another to differentiate
the polynomial, replacing the original coefficients (a0, . . . , aN) with the coefficients of
p′.

Consider, first, listing 2.4, which sketches a class definition in pseudo-Python. This
is not real Python code—it is intended to give the feeling of how the class definition
might look, while omitting some boilerplate. The name of the class is Polynomial, as
specified after the keyword class. The class definition consists of three methods. Let’s
discuss them in the order they appear.

The first method is called initialize(), and represents a constructor, which is
a special method most languages provide to build (construct an instance of) an ob-
ject from a class definition. Constructor methods usually take as arguments the data
needed to set up a specific instance, which in this case is the vector of coefficients

4The technique adopted in listing 2.3 is called a closure because the data available in the outer function
is enclosed in the nested function.
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Listing 2.4 (polyclass0.py) A polynomial class in pseudo-Python

c l a s s Polynomial :

def initialize (coef):
""" Creates an instance p of the Polynomial class ,
where p(x) = coef [0] x^0 + ... + coef[N] x^N."""

def evaluate (x):
y = sum(a*x**i f o r i, a i n enumerate(coef))
r e t u r n y

def differentiate ():
new_coef = [i*a f o r i, a i n enumerate(coef)]
# Remove the first element , which is zero
de l new_coef [0]
# And reset coefficients data to new values
coef = new_coef

(a0, . . . , aN). The function should be passed a list or tuple, to which the identifier coef
is then bound. Here coef[i] represents ai.

The second method evaluate() evaluates p(x) from x and the coefficients. The
third method is differentiate(), which modifies the data of a Polynomial instance,
rebinding coef from (a0, . . . , aN) to (a1, 2a2, . . . , NaN). The modified instance repre-
sents p′.

Now that we have written up an outline of a class definition in pseudo-Python,
let’s rewrite it in proper Python syntax. The modified code is given in listing 2.5.
Before working through the additional syntax, let’s look at an example of how to use
the class:

data = [2, 1, 3]
p = Polynomial (data) # Creates instance of Polynomial class
p. evaluate (1) # Returns 6
p.coef # Returns [2, 1, 3]
p. differentiate () # Modifies coefficients of p
p.coef # Returns [1, 6]
p. evaluate (1) # Returns 7

An instance p is created by a call of the form p = Polynomial(data). Behind the
scenes this generates a call to the constructor method, which realizes the instance as an
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Listing 2.5 (polyclass.py) A polynomial class, correct syntax

c l a s s Polynomial :

def __init__ (self , coef):
""" Creates an instance p of the Polynomial class ,
where p(x) = coef [0] x^0 + ... + coef[N] x^N."""
self.coef = coef

def evaluate (self , x):
y = sum(a*x**i f o r i, a i n enumerate(self.coef))
r e t u r n y

def differentiate (self):
new_coef = [i*a f o r i, a i n enumerate(self.coef)]
# Remove the first element , which is zero
de l new_coef [0]
# And reset coefficients data to new values
self.coef = new_coef

object stored in memory, and binds the name p to this instance. As part of this process
a namespace for the object is created, and the name coef is registered in that names-
pace and bound to the data [2, 1, 3].5 The attributes of p can be accessed using
p.attribute notation, where the attributes are the methods (in this case evaluate()
and differentiate()) and instance variables (in this case coef).

Let’s now walk through the new syntax in listing 2.5. First, the constructor method
is given its correct name, which is __init__. The double underscore notation reminds
us that this is a special Python method—we will meet another example in a moment.
Second, every method has self as its first argument, and attributes referred to within
the class definition are also preceded by self (e.g., self.coef).

The idea with the self references is that they stand in for the name of any instance
that is subsequently created. As one illustration of this, note that calling p.evaluate(1)
is equivalent to calling

Polynomial . evaluate (p, 1)

This alternate syntax is more cumbersome and not generally used, but we can see how
p does in fact replace self, passed in as the first argument to the evaluate() method.

5To view the contents of this namespace type p.__dict__ at the prompt.
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And if we imagine how the evaluate() method would look with p instead of self,
our code starts to appear more natural:

def evaluate (p, x):
y = sum(a*x**i f o r i, a i n enumerate(p.coef ))
r e t u r n y

Before finishing, let’s briefly discuss another useful special method. One rather un-
gainly aspect of the Polynomial class is that for a given instance p corresponding
to a polynomial p, the value p(x) is obtained via the call p.evaluate(x). It would
be nicer—and closer to the mathematical notation—if we could replace this with the
syntax p(x). Actually this is easy: we simply replace the word evaluate in listing 2.5
with __call__. Objects of this class are now said to be callable, and p(x) is equivalent
to p.__call__(x).

Exercise 2.6 Drawing on listing 2.3 and the discussion concerning the inverse trans-
form method in §2.2.1, write a class with instance data S and phi that provides two
methods: a method to evaluate the function τ(z) for any given z, and a method to
generate a draw from S according to the distribution represented by phi.

2.2.3 High Performance Computing

When it comes to programming, which languages are suitable for scientific work?
Since the time it takes to complete a programming project is the sum of the time spent
writing the code and the time that a machine spends running it, an ideal language
would minimize both these terms.

Designing such a language is not an easy task. There is an inherent trade-off be-
tween human time and computer time, due to the fact that humans and computers
“think” differently: Flexible, high level languages that cater well to the human brain
are, in general, hard for machines to optimize (i.e., convert into efficient machine
code). For example, if we reduce flexibility by insisting that a variable x can point
only to floating point numbers, we inconvenience the programmer but free the com-
puter to specialize associated machine code to floating point operations.

Using the flexibility/efficiency trade-off, we can divide languages into (a) robust,
lower level languages such as Fortran and C/C++, which execute quickly but can
be a chore when coding and debugging, and (b) the more nimble, interactive higher
level languages, such as Python, MATLAB, and R. By design, these languages are
easy to write with and debug, but execution can be orders of magnitude slower. As
a consequence, a paradigm for scientific computing developed where programmers
write most of the code in a high level language and then call out to Fortran or C code
when heavy lifting is required.
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There are several problems associated with this traditional approach. First, there
is always a nonzero quantity of boilerplate code required when gluing two languages
together. Such boilerplate is tedious to maintain and makes the code base less acces-
sible. Second, increasing the number of languages means increasing the number of
compilers (or interpreters), which in turn increases complexity and drives up mainte-
nance costs.

For these reasons, in recent years, scientists at the forefront of computational and
numerical methods have shifted towards computing environments with high perfor-
mance just-in-time (JIT) compilers. As suggested by the name, JIT compilers generate
machine code on the fly, at runtime. Python (through the Numba library) and Julia
offer state-of-the-art JIT compilers based on the LLVM architecture. These JIT compil-
ers can convert well-written Python or Julia into extremely efficient machine code—as
efficient as the best implementations in C, C++, or Fortran.

Modern high quality JIT compilers also allow programmers to parallelize execu-
tion of JIT-compiled code across multiple threads on a CPU, or to target execution on
a GPU. For example, Numba offers easy access to many standard GPUs through its
CUDA programming interface. Code can be written in pure Python, decorated to indi-
cate GPU targeting, just-in-time compiled via Numba, and launched from convenient
interpreted Python functions running on the CPU. This procedure offers enormous
speed ups for some algorithms. Often execution speed rivals what can be produced
by hand-crafted C++ CUDA code, at a much higher cost in terms of time and effort.

Since these technologies change fast, we refrain from studying any listings in this
text. Instead, readers are invited the explore just-in-time compilers on their own.6

6One possible source of information is https://quantecon.org, which presents lectures in Python and
Julia that heavily exploit their JIT compilers.



Chapter 3

Analysis in Metric Space

Metric spaces are sets (spaces) with a notion of distance between points in the space
that satisfies certain axioms. From these axioms we can deduce many properties relat-
ing to convergence, continuity, boundedness, and other concepts needed for the study
of dynamics. Metric space theory provides both an elegant and powerful framework
for analyzing the kinds of problems we wish to consider, and a great sandpit for play-
ing with analytical ideas: A careful read of this chapter should strengthen your ability
to read and write proofs.

The chapter supposes that you have at least some exposure to introductory real
analysis or advanced calculus. A review of this material is given in appendix A. On
the other hand, if you are already familiar with the fundamentals of metric spaces,
then the best approach is to skim through this chapter quickly and return as necessary.

3.1 A First Look at Metric Space

Consider the set Rk, a typical element of which is a vector x = (x1, . . . , xk), where
xi ∈ R. There are several important topological notions we need to introduce for Rk.
These notions concern sets and functions on or into such space. In order to introduce
them, it is convenient to begin with the concept of Euclidean distance between vectors,
defined by

d2(x, y) :=: ‖x − y‖2 :=

[
k

∑
i=1

(xi − yi)
2

]1/2

(3.1)

You have surely met this notion of distance before and you might know that it satisfies
the following three conditions:

39
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1. d2(x, y) = 0 if and only if x = y,

2. d2(x, y) = d2(y, x), and

3. d2(x, y) ≤ d2(x, v) + d2(v, y).

for any x, y, v ∈ Rk. The first property says that a point is at zero distance from
itself, and also that distinct points always have positive distance. The second property
is symmetry, and the third—the only one that is not immediately apparent—is the
triangle inequality.

These three properties are fundamental to our understanding of distance. In fact,
if you look at the proofs of many important results—for example, the proof that every
continuous function f from a closed bounded subset of Rk to R has a maximizer and
a minimizer—you will notice that no other properties of d2 are actually used.

Now it turns out that there are many other “distance” functions we can impose
on Rk that also satisfy properties 1–3. Any proof for the Euclidean (i.e., d2) case that
only uses properties 1–3 continues to hold for other distances, and in certain problems
alternative notions of distance are easier to work with. This motivates us to generalize
the concept of distance inRk.

While we are generalizing the notion of distance between vectors inRk, it is worth
thinking about distance between other kinds of objects. If we could define the distance
between two (infinite) sequences, or between a pair of functions, or two probability
distributions, we could then give a definition for things like the “convergence” of
distributions discussed informally in chapter 1.

3.1.1 Distances and Norms

Here is the key definition:

Definition 3.1.1 A metric space is a nonempty set S and a metric or distance ρ : S × S →
R such that, for any x, y, v ∈ S,

1. ρ(x, y) = 0 if and only if x = y,

2. ρ(x, y) = ρ(y, x), and

3. ρ(x, y) ≤ ρ(x, v) + ρ(v, y).

Apart from being nonempty, the set S is completely arbitrary. In the context of
a metric space the elements of the set are usually called points. As in the case of
Euclidean distance, the third axiom is called the triangle inequality.

An immediate consequence of the axioms in definition 3.1.1 (which are sometimes
referred to as the Hausdorff postulates) is that ρ(x, y) ≥ 0 for any x, y ∈ S. To see this,
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note that if x and y are any two points in S, then 0 = ρ(x, x) ≤ ρ(x, y) + ρ(y, x) =
ρ(x, y) + ρ(x, y) = 2ρ(x, y). Hence ρ(x, y) ≥ 0 as claimed.

The space (Rk, d2) is a metric space, as discussed above. The most important case
is k = 1, when d2(x, y) reduces to |x − y| for x, y ∈ R. The notation (R, | · |) will be used
to denote this one-dimensional space.

Many additional metric spaces onRk are generated by what is known as a norm:

Definition 3.1.2 A norm on Rk is a mapping Rk 3 x 7→ ‖x‖ ∈ R such that, for any
x, y ∈ Rk and any γ ∈ R,

1. ‖x‖ = 0 if and only if x = 0,

2. ‖γx‖ = |γ|‖x‖, and

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Each norm ‖ · ‖ onRk generates a metric ρ onRk via ρ(x, y) := ‖x − y‖.

Exercise 3.1 Verify the last claim by checking the axioms in definition 3.1.1.

Exercise 3.2 Prove: |‖x‖ − ‖y‖| ≤ ‖x − y‖ for any norm ‖ · ‖ onRk and x, y ∈ Rk.

The most familiar norm on Rk is ‖x‖2 := (∑k
i=1 x2

i )
1/2, which generates the Eu-

clidean distance d2. A class of norms that includes ‖ · ‖2 as a special case is the family
‖ · ‖p defined by

‖x‖p :=

(
k

∑
i=1

|xi|p
)1/p

(x ∈ Rk) (3.2)

where p ≥ 1. It is standard to admit p = ∞ in this family, with ‖x‖∞ := max1≤i≤k |xi|.
Proving that ‖ · ‖p is indeed a norm on Rk for arbitrary p ≥ 1 is not difficult, but

neither is it entirely trivial. In particular, establishing the triangle inequality (property
3 of the norm) requires the services of Minkowski’s inequality. The latter is found in
any text covering norms and is omitted.

Exercise 3.3 Confirm that ‖ · ‖p is a norm onRk for the cases p = 1 and p = ∞.

The class of norms ‖ · ‖p gives rise to the class of metric spaces (Rk, dp), where
dp(x, y) := ‖x − y‖p for all x, y ∈ Rk.

So far all our spaces have involved different metrics on finite-dimensional vector
space. Next let’s consider an example of a “function space.” Let U be any set, let bU
be the collection of all bounded functions f : U → R (i.e., supx∈U | f (x)| < ∞), and let

d∞( f , g) :=: ‖ f − g‖∞ := sup
x∈U

| f (x)− g(x)| (3.3)
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x

x1

x2

xN

{y | ρ(x, y) < ϵ}

Figure 3.1 Limit of a sequence

The space (bU, d∞) is a metric space. Readers can check the first two properties of
the definition of a metric space. The triangle inequality is verified as follows. Fix
f , g, h ∈ bU and x ∈ U. We have

| f (x)− g(x)| ≤ | f (x)− h(x)|+ |h(x)− g(x)| ≤ d∞( f , h) + d∞(h, g)

Since x is arbitrary, we obtain d∞( f , g) ≤ d∞( f , h) + d∞(h, g).1

3.1.2 Sequences

Let S = (S, ρ) be a metric space. A sequence (xn) ⊂ S is said to converge to x ∈ S
if, for all ϵ > 0, there exists an N ∈ N such that n ≥ N implies ρ(xn, x) < ϵ. In
other words (xn) converges to x if and only if the real sequence ρ(xn, x) → 0 in R as
n → ∞ (see §A.2 for more on real sequences). If this condition is satisfied, we write
limn→∞ xn = x, or xn → x. The point x is referred to as the limit of the sequence.
Figure 3.1 gives an illustration for the case of two-dimensional Euclidean space.

Theorem 3.1.3 A sequence in (S, ρ) can have at most one limit.

Proof. You might like to try a proof by contradiction as an exercise. Here is a direct
proof. Let (xn) be an arbitrary sequence in S, and let x and x′ be two limit points. We
have

0 ≤ ρ(x, x′) ≤ ρ(x, xn) + ρ(xn, x′) ∀ n ∈ N
1As an aside, you may have noticed that the metric space (bU, d∞) seems to be defined by a “norm”

‖ f ‖∞ := supx∈U | f (x)|. This is not a norm in the sense of definition 3.1.2, as that definition requires that the
underlying space is Rk , rather than bU. However, more general norms can be defined for abstract “vector
space,” and ‖ · ‖∞ is a prime example. See, for example, Aliprantis and Burkinshaw (1998), Chapter 5.



Preface 43

a

f

f + ϵ

f − ϵ

b

Figure 3.2 An ϵ-ball for d∞

From theorems A.2.8 and A.2.9 (page 330) we have ρ(x, x′) = 0. Therefore x = x′.
(Why?)

Exercise 3.4 Let (xn) and (yn) be sequences in S. Show that if xn → x ∈ S and
ρ(xn, yn) → 0, then yn → x.

One of the most important creatures defined from the distance function is the hum-
ble open ball. The open ball or ϵ-ball B(ϵ; x) centered on x ∈ S with radius ϵ > 0 is the
set

B(ϵ; x) := {z ∈ S : ρ(z, x) < ϵ}

In the plane with ρ = d2 the ϵ-ball is a circle; in R3 it is a sphere. Figure 3.2 gives a
visualization of the ϵ-ball around f ∈ (b[a, b], d∞).

Exercise 3.5 Let (xn) ⊂ S and x ∈ S. Show that xn → x if and only if for all ϵ > 0, the
ball B(ϵ; x) contains all but finitely many terms of (xn).

A subset E of S is called bounded if E ⊂ B(n; x) for some x ∈ S and some (suitably
large) n ∈ N. A sequence (xn) in S is called bounded if its range {xn : n ∈ N} is a
bounded set.

Exercise 3.6 Show that every convergent sequence in S is also bounded.

Given sequence (xn) ⊂ S, a subsequence is defined analogously to the case of real
sequences: (yn) is called a subsequence of (xn) if there is a strictly increasing function
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f : N → N such that yn = x f (n) for all n ∈ N. It is common to use the notation (xnk )
to denote a subsequence of (xn).

Exercise 3.7 Show that for (xn) ⊂ S, xn → x for some x ∈ S if and only if every
subsequence of (xn) converges to x.

For the Euclidean space (Rk, d2) we have the following result:

Lemma 3.1.4 A sequence (xn) = (x1
n, . . . , xk

n) in (Rk, d2) converges to x = (x1, . . . , xk) ∈
Rk if and only if xj

n → xj inR = (R, | · |) for all j in 1, . . . , k.

Proof. For j in 1, . . . , k we have |xj
n − xj| ≤ d2(xn, x). (Why?) Hence if d2(xn, x) → 0,

then |xj
n − xj| → 0 for each j. For the converse, fix ϵ > 0 and choose for each j in

1, . . . , k an N j ∈ N such that n ≥ N j implies |xj
n − xj| < ϵ/

√
k. Now n ≥ maxj N j

implies d2(xn, x) ≤ ϵ. (Why?)

Lemma 3.1.4 is important, and you should try sketching it for the case k = 2 to
build intuition. We will see that in fact the same result holds not just for d2, but for the
metric induced by any norm onRk.

Let S and Y be two metric spaces. Parallel to §A.2.3, define f : S ⊃ A → Y to be
continuous at a ∈ A if for every sequence (xn) in A converging to a we have f (xn) →
f (a) in Y, and continuous on A whenever it is continuous at every a ∈ A. For the same
f : A → Y and for a ∈ A, we say that y = limx→a f (x) if f (xn) → y for every sequence
(xn) ⊂ A with xn → a. Clearly, f is continuous at a if and only if limx→a f (x) = f (a).

Example 3.1.5 Let S be a metric space, and let x̄ be any given point in S. The map
S 3 x 7→ ρ(x, x̄) ∈ R is continuous on all of S. To see this, pick any x ∈ S, and any
(xn) ⊂ S with xn → x. Two applications of the triangle inequality yield

ρ(x, x̄)− ρ(xn, x) ≤ ρ(xn, x̄) ≤ ρ(xn, x) + ρ(x, x̄) ∀ n ∈ N

Now take the limit (i.e., apply theorem A.2.8 on page 330).

Exercise 3.8 Let f (x, y) = x2 + y2. Show that f is a continuous function from (R2, d2)
into (R, | · |).2

Throughout the text, if S is some set, f : S → R, and g : S → R, then f + g denotes
the function x 7→ f (x) + g(x) on S, while f g denotes the function x 7→ f (x)g(x) on S.

Exercise 3.9 Let f and g be as above, and let S be a metric space. Show that if f and g
are continuous, then so are f + g and f g.

2Hint: Use lemma 3.1.4.
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Exercise 3.10 A function f : S → R is called upper-semicontinuous (usc) at x ∈ S if,
for every xn → x, we have lim supn f (xn) ≤ f (x); and lower-semicontinuous (lsc) if,
for every xn → x, we have lim infn f (xn) ≥ f (x). Show that f is usc at x if and only if
− f is lsc at x. Show that f is continuous at x if and only if it is both usc and lsc at x.

3.1.3 Open Sets, Closed Sets

Arbitrary subsets of arbitrary spaces can be quite unruly. It is useful to identify
classes of sets that are well-behaved, interacting nicely with common functions, and
co-operating with attempts to measure them, or to represent them in terms of simpler
elements. In this section we investigate a class of sets called the open sets, as well as
their complements the closed sets.

Let’s say that x ∈ S adheres to E ⊂ S if, for each ϵ > 0, the ball B(ϵ; x) contains at
least one point of E;3 and that x is interior to E if B(ϵ; x) ⊂ E for some ϵ > 0.4 A set E ⊂
S is called open if all points in E are interior to E, and closed if E contains all points that
adhere to E. In the familiar metric space (R, | · |), canonical examples are the intervals
(a, b) and [a, b], which are open and closed respectively.5 The concepts of open and
closed sets turn out to be some of the most fruitful ideas in all of mathematics.
Exercise 3.11 Show that a point in S adheres to E ⊂ S if and only if it is the limit of a
sequence contained in E.

Theorem 3.1.6 A set F ⊂ S is closed if and only if for every convergent sequence entirely
contained in F, the limit of the sequence is also in F.

Proof. Do the proof as an exercise if you can. If not, here goes. Suppose that F is
closed, and take a sequence in F converging to some point x ∈ S. Then x adheres to F
by exercise 3.11, and is therefore in F by definition. Suppose, on the other hand, that
the limit of every convergent sequence in F belongs to F. Take any x ∈ S that adheres
to F. By exercise 3.11, there is a sequence in F converging to it. Therefore x ∈ F, and F
is closed.

Open sets and closed sets are closely related. In fact, we have the following funda-
mental theorem:

Theorem 3.1.7 A subset of an arbitrary metric space S is open if and only if its complement
is closed, and closed if and only if its complement is open.

Proof. The proof is a good exercise. If you need a start, here is a proof that G open
implies F := Gc closed. Take (xn) ⊂ F with xn → x ∈ S. We wish to show that x ∈ F.

3In some texts, x is said to be a contact point of E.
4Try sketching some examples for the case of (R2, d2).
5If you find it hard to verify this now, you won’t by the end of the chapter.
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In fact, this must be the case because, if x /∈ F, then x ∈ G, in which case there is an
ϵ > 0 such that B(ϵ, x) ⊂ G. (Why?) Such a situation is not possible when (xn) ⊂ F
and xn → x. (Why?)

We call D(ϵ; x) := {z ∈ S : ρ(z, x) ≤ ϵ} the closed ϵ-ball centered on x. Every
D(ϵ; x) ⊂ S is a closed set, as anticipated by the notation. To see this, take (an) ⊂
D(ϵ; x) converging to a ∈ S. We need to show that a ∈ D(ϵ; x) or, equivalently, that
ρ(a, x) ≤ ϵ. Since ρ(an, x) ≤ ϵ for all n ∈ N, since limits preserve orders and since
y 7→ ρ(y, x) is continuous, we have ρ(a, x) = lim ρ(an, x) ≤ ϵ.

Exercise 3.12 Likewise every open ball B(ϵ; x) in S is an open set. Prove this directly,
or repeat the steps of the previous example applied to B(ϵ; x)c.

You will not find it difficult to convince yourself that if (S, ρ) is any metric space,
then the whole set S is itself both open and closed. (Just check the definitions care-
fully.) This can lead to some confusion. For example, suppose that we consider the
metric space (S, | · |), where S = (0, 1). Since (0, 1) is the whole space, it is closed. At
the same time, (0, 1) is open as a subset of (R, | · |). The properties of openness and
closedness are relative rather than absolute.
Exercise 3.13 Argue that for any metric space (S, ρ), the empty set ∅ is both open and
closed.

Exercise 3.14 Show that if (S, ρ) is an arbitrary metric space, and if x ∈ S, then the set
{x} is always closed.

Theorem 3.1.8 If F is a closed, bounded subset of (R, | · |), then sup F ∈ F.

Proof. Let s := sup F. Since F is closed it is sufficient to show there exists a sequence
(xn) ⊂ F with xn → s. (Why?) By lemma A.2.13 (page 332) such a sequence exists.

Exercise 3.15 Prove that a sequence converges to a point x if and only if the sequence
is eventually in every open set containing x.

Exercise 3.16 Prove: If {Gα}α∈A are all open, then so is ∪α∈AGα.

Exercise 3.17 Show that if A is finite and {Gα}α∈A is a collection of open sets, then
∩α∈AGα is also open.

In other words, arbitrary unions and finite intersections of open sets are open. But
be careful: An infinite intersection of open sets is not necessarily open. For example,
consider the metric space (R, | · |). If Gn = (−1/n, 1/n), then ∩n∈NGn = {0} because

x ∈ ∩nGn ⇐⇒ − 1
n
< x <

1
n

∀ n ∈ N ⇐⇒ x = 0
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Exercise 3.18 Show that ∩n∈N(a − 1/n, b + 1/n) = [a, b].

Exercise 3.19 Prove that if {Fα}α∈A are all closed, then so is ∩α∈AFα.

Exercise 3.20 Show that if A is finite and {Fα}α∈A is a collection of closed sets, then
∪α∈AFα is closed. On the other hand, show that the union ∪n∈N[a + 1/n, b − 1/n] =
(a, b). (Why is this not a contradiction?)

Exercise 3.21 Show that G ⊂ S is open if and only if it can be formed as the union of
an arbitrary number of open balls.

Remark 3.1.9 Later, when we try to make precise statements about dynamic systems
evolving on some set S ⊂ Rn, we will want S to be a “nice” set, in some sense, to
prevent the construction of strange and obscure counterexamples. We could assume
that S is open, since open sets are nice, but sometimes we want to work with closed
sets. We could assume “either open or closed,” but this also rules out some plausible
scenarios (e.g., S = [0, 1)). Faced with this problem, we will typically assume that the
set S is a Gδ set, which means that S can be expressed as a countable intersection of
open sets. By constructions such as the one seen in exercise 3.18, we can represent
every state space S we care about in this text as a Gδ set. At the same time, elements
of Gδ are regular enough to rule out most nasty counterexamples.

The closure of E is the set of all points that adhere to E, and is written cl E. In view
of exercise 3.11, x ∈ cl E if and only if there exists a sequence (xn) ⊂ E with xn → x.
The interior of E is the set of its interior points, and is written int E.

Exercise 3.22 Show that cl E is always closed. Show in addition that for all closed sets
F such that F ⊃ E, cl E ⊂ F. Using this result, show that cl E is equal to the intersection
of all closed sets containing E.

The last exercise tells us that the closure of a set is the smallest closed set that
contains that particular set. The next one shows us that the interior of a set is the
largest open set contained in that set.

Exercise 3.23 Show that int E is always open. Show also that for all open sets G such
that G ⊂ E, int E ⊃ G. Using this result, show that int E is equal to the union of all
open sets contained in E.

Exercise 3.24 Show that E = cl E if and only if E is closed. Show that E = int E if and
only if E is open.

Open sets and continuous functions interact very nicely. For example, we have the
following fundamental theorem.
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Theorem 3.1.10 A function f : S → Y is continuous if and only if the preimage f−1(G) of
every open set G ⊂ Y is open in S.

Proof. Suppose that f is continuous, and let G be any open subset of Y. If x ∈ f−1(G),
then x must be interior, for if it is not, then there is a sequence xn → x where xn /∈
f−1(G) for all n. But, by continuity, f (xn) → f (x), implying that f (x) ∈ G is not
interior to G. (Why?) Contradiction.

Conversely, suppose that the preimage of every open set is open, and take any
{xn}n≥1 ∪ {x} ⊂ S with xn → x. Pick any ϵ-ball B around f (x). The preimage f−1(B)
is open, so for N sufficiently large we have xn ∈ f−1(B) for all n ≥ N, in which case
f (xn) ∈ B for all n ≥ N.

Exercise 3.25 Let S, Y, and Z be metric spaces, and let f : S → Y and g : Y → Z. Show
that if f and g are continuous, then so is h := g ◦ f .

Exercise 3.26 Let S = Rk, and let ρ∗(x, y) = 0 if x = y and 1 otherwise. Prove
that ρ∗ is a metric on Rk. Which subsets of this space are open? Which subsets are
closed? What kind of functions f : S → R are continuous? What kinds of sequences
are convergent?

3.2 Further Properties

Having covered the fundamental ideas of convergence, continuity, open sets, and
closed sets, we now turn to two key concepts in metric space theory: completeness
and compactness. After stating the definitions and covering basic properties, we will
see how completeness and compactness relate to existence of optima and to the theory
of fixed points.

3.2.1 Completeness

A sequence (xn) in metric space (S, ρ) is said to be a Cauchy sequence if, for all ϵ > 0,
there exists an N ∈ N such that ρ(xj, xk) < ϵ whenever j ≥ N and k ≥ N . A subset A
of a metric space S is called complete if every Cauchy sequence in A converges to some
point in A. Often the set A of interest is the whole space S, in which case we say that
S is a complete metric space. As discussed in §A.2, the set of reals (R, | · |) has this
property. Many other metric spaces do not.

Notice that completeness is intrinsic to a given set A and a metric ρ on A. Either
every Cauchy sequence in (A, ρ) converges or there exists a Cauchy sequence that
does not. On the other hand, openness and closedness are relative properties. The set
A := [0, 1) is not open as a subset of (R, | · |), but it is open as a subset of (R+, | · |).
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The significance of completeness is that when searching for the solution to a prob-
lem, it sometimes happens that we are able to generate a Cauchy sequence whose limit
would be a solution if it does in fact exist. In a complete space we can rest assured
that our solution does exist as a well-defined element of the space.

Exercise 3.27 Show that a sequence (xn) in metric space (S, ρ) is Cauchy if and only
if limn→∞ supk≥n ρ(xn, xk) = 0.

Exercise 3.28 Show that if a sequence (xn) in metric space (S, ρ) is convergent, then
it is Cauchy. Show that if (xn) is Cauchy, then it is bounded.

Which metric spaces are complete? While R = (R, | · |) is complete, subsets of
R may not be. For example, consider the metric space (S, ρ) = ((0, ∞), | · |). Some
manipulation proves that while (xn) = (1/n) is Cauchy in S, it converges to no point
in S. On the other hand, for (S, ρ) = (R+, | · |) the limit point of the sequence (1/n) is
in S. Indeed this space is complete, as is any closed subset ofR. More generally,

Theorem 3.2.1 Let S be a complete metric space. Subset A ⊂ S is complete if and only if it
is closed as a subset of S.

Proof. Let A be complete. To see that A is closed, let (xn) ⊂ A with xn → x ∈ S.
Since (xn) is convergent it must be Cauchy (exercise 3.28). Because A is complete we
have x ∈ A. Thus A contains its limit points, and is therefore closed. Conversely,
suppose that A is closed. Let (xn) be a Cauchy sequence in A. Since S is complete,
(xn) converges to some x ∈ S. As A is closed, the limit point x must be in A. Hence A
is complete.

The Euclidean space (Rk, d2) is complete. To see this, observe first that

Lemma 3.2.2 A sequence (xn) = (x1
n, . . . , xk

n) in (Rk, d2) is Cauchy if and only if each
component sequence xj

n is Cauchy inR = (R, | · |).

The proof of lemma 3.2.2 is an exercise.6 The lemma is important because it implies
that (Rk, d2) inherits the completeness ofR (axiom A.2.3, page 328):

Theorem 3.2.3 The Euclidean space (Rk, d2) is complete.

Proof. If (xn) is Cauchy in (Rk, d2), then each component is Cauchy in R = (R, | · |),
and, by completeness ofR, converges to some limit inR. It follows from lemma 3.1.4
that (xn) is convergent in (Rk, d2).

Recall that (bU, d∞) is the bounded real-valued functions f : U → R, endowed
with the distance d∞ defined on page 41. This space also inherits completeness from
R:

6Hint: You might like to begin by rereading the proof of lemma 3.1.4.
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Theorem 3.2.4 Let U be any set. The metric space (bU, d∞) is complete.

Proof. Let ( fn) ⊂ bU be Cauchy. We claim the existence of a f ∈ bU such that
d∞( fn, f ) → 0. To see this, observe that for each x ∈ U we have supk≥n | fn(x) −
fk(x)| ≤ supk≥n d∞( fn, fk) → 0, and hence ( fn(x)) is Cauchy (see exercise 3.27). By
the completeness of R, ( fn(x)) is convergent, and we define a new function f ∈ bU
by f (x) = limn→∞ fn(x).7

To show that d∞( fn, f ) → 0, fix ϵ > 0, and choose N ∈ N such that d∞( fn, fm) <
ϵ/2 whenever n, m ≥ N. Pick any n ≥ N. For arbitrary x ∈ U we have | fn(x) −
fm(x)| < ϵ/2 for all m ≥ n, and hence, taking limits with respect to m, we have
| fn(x)− f (x)| ≤ ϵ/2. Since x was arbitrary, d∞( fn, f ) ≤ ϵ/2 < ϵ.

This is a good opportunity to briefly discuss convergence of functions. A sequence
of functions ( fn) from arbitrary set U into R converges pointwise to f : U → R if
| fn(x) − f (x)| → 0 as n → ∞ for every x ∈ U; and uniformly if d∞( fn, f ) → 0.
Pointwise convergence is certainly important, but it is also significantly weaker than
convergence in d∞. For example, suppose that U is a metric space, that fn → f , and
that all fn are continuous. It might then be hoped that the limit f inherits continuity
from the approximating sequence. For pointwise convergence this is not generally
true,8 while for uniform convergence it is:

Theorem 3.2.5 Let ( fn) and f be real-valued functions on metric space U. If fn is continuous
on U for all n and d∞( fn, f ) → 0, then f is also continuous on U.

Proof. Take (xk) ⊂ U with xk → x̄ ∈ U. Fix ϵ > 0. Choose n ∈ N such that | fn(x)−
f (x)| < ϵ/2 for all x ∈ U. For any given k ∈ N the triangle inequality gives

| f (xk)− f (x̄)| ≤ | f (xk)− fn(xk)|+ | fn(xk)− fn(x̄)|+ | fn(x̄)− f (x̄)|

∴ | f (xk)− f (x̄)| ≤ | fn(xk)− fn(x̄)|+ ϵ (k ∈ N)

From exercise A.20 (page 333) we have 0 ≤ lim supk | f (xk) − f (x̄)| ≤ ϵ. Since ϵ is
arbitrary, lim supk | f (xk)− f (x̄)| = limk | f (xk)− f (x̄)| = 0.

Now let’s introduce another important metric space.

Definition 3.2.6 Given any metric space U, let (bcU, d∞) be the continuous functions
in bU endowed with the same metric d∞.

Theorem 3.2.7 The space (bcU, d∞) is always complete.

Proof. This follows from theorem 3.2.1 (closed subsets of complete spaces are com-
plete), theorem 3.2.4 (the space (bU, d∞) is complete) and theorem 3.2.5 (which implies
that the space bcU is closed as a subset of bU).

7Why is f ∈ bU (i.e., why is f bounded on U)? Consult exercise 3.28.
8A counterexample is U = [0, 1], fn(x) = xn, f (x) = 0 on [0, 1) and f (1) = 1.
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3.2.2 Compactness

Now we turn to the notion of compactness. A subset K of S = (S, ρ) is called precom-
pact in S if every sequence contained in K has a subsequence that converges to a point
of S. The set K is called compact if every sequence contained in K has a subsequence
that converges to a point of K. (Thus every compact subset of S is precompact in S,
and every closed precompact set is compact.) Compactness will play a major role in
our analysis. As we will see, the existence of a converging subsequence often allows
us to track down the solution to a difficult problem.

As a first step, note that there is another important characterization of compact-
ness, which at first sight bears little resemblance to the sequential definition above. To
state the theorem, recall that for a set K in S, an open cover is a collection {Gα} of open
subsets of S such that K ⊂ ∪αGα. The cover is called finite if it consists of only finitely
many sets.

Theorem 3.2.8 A subset K of an arbitrary metric space S is compact if and only if every open
cover of K can be reduced to a finite cover.

In other words, a set K is compact if and only if, given any open cover, we can
discard all but a finite number of elements and still cover K. The proof of theorem 3.2.8
can be found in any text on real analysis.

Exercise 3.29 Exhibit an open cover ofRk that cannot be reduced to a finite subcover.
Construct a sequence inRk with no convergent subsequence.

Exercise 3.30 Use theorem 3.2.8 to prove that every compact subset of a metric space
S is bounded (i.e., can be contained in an open ball B(n; x) for some x ∈ S and some
(suitably large) n ∈ N).

Exercise 3.31 Prove that every compact subset of a metric space is closed.

On the other hand, closed and bounded subsets of metric spaces are not always
compact.

Exercise 3.32 Let (S, ρ) = ((0, ∞), | · |), and let K = (0, 1]. Show that although K is a
closed, bounded subset of S, it is not precompact in S.

Exercise 3.33 Show that every subset of a compact set is precompact, and every closed
subset of a compact set is compact.

Exercise 3.34 Show that in any metric space the intersection of an arbitrary number
of compact sets and the union of a finite number of compact sets are again compact.
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Exercise 3.35 For a more advanced exercise, you might like to try to show that the clo-
sure of a precompact set is compact. It follows that every precompact set is bounded.
(Why?)

When it comes to precompactness and compactness, the space (Rk, d2) is rather
special. For example, the Bolzano–Weierstrass theorem states that

Theorem 3.2.9 Every bounded sequence in Euclidean space (Rk, d2) has at least one conver-
gent subsequence.

Proof. Let’s check the case k = 2. Let (xn) = (x1
n, x2

n) ⊂ (R2, d2) be bounded. Since
(x1

n) is itself bounded inR (why?), we can find a sequence n1, n2, . . . =: (nj) such that
(x1

nj
) converges in R (theorem A.2.6, page 330). Now consider (x2

nj
). This sequence is

also bounded, and must itself have a convergent subsequence, so if we discard more
terms from n1, n2, . . . =: (nj) we can obtain a subsubsequence (ni) ⊂ (nj) such that
(x2

ni
) converges. Since (ni) ⊂ (nj), the sequence (x1

ni
) also converges. It follows from

lemma 3.1.4 (page 44) that (xni ) converges in (Rk, d2).

The next result (called the Heine–Borel theorem) follows directly.

Theorem 3.2.10 A subset of (Rk, d2) is precompact in (Rk, d2) if and only if it is bounded,
and compact if and only if it is closed and bounded.

As we have seen, some properties of (Rk, d2) carry over to arbitrary metric spaces,
while others do not. For example, we saw that in an arbitrary metric space, closed
and bounded sets are not necessarily compact. (This has important implications for
the theory of Markov chains developed below.) However, we will see in §3.2.3 that
any metric d onRk induced by a norm (see definition 3.1.2 on page 41) is “equivalent”
to d2, and that, as a result, subsets of (Rk, d) are compact if and only if they are closed
and bounded.

3.2.3 Optimization, Equivalence

Optimization is important not only to economics, but also to statistics, numerical com-
putation, engineering, and many other fields of science. In economics, rationality is
the benchmark assumption for agent behavior, and is usually imposed by requiring
agents solve optimization problems. In statistics, optimization is used for maximum
likelihood and other related procedures, which search for the “best” estimator in some
class. For numerical methods and approximation theory, one often seeks a simple rep-
resentation fn of a given function f that is the “closest” to f in some suitable metric
sense.
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In any given optimization problem the first issue we must confront is whether or
not optima exist. For example, a demand function is usually defined as the solution
to a consumer optimization problem. It would be awkward then if no solution to
the problem exists. The same can be said for supply functions, or for policy functions,
which return the optimal action of a “controller” faced with a given state of the world.
Discussions of existence typically begin with the following theorem:

Theorem 3.2.11 Let f : S → Y, where S and Y are metric spaces and f is continuous. If
K ⊂ S is compact, then so is f (K), the image of K under f .

Proof. Take an open cover of f (K). The preimage of this cover under f is an open
cover of K (recall theorem 3.1.10 on page 48). Since K is compact we can reduce this
to a finite cover (theorem 3.2.8). The image of this finite cover under f contains f (K),
and hence f (K) is compact.

Exercise 3.36 Give another proof of theorem 3.2.11 using the sequential definitions of
compactness and continuity.

The following theorem is one of the most fundamental results in optimization the-
ory. It says that in the case of continuous functions on compact domains, optima
always exist.

Theorem 3.2.12 (Weierstrass) Let f : K → R, where K is a subset of arbitrary metric space
(S, ρ). If f is continuous and K is compact, then f attains its supremum and infimum on K.

In other words, α := sup f (K) exists, and, moreover, there is an x ∈ K such that
f (x) = α. A corresponding result holds for the infimum.

Proof. Regarding suprema, the result follows directly from theorem 3.2.11 combined
with theorem 3.1.8 (page 46). By these theorems you should be able to show that
α := sup f (K) exists, and, moreover, that α ∈ f (K). By the definition of f (K), there is
an x ∈ K such that f (x) = α. This proves the assertion regarding suprema. The proof
of the assertion regarding infima is similar.

In general, for f : S → R, a value y ∈ R is called the maximum of f on A ⊂ S if
f (x) ≤ y for all x ∈ A and f (x̄) = y for some x̄ ∈ A. At most one maximum exists.
The maximizers of f on A are the points

argmax
x∈A

f (x) := {x ∈ A : f (x) = y} = {x ∈ A : f (z) ≤ f (x) for all z ∈ A}

Minima and minimizers are defined in a similar way.
With this notation, we can restate theorem 3.2.12 as follows: If K is compact and

f : K → R is continuous, then K contains at least one maximizer and one minimizer
of f on K. (Convince yourself that this is so.)
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Exercise 3.37 Let f : K → R, where K is compact and f is continuous. Show that if f
is strictly positive on K, then inf f (K) is strictly positive.

As an application of theorem 3.2.12, let’s show that all norms on Rk induce essen-
tially the same metric space. We begin with a definition: Let S be a nonempty set,
and let ρ and ρ′ be two metrics on S. We say that ρ and ρ′ are equivalent if there exist
constants K and J such that

ρ(x, y) ≤ Kρ′(x, y) and ρ′(x, y) ≤ Jρ(x, y) for any x, y ∈ S (3.4)

The notion of equivalence is important because equivalent metrics share the same
convergent sequences and Cauchy sequences, and the metric spaces (S, ρ) and (S, ρ′)
share the same open sets, closed sets, compact sets, and bounded sets:

Lemma 3.2.13 Let ρ and ρ′ be equivalent on S, and let (xn) ⊂ S. The sequence (xn) ρ-
converges to x ∈ S if and only if it ρ′-converges to x.9

Proof. If ρ(xn, x) → 0, then ρ′(xn, x) ≤ Jρ(xn, x) → 0, and so forth.

Exercise 3.38 Let ρ and ρ′ be equivalent on S, and let (xn) ⊂ S. Show that (xn) is
ρ-Cauchy if and only if it is ρ′-Cauchy.10

Exercise 3.39 Let ρ and ρ′ be equivalent on S, and let A ⊂ S. Show that A is ρ-complete
if and only if it is ρ′-complete.

Exercise 3.40 Let ρ and ρ′ be equivalent on S. Show that (S, ρ) and (S, ρ′) share the
same closed sets, open sets, bounded sets and compact sets.

Exercise 3.41 Let ρ and ρ′ be equivalent on S, and let f : S → R = (R, | · |). Show that
f is ρ-continuous if and only if it is ρ′-continuous.

Exercise 3.42 Let S be any nonempty set, and let ρ, ρ′, and ρ′′ be metrics on S. Show
that equivalence is transitive, in the sense that if ρ is equivalent to ρ′ and ρ′ is equiva-
lent to ρ′′, then ρ is equivalent to ρ′′.

Theorem 3.2.14 All metrics onRk induced by a norm are equivalent.

Proof. The claim is that if ‖ · ‖ and ‖ · ‖′ are any two norms onRk (see definition 3.1.2
on page 41), and ρ and ρ′ are defined by ρ(x, y) := ‖x − y‖ and ρ′(x, y) := ‖x − y‖′,
then ρ and ρ′ are equivalent. In view of exercise 3.42, it is sufficient to show that any

9Here ρ-convergence means convergence in (S, ρ), etc., etc.
10Hint: Try a proof using exercise 3.27 (page 49).
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one of these metrics is equivalent to d1. To check this, it is sufficient (why?) to show
that if ‖ · ‖ is any norm onRk, then there exist constants K and J such that

‖x‖ ≤ K‖x‖1 and ‖x‖1 ≤ J‖x‖ for any x ∈ Rk (3.5)

To check the first inequality, let ej be the j-th basis vector inRk (i.e., the j-th component
of vector ej is 1 and all other components are zero). Let K := maxj ‖ej‖. Then for any
x ∈ Rk we have

‖x‖ = ‖x1e1 + · · · xkek‖ ≤
k

∑
j=1

‖xjej‖ =
k

∑
j=1

|xj|‖ej‖ ≤ K‖x‖1

To check the second inequality in (3.5), observe that x 7→ ‖x‖ is continuous on (Rk, d1)
because if xn → x in d1, then

|‖xn‖ − ‖x‖| ≤ ‖xn − x‖ ≤ K‖xn − x‖1 → 0 (n → ∞)

Now consider the set E := {x ∈ Rk : ‖x‖1 = 1}. Some simple alterations to the-
orem 3.2.10 (page 52) and the results that lead to it show that, just as for the case
of (Rk, d2), closed and bounded subsets of (Rk, d1) are compact.11 Hence E is d1-
compact. It now follows from theorem 3.2.12 that x 7→ ‖x‖ attains its minimum on E,
in the sense that there is an x∗ ∈ E with ‖x∗‖ ≤ ‖x‖ for all x ∈ E. Clearly, ‖x∗‖ 6= 0.
(Why?) Now observe that for any x ∈ Rk we have

‖x‖ =

∥∥∥∥ x
‖x‖1

∥∥∥∥ ‖x‖1 ≥ ‖x∗‖‖x‖1

Setting J := 1/‖x∗‖ gives the desired inequality.

3.2.4 Fixed Points

Next we turn to fixed points. Fixed point theory tells us how to find an x that solves
Tx = x for some given T : S → S.12 Like optimization it has great practical impor-
tance. Very often the solutions of problems we study will turn out to be fixed points
of some appropriately constructed function. Of the theorems we treat in this section,
one uses convexity and is due to L. E. J. Brouwer while the other two are contraction
mapping arguments: a famous one due to Stefan Banach and a variation of the latter.

11Alternatively, you can show directly that (Rk , d2) and (Rk , d1) are equivalent by establishing (3.5) for
‖ · ‖ = ‖ · ‖2. The first inequality is already done, and the second follows from the Cauchy–Schwartz
inequality (look it up).

12It is common in fixed point theory to use upper case symbols like T for the function, and no brackets
around its argument. One reason is that S is often a space of functions, and standard symbols like f and g
are reserved for the elements of S.
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45 degree line

x∗ = Tx∗

T

Figure 3.3 Fixed points in one dimension

Incidentally, fixed point and optimization problems are closely related. When we
study dynamic programming, an optimization problem will be converted into a fixed
point problem—in the process yielding an efficient means of computation. On the
other hand, if T : S → S has a unique fixed point in metric space (S, ρ), then finding
that fixed point is equivalent to finding the minimizer of g(x) := ρ(Tx, x).

So let T : S → S, where S is any set. An x∗ ∈ S is called a fixed point of T on S if
Tx∗ = x∗. If S is a subset of R, then fixed points of T are those points in S where T
meets the 45 degree line, as illustrated in figure 3.3.

Exercise 3.43 Show that if S = R and T : S → S is decreasing (x ≤ y implies Tx ≥ Ty),
then T has at most one fixed point.

A set S ⊂ Rk is called convex if for all λ ∈ [0, 1] and a, a′ ∈ S we have λa + (1 − λ)a′ ∈
S. Here is Brouwer’s fixed point theorem:

Theorem 3.2.15 (Brouwer) Consider the space (Rk, d), where d is the metric induced by
any norm.13 Let S ⊂ Rk, and let T : S → S. If T is continuous and S is both compact and
convex, then T has at least one fixed point in S.

The proof is rather long and we omit it. I recommend you sketch the case S = [0, 1]
to gain some intuition.

Let (S, ρ) be a metric space, and let T : S → S. The map T is called nonexpansive on
S if

ρ(Tx, Ty) ≤ ρ(x, y) ∀ x, y ∈ S (3.6)
13All such metrics are equivalent. See theorem 3.2.14.
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It is called contracting on S if

ρ(Tx, Ty) < ρ(x, y) ∀ x, y ∈ S with x 6= y (3.7)

It is called uniformly contracting on S with modulus λ if 0 ≤ λ < 1 and

ρ(Tx, Ty) ≤ λρ(x, y) ∀ x, y ∈ S (3.8)

Exercise 3.44 Show that if T is nonexpansive on S then it is also continuous on S
(with respect to the same metric ρ).

Exercise 3.45 Show that if T is a contraction on S, then T has at most one fixed point
in S.

For n ∈ N the notation Tn refers to the n-th composition of T with itself, so Tnx
means apply T to x, apply T to the result, and so on for n times. By convention, T0 is
the identity map x 7→ x.14

Exercise 3.46 Let T be uniformly contracting on S with modulus λ, and let x0 ∈ S.
Define xn := Tnx0 for n ∈ N. Use induction to show that ρ(xn+1, xn) ≤ λnρ(x1, x0)
for all n ∈ N.

The next theorem is one of the cornerstones of functional analysis:

Theorem 3.2.16 (Banach) Let T : S → S, where (S, ρ) is a complete metric space. If T is a
uniform contraction on S with modulus λ, then T has a unique fixed point x∗ ∈ S. Moreover
for every x ∈ S and n ∈ N we have ρ(Tnx, x∗) ≤ λnρ(x, x∗), and hence Tnx → x∗ as
n → ∞.

Proof. Let λ be as in (3.8). Let xn := Tnx0, where x0 is some point in S. From exer-
cise 3.46 we have ρ(xn, xn+1) ≤ λnρ(x0, x1) for all n ∈ N, suggesting that the sequence
is ρ-Cauchy. In fact, with a bit of extra work, one can show that if n, k ∈ N and n < k,
then ρ(xn, xk) ≤ ∑k−1

i=n λiρ(x0, x1).

∴ ρ(xn, xk) <
λn

1 − λ
ρ(x0, x1) (n, k ∈ Nwith n < k)

Since (xn) is ρ-Cauchy, this sequence has a limit x∗ ∈ S. That is, Tnx0 → x∗ ∈ S. Next
we show that x∗ is a fixed point of T. Since T is continuous, we have T(Tnx0) → Tx∗.
But T(Tnx0) → x∗ clearly also holds. (Why?) Since sequences in a metric space have
at most one limit, it must be that Tx∗ = x∗.

Regarding uniqueness, let x and x′ be fixed points of T in S. Then

ρ(x, x′) = ρ(Tx, Tx′) ≤ λρ(x, x′)
14In other words, T0 := {x 7→ x} and Tn := T ◦ Tn−1 for n ∈ N.
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∴ ρ(x, x′) = 0, and hence x = x′

The estimate ρ(Tnx, x∗) ≤ λnρ(x, x∗) in the statement of the theorem is left as an
exercise.

If we take away uniformity and just have a contraction, then Banach’s proof of
stability does not work, and indeed a fixed point may fail to exist. Under the action
of a uniformly contracting map T, the motion induced by iterating T slows down at a
geometric rate. The limit of this process is a fixed point. On the other hand, with a
contraction we know only that the process slows down at each step, and this is not
enough to guarantee convergence. Imagine a particle that travels at speed 1 + 1/t at
time t. Its motion slows down at each step, but the particle’s speed is bounded away
from zero.

Exercise 3.47 Let S := R+ with distance | · |, and let T : x 7→ x + e−x. Show that T is
a contraction on S, and that T has no fixed point in S.

However, if we add compactness of S to the contractiveness of T the problem is
rectified. Now our particle cannot diverge, as that would violate the existence of a
convergent subsequence.

Theorem 3.2.17 If (S, ρ) is compact and T : S → S is contracting, then T has a unique fixed
point x∗ ∈ S. Moreover Tnx → x∗ for all x ∈ S.

The proof is provided in the appendix to this chapter (page 341).

3.3 Commentary

The French mathematician Maurice Fréchet (1878–1973) introduced the notion of met-
ric space in his dissertation of 1906. The name “metric space” is due to Felix Hausdorff
(1868–1942). Other important spaces related to metric spaces are topological spaces (a
generalization of metric space) and normed linear spaces (metric spaces with addi-
tional algebraic structure). Good references on metric space theory—sorted from ele-
mentary to advanced—include Light (1990), Kolmogorov and Fomin (1970), Alipran-
tis and Burkinshaw (1998), and Aliprantis and Border (1999). For a treatment with
economic applications, see Ok (2007).

This chapter’s discussion of fixed points and optimization only touched the sur-
face of these topics. For a nice treatment of optimization theory, see Sundaram (1996).
Various extensions of Brouwer’s fixed point theorem are available, including Kaku-
tani’s theorem (for correspondences, see McLennan and Tourky 2005 for an interesting
proof) and Schauder’s theorem (for infinite-dimensional spaces). Aliprantis and Bor-
der (1999) is a good place to learn more. See Aguiar and Amador (2019) for a creative
use of contraction maps in the setting of sovereign debt models.
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Introduction to Dynamics

4.1 Deterministic Dynamical Systems

Having covered programming and metric spaces in some depth, we now possess am-
ple tools for analysis of dynamics. After starting with deterministic dynamical sys-
tems, setting up the basic theory and the notion of stability, we turn to stochastic
models, where evolution of the state variable is affected by noise. While deterministic
systems are clearly a kind of stochastic system (with zero-variance noise), we will see
that the converse is also true: Stochastic models can be embedded in the determin-
istic framework. Through this embedding we can study the dynamic properties of
stochastic systems using our knowledge of the deterministic model.

4.1.1 The Basic Model

Suppose that we are observing the time path of some variable x in a metric space S. At
t, the current state of the system is denoted by xt. Assume that from the current state xt
we can compute the time t + 1 value xt+1 by applying a map h. That is, xt+1 = h(xt).
The two primitives that make up this system are S and h:

Definition 4.1.1 A dynamical system is a pair (S, h), where S = (S, ρ) is an arbitrary
metric space and h is a map from S into itself.

By the n-th iterate of x ∈ S under h we mean hn(x). It is conventional to set h0(x) :=
x. The trajectory of x ∈ S under h is the sequence (ht(x))t≥0. As before, x∗ ∈ S is a
fixed point of h in S if h(x∗) = x∗. Fixed points are also said to be stationary or invariant
under h.1

1Similar terminology applies to sets. For example, if h(A) ⊂ A, then A is said to be invariant under h.
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0

0

Figure 4.1 The result of mapping x 7→ h(x) for a grid of x values

Figure 4.1 illustrates the dynamics of one particular map h on S := R2 by showing
an arrow from x to h(x) for x ∈ a grid of points. Details on the map are in the section
of the Jupyter code book corresponding to this chapter.

Exercise 4.1 Show that if (S, h) is a dynamical system, if x′ ∈ S is the limit of some
trajectory (i.e., ht(x) → x′ as t → ∞ for some x ∈ S), and if h is continuous at x′, then
x′ is a fixed point of h.

Exercise 4.2 Prove that if h is continuous on S and h(A) ⊂ A (i.e., h maps A → A),
then h(cl A) ⊂ cl A.

Let x∗ be a fixed point of h on S. By the stable set Λ(x∗) of x∗ we refer to all x ∈ S
such that limt→∞ ht(x) = x∗. Clearly, Λ(x∗) is nonempty. (Why?) The fixed point
x∗ is said to be locally stable, or an attractor, whenever there exists an open set G with
x∗ ∈ G ⊂ Λ(x∗). Equivalently, x∗ is locally stable whenever there exists an ϵ-ball
around x∗ such that every trajectory starting in that ball converges to x∗:

Exercise 4.3 Prove that x∗ is locally stable if and only if there exists an ϵ > 0 such that
B(ϵ, x∗) ⊂ Λ(x∗).

In this book we will be interested primarily in global stability:
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Figure 4.2 Global stability

Definition 4.1.2 A dynamical system (S, h) is called globally stable or asymptotically
stable if

1. h has a unique fixed point x∗ in S, and

2. ht(x) → x∗ as t → ∞ for all x ∈ S.

Exercise 4.4 Prove that if x∗ is a fixed point of (S, h) to which every trajectory con-
verges, then x∗ is the only fixed point of (S, h).

Figure 4.2 helps to visualize the concept of global stability, plotting 9 individual
trajectories of a stable map h on R2. The details are in the Jupyter code book (see
page x).

Figure 4.3 also illustrates global stability, in this case for the one-dimensional sys-
tem (S, h), where S := (0, ∞) and h(k) := sAkα with s ∈ (0, 1], A > 0 and α ∈ (0, 1).
The system represents a simple Solow–Swan growth model, where next period’s cap-
ital stock h(k) is the savings rate s times current output Akα. The value A is a produc-
tivity parameter and α is the capital intensity. Figure 4.3 is called a 45 degree diagram.
When the curve h lies above (resp., below) the 45 degree line we have h(k) > k (resp.,
h(k) < k), and hence the trajectory moves to the right (resp., left). Two trajectories are
shown, converging to the unique fixed point k∗.
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Figure 4.3 45 degree diagram

Regarding local stability of (S, h) when S is an open subset of R, it is well-known
that

Lemma 4.1.3 If h is a map with continuous derivative h′ and x∗ is a fixed point of h with
|h′(x∗)| < 1, then x∗ is locally stable.

Intuitively, when the condition holds, h(x) ≈ h(x∗) + h′(x∗)(x − x∗) is locally
uniformly contracting in the neighborhood of x∗.

Example 4.1.4 Consider a growth model with “threshold” nonconvexities of the form
kt+1 = sA(kt)kα

t , where s, α ∈ (0, 1) and k 7→ A(k) is some increasing function with
A(k) > 0 when k > 0. Suppose, for example, that A is a step function of the form

A(k) =

{
A1 if 0 < k < kb

A2 if kb ≤ k < ∞

Here kb is a “threshold” value of capital stock, and 0 < A1 < A2. Let k∗i be the
solution to k = sAikα for i = 1, 2 when it exists. A plot is given in figure 4.4 for the
case where k∗1 < kb < k∗2. The two fixed points k∗1 and k∗2 are local attractors, as can be
verified from lemma 4.1.3. Long-run outcomes depend on initial conditions, and for
this reason the model is said to exhibit path dependence.

Exercise 4.5 A dynamical system (S, h) is called Lagrange stable if every trajectory
is precompact in S. In other words, the set {hn(x) : n ∈ N} is precompact for every
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Figure 4.4 Threshold externalities

x ∈ S.2 Show that if S is a closed and bounded subset of Rk, then (S, h) is Lagrange
stable for any choice of h.

Exercise 4.6 Let S = R, and let h : R→ R be an increasing function, in the sense that
if x ≤ y, then h(x) ≤ h(y). Show that every trajectory of h is a monotone sequence in
R (either increasing or decreasing).

Exercise 4.7 Now order points in Rn by setting x ≤ y whenever xi ≤ yi for i in
{1, . . . , n} (i.e., each component of x is dominated by the corresponding component
of y). Let S = Rn, and let h : S → S be monotone increasing. (The definition is the
same.) Show that the same result no longer holds—h does not necessarily generate
monotone trajectories.

4.1.2 Global Stability

Global stability will be a key concept for the remainder of the text. Let’s start our
investigation of global stability by looking at linear (more correctly, affine) systems in
one dimension.

2Equivalently, every subsequence of the trajectory has a convergent subsubsequence.
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Exercise 4.8 Let S = (R, | · |) and h(x) = ax + b. Prove that

ht(x) = atx + b
t−1

∑
i=0

ai (x ∈ S, t ∈ N)

From this expression, prove that (S, h) is globally stable whenever |a| < 1, and exhibit
the fixed point.

Exercise 4.9 Show that the condition |a| < 1 is also necessary, in the sense that if
|a| ≥ 1, then (S, h) is not globally stable. Show, in particular, that ht(x0) converges to
x∗ := b/(1 − a) only if x0 = x∗.

In exercise 4.8 we found a direct proof of global stability for our affine system
when |a| < 1. For more complex systems direct methods are usually unavailable,
and we must deploy more powerful machinery, such as Banach’s fixed point theorem
(theorem 3.2.16 on page 57).

Exercise 4.10 Let (S, h) be as in exercise 4.8. Using theorem 3.2.16, prove that (S, h) is
globally stable whenever |a| < 1.

Exercise 4.11 Let S := (0, ∞) with ρ(x, y) := | ln x − ln y|. Prove that ρ is a metric
on S and that (S, ρ) is a complete metric space. Consider the growth model kt+1 =
h(kt) = sAkα

t in figure 4.3, where s ∈ (0, 1], A > 0 and α ∈ (0, 1). Convert this into a
dynamical system on (S, ρ), and prove global stability using theorem 3.2.16.

Next we consider linear systems inRn. In general, a function h : Rn → Rn is called
linear if

h(αx + βy) = αh(x) + βh(y) ∀ x, y ∈ Rn ∀ α, β ∈ R (4.1)

It can be shown that every such h is continuous. If E is an n × n matrix, then the map
on Rn defined by x 7→ Ex is linear. In fact, it can be shown that for all linear maps
h : Rn → Rn there exists a matrix Eh with h(x) = Ehx for all x ∈ Rn. An affine system
onRn is a map h : Rn → Rn given by

h(x) = Ex + b where E is an n × n matrix and b ∈ Rn

To investigate this system, let ‖ · ‖ be any norm onRn, and define

λ := max{‖Ex‖ : x ∈ Rn, ‖x‖ = 1} (4.2)

Exercise 4.12 If you can, prove that the maximum exists. Using the properties of
norms and linearity of E, show that ‖Ex‖ ≤ λ‖x‖ for all x ∈ Rn. Show in addition
that if λ < 1, then (Rn, h) is globally stable.
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Let’s look at an application of these ideas. Carvalho and Tahbaz-Salehi (2019)
study production networks by building on earlier work due to Long and Plosser
(1983), who study business cycles using multisector growth models. Long and Plosser
solve their model to obtain a system for log output given by yt+1 = Ayt + b. Here
A = (aij) is a matrix of input/output elasticities across sectors, and yt is a 6× 1 vector
recording output in agriculture, mining, construction, manufacturing, transportation,
and services. Using cost share data and the hypothesis of perfect competition, the
authors calculate A to be given by

A = (aij) =



0.45 0.00 0.01 0.21 0.10 0.16
0.00 0.09 0.04 0.17 0.05 0.49
0.00 0.01 0.00 0.42 0.12 0.09
0.06 0.03 0.01 0.46 0.06 0.13
0.00 0.00 0.02 0.12 0.10 0.32
0.02 0.02 0.06 0.20 0.09 0.38


Exercise 4.13 Prove that Long and Plosser’s system is stable in the following way: Let
A = (aij) be an n × n matrix where the sum of any of the rows of A is strictly less
than 1 (i.e., maxi αi < 1, where αi := ∑j |aij|). Using the norm ‖ · ‖∞ in (4.2), show that
for A we have λ < 1. Now argue that in Long and Plosser’s model, (yt) converges
to a limit y∗, which is independent of initial output y0, and, moreover, is the unique
solution to the equation y∗ = Ay∗ + b.3

Exercise 4.14 Let B = (bij) be an n × n matrix where the sum of any of the columns of
B is strictly less than 1 (i.e., maxj β j < 1, where β j := ∑i |bij|). Using the norm ‖ · ‖1 in
(4.2), show that for B we have λ < 1. Conclude that if h(x) = Bx + b, then (Rn, h) is
globally stable.

The following results will be needed later in the text:

Exercise 4.15 Suppose that h is uniformly contracting on complete space S, so (S, h)
is globally stable. Prove that if A ⊂ S is nonempty, closed and invariant under h (i.e.,
h(A) ⊂ A), then the fixed point of h lies in A.

Lemma 4.1.5 Let (S, h) be a dynamical system. If h is nonexpansive and (S, hN) is globally
stable for some N ∈ N, then (S, h) is globally stable.

Proof. By hypothesis, hN has a unique fixed point x∗ in S, and hkN(x) → x∗ as k → ∞
for all x ∈ S. Pick any ϵ > 0, and choose k ∈ N so that ρ(hkN(h(x∗)), x∗) < ϵ. Then

ρ(h(x∗), x∗) = ρ(h(hkN(x∗)), x∗) = ρ(hkN(h(x∗)), x∗) < ϵ

3You are proving d∞-convergence of trajectories, but this is equivalent to d2-convergence by theo-
rem 3.2.14.
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It follows that x∗ is a fixed point of h. (Why?)
Stability: Fix x ∈ S and ϵ > 0. Choose k ∈ N so that ρ(hkN(x), x∗) < ϵ. Then

nonexpansiveness implies that, for each n ≥ kN,

ρ(hn(x), x∗) = ρ(hn−kN(hkN(x)), x∗) ≤ ρ(hkN(x), x∗) < ϵ

In other words, (S, h) is globally stable.

4.1.3 Chaotic Dynamic Systems

In this section we make a brief foray into chaotic (or complex) dynamical systems.
Chaotic dynamics is a field that initially benefited and then suffered from excessive
hype. Nonetheless, it retains great practical significance in various branches of sci-
ence.

To begin, consider first the dynamical system (S, h) defined by

h(x) = 4x(1 − x) (x ∈ S := [0, 1]) (4.3)

The function h is called the quadratic (or logistic) map and is often found in biological
models related to population dynamics. Readers can check that h maps S into itself.

In the previous section we defined global stability. For these systems all trajectories
converge to a single point, so long series will have an average value close to that point.
Other systems can have several attractors, so the point where the trajectory settles
down to depends on the initial condition. We will see that for (4.3) dynamics are still
more complicated.

Figure 4.5 shows one trajectory starting at initial condition 0.11. Code used to
generate the figure can be found in the Jupyter code book.

Notice that in figure 4.5 the trajectory continues to traverse through the space with-
out settling down. Some experimentation shows that this happens for many initial
conditions (but not all—does the map have any fixed points?). Moreover a slight
variation in the initial condition typically leads to a time series that bears no clear
resemblance to the previous one.

Science and mathematics are all about simplification and reduction. For example,
with a globally stable system we can usually focus our attention on the steady state.
(How does this state fit with the data?) From this perspective figure 4.5 is a little
distressing. Unless the initial conditions are very special and can be known exactly, it
seems that long-run outcomes cannot be predicted.4 However, this conclusion is too
pessimistic, as the next exercise illustrates.

4Which is problematic for a scientific study—what falsifiable implications can be drawn from these
models?
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Figure 4.5 Trajectory of the quadratic map

Exercise 4.16 Using your preferred plotting tool, histogram some trajectories gener-
ated by the quadratic map, starting at different initial conditions. Use relatively long
trajectories (e.g., around 5,000 points), and a fine histogram (about 40 bins). What
regularities can you observe?

Incidentally, the time series in figure 4.5 looks quite random, and in exercise 4.16
we treated the trajectory in a “statistical” way, by computing its histogram. Is there in
fact any formal difference between this kind of complex dynamics and the dynamics
produced in systems perturbed by random variables?

One answer was proposed by Kolmogorov, who suggested measuring the “ran-
domness” of a string of numbers by the size of the shortest computer program that can
replicate it.5 The upper bound of this measure is the size of the string itself because, if
necessary, one can simply enumerate the string. This upper bound is associated with
complete randomness. On the other hand, our code used to produce the time series
for the quadratic map was only a few lines, and therefore has a low Kolmogorov score.
In this sense we can differentiate it from a random string.

How does the quadratic map behave when we let the multiplicative parameter
take values other than 4? Consider the more general map x 7→ rx(1 − x), where
0 ≤ r ≤ 4. A subset of these maps is plotted in figure 4.6, along with a 45 degree line.
More curvature corresponds to greater r. It turns out that for some values of r this
system is globally stable. For others, like 4, the behavior is highly complex.

5Put differently, by how much can we compress such a string of numbers?
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Figure 4.6 Quadratic maps, r ∈ [0, 4]

The bifurcation diagram shown in figure 4.7 helps to give an understanding of the
dynamics. On the x-axis the parameter r ranges from 2.7 to 4. The y-axis corresponds
to the state space S. For each value r in a grid over [2.7, 4], a trajectory of length
1000 was generated. The first 950 points were discarded, and the last 50 were plotted.
For r ≤ 3, interior points converge to a unique interior steady state. For r ∈ (3, 1 +√

6], the state eventually oscillates between two “periodic attractors.” From there
the number of periodic attractors increases rapidly, and the behavior of the system
becomes correspondingly more “chaotic.”

Exercise 4.17 Reproduce figure 4.7 using your preferred computing environment.

4.1.4 Equivalent Dynamics and Linearization

In general, nonlinear models are much more difficult to analyze than linear models,
leading researchers to approximate nonlinear models with linearized versions. The
latter are usually obtained by a first-order Taylor expansion. Since fixed points are the
natural focus of analysis, it is standard to take expansions around fixed points.

Let us see how this is done in the one-dimensional case. Let (S, h) be a dynamical
system where S is an open subset of R, and h is continuously differentiable, with
derivative h′ on S. Pick any a ∈ S. The first-order Taylor expansion around a is the
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Figure 4.7 Bifurcation diagram

map h1 defined by
h1(x) = h(a) + h′(a)(x − a) (4.4)

Notice that h1 is an affine function on R with h(a) = h1(a). Clearly, h1 approximates
h in some sense when |x − a| is small. For this reason it is regarded as a “linear”
approximation to h around a.

Now let x∗ be a fixed point of h, so

h1(x) = x∗ + h′(x∗)(x − x∗) (4.5)

You can check that x∗ is also a fixed point of the approximating map h1. Note also that
x∗ will be stable for h1 whenever |h′(x∗)| < 1. But this is precisely the condition for
x∗ to be a local attractor for h (lemma 4.1.3). So it seems that we can learn something
about how ht(x) will behave when |x − x∗| is small by studying the simple affine map
h1 and the trajectory ht

1(x) that it generates.
The well-known Hartman–Grobman theorem formalizes this idea. To state the

theorem, it is necessary to introduce the abstract but valuable notion of topological
conjugacy. First, let S and Ŝ be two metric spaces. A function τ from S to Ŝ is called
a homeomorphism if it is continuous, a bijection, and its inverse τ−1 is also continuous.
Two dynamical systems (S, g) and (Ŝ, ĝ) are said to be topologically conjugate if there
exists a homeomorphism τ from S into Ŝ such that g and ĝ commute with τ in the
sense that ĝ = τ ◦ g ◦ τ−1 everywhere on Ŝ. In other words, shifting a point x̂ ∈ Ŝ to
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ĝ(x̂) using the map ĝ is equivalent to moving x̂ into S with τ−1, applying g, and then
moving the result back using τ:

x
g−−−−→ g(x)xτ−1

yτ

x̂
ĝ−−−−→ ĝ(x̂)

Exercise 4.18 Let S := ((0, ∞), | · |) and Ŝ := (R, | · |). Let g(x) = Axα, where A > 0
and α ∈ R, and let ĝ(x̂) = ln A + αx̂. Show that g and ĝ are topologically conjugate
under τ := ln.

Exercise 4.19 Show that if (S, g) and (Ŝ, ĝ) are topologically conjugate, then x ∈ S is
a fixed point of g on S if and only if τ(x) ∈ Ŝ is a fixed point of ĝ on Ŝ.

Exercise 4.20 Let x∗ ∈ S be a fixed point of g and let x be any point in S. Show, in
addition, that limt→∞ gt(x) = x∗ if and only if limt→∞ ĝt(τ(x)) = τ(x∗).

Exercise 4.21 Let x∗ ∈ S be a fixed point of g. Show that if x∗ is a local attractor for
(S, g), then τ(x∗) is a local attractor for (Ŝ, ĝ). Show that if (S, g) is globally stable,
then (Ŝ, ĝ) is globally stable.

We can now state the theorem of Hartman and Grobman. In the statement of the
theorem, S is an open subset of R and h : S → S. In this setting, h is called a C1-
diffeomorphism if both h and its inverse h−1 are continuously differentiable on S. A
fixed point x∗ of h in S is called hyperbolic if |h′(x∗)| 6= 1.

Theorem 4.1.6 (Hartman–Grobman) Let h be a diffeomorphism, let x∗ ∈ S be a fixed point
of h in S, and let h1 be the Taylor approximation in (4.5). If x∗ is hyperbolic, then there exists
an open set G containing x∗ such that h and h1 are topologically conjugate on G.6

Be careful when applying this theorem, which is one of the most misused math-
ematical results in all of economics. It provides only a neighborhood of S such that
behavior of the approximation is qualitatively similar to that of the original system. As
it stands, the Hartman–Grobman theorem provides no basis for quantitative analysis.7

6To see why |h′(x∗)| 6= 1 is important, consider the case of h(x) = arctan(x).
7For a discussion of some of the problems associated with applying linearization to quantitative models

with significant nonlinearities, see, for example, Boneva et al. (2016) or Pohl et al. (2018).
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4.2 Finite State Markov Chains

Next we start our journey into the world of stochastic dynamics. We begin with finite
state Markov chains, which were mentioned briefly in chapter 1. Finite state Markov
chains are employed routinely in almost every field of science and form a core part of
quantitative modeling in economics, finance, and operations research. Our treatment
of finite state stochastic dynamics is also geared toward building intuition, notation,
and tools that will be used in the general state case.

4.2.1 Definition

Let S = {x1, . . . , xN}. A typical element of S is usually denoted by x, rather than
a symbol such as xi or xn, in order to make our notation more consistent with the
continuous state theory developed below. The set S will be called the state space. The
set of distributions on S will be denoted P(S), and consists of all functions ϕ : S → R

with ϕ(x) ≥ 0 for all x ∈ S, and ∑x∈S ϕ(x) = 1. In general, ϕ(x) will correspond to
the probability attached to the point x in the state space under some given scenario.8

A quick digression: Although ϕ has been introduced as a function from S to R,
one can also think of it as a vector under the one-to-one correspondence

P(S) 3 ϕ ↔ (ϕ(x))x∈S := (ϕ(x1), . . . , ϕ(xN)) ∈ RN (4.6)

Under the correspondence (4.6), the collection of functions P(S) becomes a subset of
the vector spaceRN—in particular, the elements ofRN that are nonnegative and sum
to one. This set is called the unit simplex, and is illustrated for the case of N = 3 in
figure 4.8.

The basic primitive for a discrete time Markov process on S is a stochastic kernel,
the definition of which is as follows.

Definition 4.2.1 A stochastic kernel p is a function from S × S into [0, 1] such that

1. p(x, y) ≥ 0 for each (x, y) in S × S, and

2. ∑y∈S p(x, y) = 1 for each x ∈ S.

In other words, the function S 3 y 7→ p(x, y) ∈ R is an element of P(S) for all x ∈ S.
This distribution is represented by the symbol p(x, dy) in what follows.

As well as being a function, the distribution p(x, dy) can be viewed as a row9

vector (p(x, x1), . . . , p(x, xN)) in RN , located in the unit simplex, and these rows can

8What we call a distribution here is also referred to as a probability mass function.
9When treating distributions as vectors it is traditional in the Markov chain literature to regard them as

row vectors.
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Figure 4.8 The unit simplex with N = 3

be stacked horizontally to produce an N × N matrix with the property that each row
is nonnegative and sums to one:

p =

 p(x1, dy)
...

p(xN , dy)

 =

 p(x1, x1) · · · p(x1, xN)
...

...
p(xN , x1) · · · p(xN , xN)

 (4.7)

Conversely, any square N × N matrix that is nonnegative and has all rows summing
to one defines a stochastic kernel. However, when we move on to infinite state spaces
there is no concept of matrices, and hence most of the theory is stated in terms of
kernels.

In this chapter we are going to study a sequence of random variables (Xt)t≥0,
where each Xt takes values in S. The sequence updates according to the following
rule: If Xt = x, then, in the following period Xt+1 takes the value y with probability
p(x, y). In other words, once the current state Xt is realized, the probabilities for Xt+1
are given by p(Xt, dy). Figure 4.9 depicts an example of a simple Markov system,
where S = {x1, x2, x3}, and p(xi, xj) is the probability that Xt moves from state xi at
time t to xj at time t + 1.

The transition probabilities at each time depend on nothing other than the cur-
rent location of the state. This is the “Markov” assumption. Moreover the transition
probabilities do not depend on time. This is called time homogeneity. While these as-
sumptions might seem strict, it turns out that, with some manipulation, a large class of
systems can be embedded in the basic Markov framework. Typically this is achieved
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Figure 4.9 Finite Markov chain

by enlarging the state space until it contains all the information required to update the
state.

A simple example of a stochastic kernel is the one used in Hamilton (2005), who
investigates a nonlinear statistical model of the business cycle based on US unemploy-
ment data. As part of his calculation he estimates the kernel

pH :=

 0.971 0.029 0
0.145 0.778 0.077

0 0.508 0.492

 (4.8)

Here S = {x1, x2, x3} = {NG, MR, SR}, where NG corresponds to normal growth,
MR to mild recession, and SR to severe recession. For example, the probability of
transitioning from severe recession to mild recession in one period is 0.508. The length
of each period is one month.

For another example of a Markov model, consider the growth dynamics study of
Quah (1993), who analyzes the evolution of real GDP per capita relative to the world
average for a “typical” country (e.g., Xt = 2 implies that income per capita for the
country in question is twice the world average at time t). A natural state space is R+,
but to simplify matters Quah discretizes this space into five bins that correspond to
values for relative GDP of 0 to 0.25, 0.25 to 0.5, 0.5 to 1, 1 to 2, and 2 to ∞ respectively.
He then calculates the stochastic kernel by setting p(x, y) equal to the fraction of times
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that a country, finding itself in state x, subsequently makes the transition to state y.10

The result of this calculation is

pQ :=


0.97 0.03 0.00 0.00 0.00
0.05 0.92 0.03 0.00 0.00
0.00 0.04 0.92 0.04 0.00
0.00 0.00 0.04 0.94 0.02
0.00 0.00 0.00 0.01 0.99

 (4.9)

For example, the probability of our typical country transitioning from the lowest bin
to the second lowest bin in one year is 0.03.

Algorithm 4.1: Simulation of a Markov chain

draw X0 ∼ ψ and set t = 0
while True do // "while True" means repeat forever

draw Xt+1 ∼ p(Xt, dy)
set t = t + 1

end

Let us now clarify the definition of a Markov chain (Xt)t≥0 corresponding to a
given stochastic kernel p. It is helpful to imagine that we wish to simulate (Xt)t≥0 on
a computer. First we draw X0 from some predetermined initial condition ψ ∈ P(S).
As p(x, dy) gives the transition probabilities for Xt+1 conditional on Xt = x, we now
draw X1 from p(X0, dy). Taking the result X1, we then draw X2 from p(X1, dy), and
so on. This is the content of algorithm 4.1, as well as the next definition.

Definition 4.2.2 Let ψ ∈ P(S). A sequence of S-valued random variables (Xt)t≥0 is
called Markov-(p, ψ) if

1. at time t = 0, the initial state X0 is drawn from ψ, and

2. at each t ≥ 1, Xt is drawn from p(Xt−1, dy).

If ψ = δx for some x ∈ S, then (Xt)t≥0 is called Markov-(p, x).

4.2.2 From MCs to SRSs

Let’s think carefully about the mechanics of simulating Markov chains. How exactly
should we implement algorithm 4.1 on a computer? Considering this problem leads

10His data span the period 1962 to 1984, and have a sample of 118 countries. The transitions are over a
one year period. The model is assumed to be stationary (transition probabilities do not vary with time), so
all of the transitions (1962 to 1963, 1963 to 1964, etc.) can be pooled when calculating transition probabilities.
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us to investigate the connection between Markov chains generated by stochastic ker-
nels on one hand and stochastic recursive sequences (SRSs, also called stochastic dif-
ference equations) on the other. Stochastic recursive sequences lie at the heart of many
economic models.

A typical SRS has the form

Xt+1 = F(Xt, Wt+1), X0 ∼ ψ ∈ P(S), F : S × Z → S (4.10)

where (Wt)t≥1 is a sequence of IID shocks taking values in arbitrary set Z. The shocks
Wt are to be thought of as functions on a common set Ω, called the probability space.
The system now evolves as follows:

1. At the start of time, nature selects an ω ∈ Ω according to some probability P.

2. The draw ω determines a complete realization of the path (Wt(ω))t≥1.

3. The draw ω also determines X0, with P{ω : X0(ω) = x} = ψ(x).

4. Given (Wt(ω))t≥1 and X0(ω), we construct the time path (Xt(ω))t≥0 via

X1(ω) = F(X0(ω), W1(ω)), X2(ω) = F(X1(ω), W2(ω)), etc.

The idea that all uncertainty is realized at the start of time by a single observation
ω from Ω is a convenient mathematical fiction. It does, however, have a close analogy
with what happens on a machine when we run a simulation. In particular, a sequence
of “random” numbers produced by a computer is in fact only pseudorandom, meaning
that the sequence is produced deterministically, according to a particular rule and
initialized by a particular seed, while at the same time mimicking the properties of
independent draws.

From this perspective, you can think of ω as the seed that is fixed at the beginning
of our simulation, which then determines the whole path via steps 1–4 above.

The SRS (4.10) induces a stochastic kernel p on S by

p(x, y) = P{F(x, Wt) = y} := P{ω ∈ Ω : F(x, Wt(ω)) = y}

We now show it is possible to go the other way, representing any Markov-(p, ψ) pro-
cess by an SRS such as (4.10). Once we have the SRS representation, we will have
another way to view Markov chains, which is helpful for concepts and theory, as well
as a natural way to simulate paths from a given kernel.

To this end, let p be a stochastic kernel on S and fix ψ ∈ P(S). To generate a
Markov-(p, ψ) chain, we take (Wt)t≥0 to be IID uniform on (0, 1] and let

X0 = τ(W0; ψ), Xt+1 = τ(Wt+1; p(Xt, dy)) (4.11)
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Figure 4.10 Simulation of the Hamilton Markov chain

where τ is the function discussed at length in §2.2.1. The second equality can be
rewritten as

Xt+1 = F(Xt, Wt+1) where F(x, z) := τ(z; p(x, dy)) (4.12)

The discussion of the inverse transform method in §2.2.1 tells us that, since W is uni-
form on (0, 1], the random variable F(x, W) has distribution p(x, dy). As a result, the
sequence (Xt)t≥0 generated by (4.11) and (4.12) obeys X0 ∼ ψ and Xt+1 ∼ p(Xt, dy)
for t ≥ 0. In other words, (Xt)t≥0 is a Markov-(p, ψ) chain.

Exercise 4.22 Using an implementation of the function τ from §2.2.1, or your own
version of the inverse transform method in your preferred language, combined with
the SRS formulation in (4.11), simulate and plot a time series from Hamilton’s Markov
chain. You can identify the state space S = {NG, MR, SR} with the integers {0, 1, 2}.

The Jupyter code book contains multiple solutions to exercise 4.22. One is coded
to replicate the mathematical description as closely as possible. Another uses existing
(and highly efficient) code from the QuantEcon library. Figure 4.10 shows one time
series generated in this exercise.

Incidentally, SRSs are sometimes referred to as iterated function systems (IFSs). In
this framework one thinks of updating the state from Xt to Xt+1 by the random function
FWt+1 := F(·, Wt+1). In practice the only change is a notational one: Xt+1 = FWt+1(Xt)
as compared to (4.10). The main advantage is that we can now write

Xt = FWt ◦ FWt−1 ◦ · · · ◦ FW1(X0) = FWt ◦ FWt−1 ◦ · · · ◦ FW1(τ(W0; ψ))
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We see more clearly that Xt is just a fixed function of the initial condition and shocks
up to time t.

4.2.3 Marginal Distributions

Let (Xt)t≥0 be Markov-(p, ψ). For every t ∈ N, let ψt ∈ P(S) denote the distribution
of Xt. That is, ψt(y) is the probability that Xt = y, given that X0 is drawn from
initial distribution ψ, and that the chain subsequently follows Xt+1 ∼ p(Xt, dy). This
distribution is sometimes called the marginal or unconditional distribution of Xt. We
can understand it as follows: Generate n independent realizations of Xt, and calculate
the fraction that takes the value y. Call this number ψn

t (y). The probability ψt(y) can
be thought of as the limit of ψn

t (y) as n → ∞.
A method for computing the fraction ψn

t (y) is given in algorithm 4.2. In the algo-
rithm, the instruction draw X ∼ p(X, dy) should be interpreted as: Draw a random
variable Y according to the distribution p(X, dy) and then set X = Y. Also, 1{Xi

t = y}
is an indicator function, equal to one when Xi

t = y and zero otherwise.

Algorithm 4.2: Approximate marginal distribution

for i in 1 to n do
draw X ∼ ψ

for j in 1 to t do
draw X ∼ p(X, dy)

end
set Xi

t = X
end
return (1/n)∑n

i=1 1{Xi
t = y}

Exercise 4.23 Implement algorithm 4.2 for Hamilton’s Markov chain. You can identify
the state space S = {NG, MR, SR} with the integers {0, 1, 2}. Set ψ = (0, 0, 1), so the
economy starts in severe recession with probability one. Compute an approximation
to ψt(y), where t = 10 and y = 0. For sufficiently large n you should get an answer
close to 0.6.

Exercise 4.24 Rewrite algorithm 4.2 using a counter that increments by one whenever
the output of the inner loop produces a value equal to y instead of recording the value
of each Xi

t.

Now consider again a Markov-(p, ψ) chain (Xt)t≥0 for arbitrary stochastic kernel
p and initial condition ψ. As above, let ψt ∈ P(S) be the marginal distribution of Xt.
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From ψt and our complete description of the dynamics in p, it seems possible that we
will be able to calculate the distribution of Xt+1. That is to say, we might be able to
link ψt and ψt+1 using p. That we can in fact construct such a recursion is one of the
most fundamental and important properties of Markov chains.

To begin, pick any y ∈ S. Using the law of total probability (see §A.1.3), we can
decompose the probability that Xt+1 = y into conditional parts as follows:

P{Xt+1 = y} = ∑
x∈S
P{Xt+1 = y | Xt = x} ·P{Xt = x}

Rewriting this statement in terms of our marginal and conditional probabilities gives

ψt+1(y) = ∑
x∈S

p(x, y)ψt(x) (y ∈ S) (4.13)

This is precisely the kind of recursion we are looking for. Let’s introduce some addi-
tional notation to help manipulate this expression.

Definition 4.2.3 Given stochastic kernel p, the Markov operator corresponding to p is
the map M sending P(S) 3 ψ 7→ ψM ∈ P(S), where ψM is defined by

ψM(y) = ∑
x∈S

p(x, y)ψ(x) (y ∈ S) (4.14)

The notation appears unusual, in the sense that we normally write M(ψ) instead of
ψM for the image of ψ under a mapping M. However, such notation is traditional in
the Markov literature. It reminds us that applying the Markov operator to a distribu-
tion ψ ∈ P(S) is just postmultiplication of the row vector (ψ(x))x∈S by the stochastic
kernel (viewed as a matrix).

Combining (4.13) and (4.14), we obtain the fundamental recursion

ψt+1 = ψtM (4.15)

Check this carefully until you feel comfortable with the notation.
This representation (4.15) is easy to manipulate. For example, suppose that we

want to calculate ψj+k from ψj. Clearly,

ψj+k = ψj+k−1M = (ψj+k−2M)M = ψj+k−2M2 = · · · = ψjMk

where Mm is the m-th composition of the map M with itself. In particular, setting j = 0
and k = t, we have Xt ∼ ψMt when X0 ∼ ψ. Let’s state these results as a theorem:

Theorem 4.2.4 Let (Xt)t≥0 be Markov-(p, ψ), and let M be the Markov operator correspond-
ing to p. If ψt is the marginal distribution of Xt for each t, then ψt+1 = ψtM and ψt = ψMt.
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Figure 4.11 Top: X0 = 0. Bottom: X0 = 4

To illustrate these ideas, consider again the kernel pQ calculated by Danny Quah,
and let MQ be the Markov operator. The states are enumerated as S = {0, 1, 2, 3, 4}.
We can evaluate probabilities of different outcomes for a given country over time by
iteratively applying MQ to an initial condition ψ, generating the sequence (ψMt

Q).
Figure 4.11 shows the elements ψM10

Q , ψM60
Q , and ψM160

Q of this sequence. In the top
graph, the country in question is initially in the poorest group, so ψ = (1, 0, 0, 0, 0).
The bottom graph shows the corresponding elements when the initial condition is
reset to ψ = (0, 0, 0, 1, 0).

4.2.4 Other Identities

Let’s think a bit more about the iterates of the Markov operator M. To begin, fix a
kernel p with Markov operator M and define the t-th order kernel pt by

p1 := p, pt(x, y) := ∑
z∈S

pt−1(x, z)p(z, y) ((x, y) ∈ S × S, t ∈ N)

Exercise 4.25 Show that pt is in fact a stochastic kernel on S for each t ∈ N.

Exercise 4.26 Let t ∈ N. Show that if p is interpreted as the matrix in (4.7), then
pt(x, y) is the (x, y)-th element of its t-th power.
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To interpret pt, we can use the following lemma:

Lemma 4.2.5 If M is the Markov operator defined by stochastic kernel p on S, then its t-th
iterate Mt is the Markov operator defined by pt, the t-th order kernel of p. In other words, for
any ψ ∈ P(S) we have

ψMt(y) = ∑
x∈S

pt(x, y)ψ(x) (y ∈ S)

We prove only the case t = 2 here, and leave the full proof for the reader. (Hint:
Use induction.) Pick any ψ ∈ P(S) and any y in S. Then

ψM2(y) = ((ψM)M)(y) = ∑
z∈S

p(z, y)ψM(z)

= ∑
z∈S

p(z, y) ∑
x∈S

p(x, z)ψ(x)

= ∑
x∈S

∑
z∈S

p(x, z)p(z, y)ψ(x) = ∑
x∈S

p2(x, y)ψ(x)

Now let δx ∈ P(S) be the distribution that puts all mass on x ∈ S (i.e., δx(y) = 1 if
y = x and zero otherwise). Applying lemma 4.2.5 with ψ = δx, we obtain δxMt(y) =
pt(x, y) for all y ∈ S. In other words, the distribution pt(x, dy) is precisely δxMt,
which we know is the distribution of Xt when X0 = x. More generally, pk(x, y) is the
probability that the state moves from x now to y in k steps:

pk(x, y) = P{Xt+k = y | Xt = x} (x, y ∈ S, k ∈ N)

and pk(x, dy) is the conditional distribution of Xt+k given Xt = x.

Exercise 4.27 Confirm the Chapman–Kolmogorov equation, which states that for any
j, k ∈ N,

pj+k(x, y) = ∑
z∈S

pj(x, z)pk(z, y) ((x, y) ∈ S × S)

Now let’s introduce another operation for the Markov operator M. So far we have
M acting on distributions to the left, as in ψM(y) = ∑x p(x, y)ψ(x). We also let M act
on functions to the right, as in

Mh(x) = ∑
y∈S

p(x, y)h(y) (x ∈ S) (4.16)

where h : S → R is any function. Thus M takes a given function h on S and sends it
into a new function Mh on S. In terms of matrix algebra, this is pre-multiplication of
the column vector (h(y))y∈S by the matrix (4.7).
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To understand (4.16), recall that if Y is a random variable on S with distribution
ϕ ∈ P(S) (i.e., P{Y = y} = ϕ(y) for all y ∈ S) and h is a real-valued function on
S, then the expectation Eh(Y) of h(Y) is the sum of all values h(y) weighted by the
probabilities P{Y = y}:

Eh(Y) := ∑
y∈S

h(y)P{Y = y} = ∑
y∈S

ϕ(y)h(y)

In terms of vectors we are just computing inner products.
It is now clear that Mh(x) = ∑y∈S p(x, y)h(y) should be interpreted as the expec-

tation of h(Xt+1) given Xt = x. Analogous to the result in lemma 4.2.5, we have

Mth(x) = ∑
y∈S

pt(x, y)h(y) (x ∈ S, t ∈ N) (4.17)

Since pt(x, dy) is the distribution of Xt given X0 = x, it follows that Mth(x) is the
expectation of h(Xt) given X0 = x.

Exercise 4.28 Confirm the claim in (4.17).

Now the finishing touches. Fix an initial condition ψ ∈ P(S), a function h as
above and a k ∈ N. Define

ψMkh := ∑
y∈S

∑
x∈S

pk(x, y)ψ(x)h(y) (4.18)

In terms of linear algebra, this expression can be thought of as the inner product of
ψMk and h. Since ψMk is the distribution of Xt+k when Xt ∼ ψ, (4.18) gives us the
expectation of h(Xt+k) given Xt ∼ ψ. In symbols,

ψMkh = E[h(Xt+k) | Xt ∼ ψ] (4.19)

Exercise 4.29 Suppose that the business cycle evolves according to Hamilton’s kernel
pH on S = {NG, MR, SR}, and that a firm makes profits {1000, 0,−1000} in these
three states. Compute expected profits at t = 5, given that the economy starts in NG.
How much do profits change when the economy starts in SR?

Exercise 4.30 Compute expected profits at t = 1000 for each of the three possible
initial states. What do you notice?

Exercise 4.31 Suppose now that the initial state will be drawn according to ψ =
(0.2, 0.2, 0.6). Compute expected profits at t = 5 using (4.19).
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4.2.5 Constructing Joint Distributions

Let’s now consider the joint distributions of a Markov-(p, ψ) process (Xt)t≥0. We
would like to understand more about probabilities not just for individual elements of
the sequence such as Xt, but rather for a collection of elements. For example, how do
we compute the probability that (Xt, Xt+1) = (x, y), or that Xj ≤ x for j ≤ t?

Consider first the pair (X0, X1), which can be thought of as a single bivariate ran-
dom variable taking values in S2 := S × S. Thus the joint distribution is an element of
P(S2). A typical element of S2 is a pair (x0, x1), where xi ∈ S.11 We wish to find the
probability P{X0 = x0, X1 = x1}.

To begin, pick any (x0, x1) ∈ S2, and let

q2(x0, x1) := P{X0 = x0, X1 = x1} = P{X0 = x0} ∩ {X1 = x1}

From (A.2) on page 325, for any events A and B we have P(A ∩ B) = P(A)P(B | A).
It follows that

q2(x0, x1) = P{X0 = x0}P{X1 = x1 | X0 = x0} = ψ(x0)p(x0, x1)

Similarly, the distribution q3 ∈ P(S3) of (X0, X1, X2) is

q3(x0, x1, x2) = P{X0 = x0, X1 = x1, X2 = x2}
= P{X0 = x0, X1 = x1}P{X2 = x2 | X0 = x0, X1 = x1}
= ψ(x0)p(x0, x1)p(x1, x2)

Notice that we are using P{X2 = x2 | X0 = x0, X1 = x1} = p(x1, x2). This is reason-
able because, if X1 = x1, then X2 ∼ p(x1, dy).

Continuing along the same lines yields the general expression

qT+1(x0, . . . , xT) = ψ(x0)
T−1

∏
t=0

p(xt, xt+1) (4.20)

To evaluate (4.20) we can use the function given in algorithm 4.3.

Exercise 4.32 Show that for Hamilton’s kernel pH and ψ = (0.2, 0.2, 0.6), the proba-
bility of path (NG, MR, NG) is 0.000841.

A solution to this and other computational exercises below can be found in the
Jupyter code book.

11A word on notation: Superscripts represent time, so x0 ∈ S is a typical realization of X0, x1 ∈ S is a
typical realization of X1, and so on.
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Algorithm 4.3: A function to compute the probability of path (x0, x1, . . . , xT)

Data: a stochastic kernel p and initial distribution ψ on S
Function q(x0, x1, . . . , xT)

set s = ψ(x0)
for t in 0, . . . , T − 1 do

set s = s · p(xt, xt+1)
end
return s

From our expression for qT+1 in (4.20) we can also compute the probabilities of
more complex events. By an event is meant any subset B of ST+1. For example,

B := {(x0, . . . , xT) ∈ ST+1 : xt ≤ xt+1 for t = 0, . . . , T − 1}

is an event. It consists of all paths (x0, . . . , xT) in ST+1 that are increasing (i.e., nonde-
creasing). To obtain the probability of any such event B we just sum qT+1(x0, . . . , xT)
over all distinct paths in B.

One important special case is events of the form

D0 × · · · × DT = {(x0, . . . , xT) ∈ ST+1 : xt ∈ Dt for t = 0, . . . , T}

where Dt ⊂ S for each t. ThenP{(X0, . . . , XT) ∈ D0 ×· · ·×DT} = P∩t≤T {Xt ∈ Dt},
and for this kind of event the following lemma applies:

Lemma 4.2.6 If D0, . . . , DT is any collection of subsets of S, then

P∩t≤T {Xt ∈ Dt} = ∑
x0∈D0

ψ(x0) ∑
x1∈D1

p(x0, x1) · · · ∑
xT∈DT

p(xT−1, xT)

Proof. For any such sets Dt, the probability P ∩t≤T {Xt ∈ Dt} can be computed by
summing over distinct paths:

P∩t≤T {Xt ∈ Dt} = ∑
(x0,...,xT)∈D0×···×DT

qT+1(x0, . . . , xT)

= ∑
x0∈D0

· · · ∑
xT∈DT

qT+1(x0, . . . , xT)

The last step now follows from the expression for qT+1 in (4.20).

Exercise 4.33 Returning to Hamilton’s kernel pH , and using the same initial condition
ψ = (0.2, 0.2, 0.6) as in exercise 4.32, compute the probability that the economy starts
and remains in recession through periods 0, 1, 2.

Another way to compute this probability is via Monte Carlo:
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Exercise 4.34 Generate 10,000 observations of (X0, X1, X2), starting at the same initial
condition ψ = (0.2, 0.2, 0.6). Count the number of paths that do not enter state NG
and divide by 10,000 to get the fraction of paths that remain in recession. This fraction
converges to the probability of the event, so you should get approximately the same
number as you found in exercise 4.33.

Now let’s think a little bit about computing expectations. Recall the firm in exer-
cise 4.29. If the firm operates up until period T, and if the interest rate is equal to r,
then the net present value (NPV) of the firm is the expected sum of discounted profits

EΠ(X0, . . . , XT) where Π(X0, . . . , XT) :=
T

∑
t=0

ρth(Xt)

and ρ := 1/(1 + r). Expectations for finite state spaces are found by summing values
weighted by probabilities. In this case,

EΠ(X0, . . . , XT) = ∑ Π(x0, . . . , xT)qT+1(x0, . . . , xT) =: ∑ Π(x)qT+1(x)

where the sum is over all x ∈ ST+1.
For large T and S this kind of computation is problematic. For example, if S has

ten elements and T = 100, then we must sum Π(x)qT+1(x) over 10100 paths.

Exercise 4.35 If the computer can evaluate one billion (109) paths per second, how
may years will it take to evaluate all of the paths? Compare this with current estimates
of the age of the universe.

Fortunately, the computational problem can be greatly simplified in this particular
case by linearity of expectations, which gives

EΠ = E

[
T

∑
t=0

ρth(Xt)

]
=

T

∑
t=0

ρtEh(Xt) =
T

∑
t=0

ρtψMth

The second equality (linearity of E) can be proved from the definition of the joint dis-
tribution, but we treat it in much greater generality below. The third equality follows
from (4.19) on page 81.

Exercise 4.36 Compute NPV when r = 0.05. Take the same initial condition as in
exercise 4.32. Plot expected profits against T. For what values of T will the firm’s
expected profits be positive?

4.3 Stability of Finite State MCs

In chapter 1 we investigated a Markovian model where the distribution for log income
converges to a unique distribution N(µ∗, v∗), independent of initial conditions. This
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Figure 4.12 Top: X0 = 1. Bottom: X0 = 4

behavior means that knowledge of the limiting distribution gives us a great deal of
predictive power in terms of likelihoods for long-run outcomes. In fact, stability also
gives us a number of statistical properties that are central to time series econometrics.
As a result, we are motivated to study when one does observe stability, beginning
with the case of finite state Markov chains.

To start the ball rolling, consider again the sequences of distributions in figure 4.11
(page 79). What happens if we extend the time horizon? In other words, what sort of
limiting properties, if any, do these sequences possess? Figure 4.12 repeats the same
distribution projections, but this time for dates t = 160, t = 500, and t = 1, 000.
Looking at the top graph for starters, note that after about t = 500 there seems to be
very little change in ψt. In other words, it appears that the sequence (ψt) is converging.
Interestingly, the sequence in the bottom graph seems to be converging to the same
limit.

Perhaps we are again observing a form of global stability? It turns out that we are,
but to show this we must first define stability for Markov chains and derive theorems
that allow us to establish this property.

4.3.1 Stationary Distributions

Recall that a dynamical system (U, h) consists of a metric space U and a map h : U →
U. Recall also the definition of the Markov operator M corresponding to a given
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stochastic kernel p: Given ψ ∈ P(S), the operator M is a map sending ψ into ψM,
where ψM(y) = ∑x∈S p(x, y)ψ(x) for each y ∈ S. What we are going to do now is
view (P(S), M) as a dynamical system in its own right (recalling that trajectories of
the form (ψMt)t≥0 correspond to the sequence of marginal distributions for a Markov-
(p, ψ) process (Xt)t≥0; see page 78). To do this, we need to introduce a metric on P(S),
and also establish that M does indeed send P(S) into itself.

Exercise 4.37 Confirm that ψM ∈ P(S) whenever ψ ∈ P(S).

To set P(S) up as a metric space, we define

‖ψ‖1 := ∑
x∈S

|ψ(x)| for each ψ ∈ P(S), and d1(ψ, ψ′) := ‖ψ − ψ′‖1

If one views P(S) as the unit simplex in RN rather than as a space of functions (see
the correspondence (4.6) on page 71), then our norm and distance are just the regular
‖ · ‖1 norm (see page 41) and d1 distance onRN . Viewed in this way, P(S) is a closed
and bounded subset of (RN , d1), and therefore both compact and complete.12

The next exercise introduces another way to view the distance imposed by d1.

Exercise 4.38 Let ψ1, ψ2 ∈ P(S), and for each A ⊂ S let Ψi(A) := ∑x∈A ψi(x) = the
probability of A ⊂ S under distribution ψi. Let s(ψ1, ψ2) = supA⊂S |Ψ1(A)− Ψ2(A)|.
Show that

1. the supremum is achieved by D = {x ∈ S : ψ1(x) ≥ ψ2(x)} and

2. the norm ‖ · ‖1 and s are connected by ‖ψ1 − ψ2‖1 = 2s(ψ1, ψ2).

To illustrate the dynamical system (P(S), M) and its trajectories, consider Hamil-
ton’s kernel pH and the corresponding operator MH . Here P(S) can be visualized as
the unit simplex in R3. Figure 4.13 shows four trajectories (ψMt

H) generated by iter-
ating MH on four different initial conditions ψ. All trajectories converge toward the
bottom right-hand corner. Indeed, we will prove below that (P(S), MH) is globally
stable.
Exercise 4.39 Let M be the Markov operator determined by an arbitrary stochastic
kernel p. Show that M is d1-nonexpansive on P(S), in the sense that for any ψ, ψ′ ∈
P(S) we have d1(ψM, ψ′M) ≤ d1(ψ, ψ′).

12Interested readers are invited to supply the details of the argument. The connection between the func-
tion space (P(S), d1) and the unit simplex in (RN , d1) can be made precise using the concept of isomor-
phisms. Metric spaces (S, ρ) and (S′, ρ′) are said to be isometrically isomorphic if there exists a bijection
τ : S → S′ such that ρ(x, y) = ρ′(τ(x), τ(y)) for all x, y ∈ S. In our case, the bijection in question is (4.6)
on page 71. If (S, ρ) and (S′, ρ′) are isometrically isomorphic, then (S, ρ) is complete if and only if (S′, ρ′) is
complete, and compact if and only if (S′, ρ′) is compact.
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Figure 4.13 Trajectories of (P(S), MH)

Let us now turn to the existence of fixed points for the system (P(S), M). For
Markov chains, fixed points are referred to as stationary distributions:

Definition 4.3.1 A distribution ψ∗ ∈ P(S) is called stationary or invariant for M if
ψ∗M = ψ∗. In other words, ψ∗ is a stationary distribution for M if it is a fixed point of
the dynamical system (P(S), M).

If ψ∗ is stationary for M, if M corresponds to kernel p, if (Xt)t≥0 is Markov-(p, ψ),
and if Xt has distribution ψ∗ for some t, then Xt+1 has distribution ψt+1 = ψtM =
ψ∗M = ψ∗. In fact, iteration shows that Xt+k has distribution ψ∗ for every k ∈ N,
so probabilities are stationary over time. Moreover if (Xt)t≥0 is Markov-(p, ψ∗), then
Xt ∼ ψ∗ for all t, and the random variables (Xt)t≥0 are identically distributed (but not
IID—why?).

On the other hand, stationary distributions are just fixed points of a dynamical
system (P(S), M). This is convenient for analysis because we already know various
techniques for studying fixed points and stability properties of deterministic dynam-
ical systems. For example, suppose that we view P(S) as the unit simplex in RN ,
and ψ 7→ ψM as postmultiplication of vector ψ ∈ RN by the matrix corresponding
to p. This mapping is d1-nonexpansive (recall exercise 4.39), and hence d1-continuous
(exercise 3.44, page 57). The unit simplex is a compact, convex subset of (RN , d1).
(Proof?) Applying Brouwer’s theorem (theorem 3.2.15, page 56) we obtain our first
major result for Markov chains:
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Listing 4.1 (fphamilton.py) Computing stationary distributions

import numpy as np
from numpy. linalg import solve

pH = ((0.971 , 0.029 , 0.000) ,
(0.145 , 0.778 , 0.077) ,
(0.000 , 0.508 , 0.492) )

I = np. identity (3)
Q, b = np.ones ((3, 3)), np.ones ((3, 1))
A = np. transpose (I - pH + Q)
p r i n t (solve(A, b))

Theorem 4.3.2 Every Markov operator defined over a finite state space has at least one sta-
tionary distribution.

There may, of course, be many stationary distributions, just as other dynamical
systems can have many fixed points.

Exercise 4.40 For which kernel p is every ψ ∈ P(S) stationary?

Let’s consider a technique for computing fixed points using matrix inversion. In
terms of linear algebra, row vector ψ ∈ P(S) is stationary if and only if ψ(IN − p) = 0,
where IN is the N × N identity matrix, and p is the matrix in (4.7). One idea would
be to try to invert (IN − p). However, this does not impose the restriction that the
solution ψ is an element of P(S). That restriction can be imposed in the following
way.

Exercise 4.41 Let 1N be the 1× N row vector (1, . . . , 1). Let 1N×N be the N × N matrix
of ones. Show that if ψ is stationary, then

1N = ψ(IN − p + 1N×N) (4.21)

Explain how this imposes the restriction that the elements of ψ sum to 1.

Taking the transpose of (4.21) we get (IN − p + 1N×N)
> ψ> = 1>N . This is a linear

system of the form Ax = b, which can be solved for x = A−1b. (The solution is not
necessarily unique. We return to the issue of uniqueness below.) Listing 4.1 shows
how to do this in Python using NumPy.

Exercise 4.42 Use this technique to solve for the stationary distribution of Quah’s
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kernel pQ.13 Plot it as a bar plot, and compare with the t = 1000 distributions in
figure 4.12.

Exercise 4.43 Recall the firm introduced on page 81. Compute expected profits at
the stationary distribution. Compare it with profits at t = 1000, as computed in exer-
cise 4.30, from a range of initial states. Interpret your results.

4.3.2 The Dobrushin Coefficient

Now let’s consider convergence to the stationary distribution. We continue to im-
pose on P(S) the distance d1 and study the dynamical system (P(S), M). By defini-
tion 4.1.2, the system (P(S), M) is globally stable if

1. it has a unique fixed point (stationary distribution) ψ∗ ∈ P(S), and

2. d1(ψMt, ψ∗) := ‖ψMt − ψ∗‖1 → 0 as t → ∞ for all ψ ∈ P(S).

The second condition implies that if (Xt)t≥0 is Markov-(p, ψ) for some ψ ∈ P(S),
then the distribution of Xt converges to ψ∗.

Exercise 4.44 Exercise 4.40 asked you to provide an example of a kernel where global
stability fails. Another is the “periodic” Markov chain

p =

(
0 1
1 0

)
Show that ψ∗ := (1/2, 1/2) is the unique stationary distribution. Give a counterex-
ample to the claim ‖ψMt − ψ∗‖1 → 0 as t → ∞, ∀ψ ∈ P(S).

How might one check for stability of a given kernel p and associated dynamical
system (P(S), M)? Exercise 4.39 suggests the way forward: M is nonexpansive on
P(S), and if we can upgrade this to a uniform contraction then Banach’s fixed point
theorem (page 57) implies that (P(S), M) is globally stable, and that convergence to
equilibrium takes place at a geometric rate.

Which kernels will we be able to upgrade? Intuitively, stable kernels are those
where current states have little influence on future states. An extreme example is
where the distributions p(x, dy) are all equal: p(x, dy) = q ∈ P(S) for all x ∈ S. In
this case the current state has no influence on tomorrow’s state—indeed, the resulting
process is IID with Xt ∼ q for all t. The Markov operator satisfies ψM = q for all
ψ ∈ P(S) (check it), and (P(S), M) is globally stable.

A less extreme case is when the distributions p(x, dy) are “similar” across x ∈
S. One similarity measure for two distributions p(x, dy) and p(x′, dy) is ∑y p(x, y) ∧

13We prove below that the fixed point is unique.
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p(x′, y), where a ∧ b := min{a, b}. If p(x, dy) = p(x′, dy) then the value is one. If the
supports14 of p(x, dy) and p(x′, dy) are disjoint, then the value is zero. This leads us
to the Dobrushin coefficient, which measures the stability properties of a given kernel
p.

Definition 4.3.3 Given stochastic kernel p, the Dobrushin coefficient α(p) is defined by

α(p) := min

{
∑
y∈S

p(x, y) ∧ p(x′, y) : (x, x′) ∈ S × S

}
(4.22)

Exercise 4.45 Prove that 0 ≤ α(p) ≤ 1 always holds.

Exercise 4.46 Show that α(p) = 1 if and only if p(x, dy) is equal to a constant distri-
bution q ∈ P(S) for every x ∈ S.

Exercise 4.47 Show that α(p) = 0 for the periodic kernel in exercise 4.44, and for p
corresponding to the identity matrix.

Exercise 4.48 Distributions ϕ and ψ are said to overlap if there exists a y such that
ϕ(y) > 0 and ψ(y) > 0. Show that α(p) > 0 if and only if for each pair (x, x′) ∈ S × S
the distributions p(x, dy) and p(x′, dy) overlap.

The following result links the Dobrushin coefficient to stability via Banach’s fixed
point theorem (page 57).

Theorem 4.3.4 If p is a stochastic kernel on S with Markov operator M, then

‖ϕM − ψM‖1 ≤ (1 − α(p))‖ϕ − ψ‖1 ∀ ϕ, ψ ∈ P(S)

Moreover this bound is the best available, in the sense that if λ < 1 − α(p), then there exists
a pair ϕ, ψ in P(S) such that ‖ϕM − ψM‖1 > λ‖ϕ − ψ‖1.

The first half of the theorem says that if α(p) > 0, then M is uniformly contracting
(for the definition see page 57) with modulus 1 − α(p). Since (P(S), d1) is complete,
Banach’s fixed point theorem then implies global stability of (P(S), M). The second
part of the theorem says that this rate 1 − α(p) is the best available, which in turn sug-
gests that the Dobrushin coefficient is a good measure of the stability properties of M.
For example, if α(p) = 0, then we can be certain M is not a uniform contraction.

Some intuition for theorem 4.3.4 and it’s stability implications was discussed above.
The coefficient is large (close to one) when all distributions p(x, dy) are similar across

14The support of ϕ ∈ P(S) is {y ∈ S : ϕ(y) > 0}.
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x, and the current state has little influence on future states. This is the stable case. The
coefficient is zero when there exists states x and x′ such that p(x, dy) and p(x′, dy) have
disjoint support, as with the identity kernel and the periodic kernel. More intuition
on the link between positivity of α(p) and stability is given in the next section.

The proof of theorem 4.3.4 is given in the appendix to this chapter. The fact that
1 − α(p) is the best rate possible may suggest to you that the proof is not entirely
trivial. Indeed this is the case. We have to do better than crude inequalities. All but
the most enthusiastic readers are encouraged to skip the proof and move to the next
section.

4.3.3 Stability

Let p be a stochastic kernel on S. If α(p) > 0, then (P(S), M) is globally stable
by Banach’s fixed point theorem. In fact, we can say a bit more. We now present
our main stability result for finite chains, which clarifies the relationship between the
Dobrushin coefficient and stability.

Theorem 4.3.5 Let p be a stochastic kernel on S with Markov operator M. The following
statements are equivalent:

1. The dynamical system (P(S), M) is globally stable.

2. There exists a t ∈ N such that α(pt) > 0.

Another way to phrase the theorem is that (P(S), M) is globally stable if and only
if there is a t ∈ N such that, given any pair of states x, x′, one can find at least one
state y such that pt(x, y) and pt(x′, y) are both positive. Thus, if we run two Markov
chains from any two starting points x and x′, there is a positive probability that the
chains will meet. This is connected with global stability because it rules out the kind of
behavior seen in example 4.1.4 (page 62), where initial conditions determine long-run
outcomes.

Exercise 4.49 Consider the periodic kernel in exercise 4.44. Show that α(pt) = 0 for
every t ∈ N.

Exercise 4.50 Prove that if minx∈S pt(x, ȳ) =: ϵ > 0 for some ȳ ∈ S, then (P(S), M)
is globally stable.

Exercise 4.51 Stokey and Lucas (1989, thm. 11.4) prove that (P(S), M) is globally
stable if there exists a t ∈ N such that ∑y∈S minx∈S pt(x, y) > 0. Show how this result
is implied by theorem 4.3.5.
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Exercise 4.52 Prove theorem 4.3.5 using results from earlier in the text.

Let’s consider how to apply theorem 4.3.5. In view of exercise 4.50, if there exists
a y with p(x, y) > 0 for all x ∈ S, then α(p) > 0 and global stability holds. A case in
point is Hamilton’s kernel (4.8) on page 73, which is globally stable as a result of the
strict positivity of column two.

Next consider Quah’s kernel pQ (page 74). We know from theorem 4.3.2 that at
least one stationary distribution exists, and we calculated a stationary distribution in
exercise 4.42. We should now check that there are not many stationary distributions—
otherwise exhibiting one of them is not very interesting. Also, the stationary distribu-
tion becomes a better predictor of outcomes if we know that all trajectories converge
to it.
Exercise 4.53 Show that the Dobrushin coefficient α(pQ) is zero.

Since α(pQ) = 0, let’s look at the higher order iterates. In his study Quah calculates
the 23rd-order kernel

p23
Q =


0.61 0.27 0.09 0.03 0.00
0.37 0.32 0.20 0.09 0.02
0.14 0.23 0.31 0.25 0.07
0.04 0.11 0.25 0.39 0.22
0.00 0.01 0.04 0.12 0.82

 (4.23)

Exercise 4.54 Show that α(p23
q ) > 0.

Exercise 4.55 As (P(S), MQ) is globally stable, we can iterate MQ on any initial
condition ψ to calculate an approximate fixed point ψ∗. Take ψ = (1, 0, 0, 0, 0) as your
initial condition and iterate until d1(ψMt

Q, ψMt+1
Q ) < 0.0001. Compare your result

with that of exercise 4.42.

Exercise 4.56 Code a function that takes a kernel p as an argument and returns α(p).
Write another function that repeatedly calls the first function to compute the smallest
t ≥ 1 such that α(pt) > 0, and prints that t along with the value α(pt). Include a
maximum value T such that if t reaches T the function terminates with a message that
α(pt) = 0 for all t ≤ T. Now show that the first t such that α(pt

Q) > 0 is 2.

One interesting fact regarding stationary distributions is as follows: Let p be a
kernel such that (P(S), M) is globally stable, and let ψ∗ be the unique stationary
distribution. Let (Xt)t≥0 be Markov-(p, x), where ψ∗(x) > 0. The return time to x is
defined as the random variable

τ(x) := inf{t ≥ 1 : Xt = x}
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It turns out that for τ(x) so defined we haveEτ(x) = 1/ψ∗(x). We will skip the proof
(see Norris, 1997, thm. 1.7.7), but let’s try running a simulation. The pseudocode in
algorithm 4.4 indicates how one might go about estimating Eτ(x).15

Algorithm 4.4: Computing the mean return time

for i in 1 to n do // n is the number of replications
set t = 0
set X = x
repeat

draw X ∼ p(X, dy)
set t = t + 1

until X = x
set τi = t

end
return n−1 ∑n

i=1 τi

Exercise 4.57 Implement algorithm 4.4 for Hamilton’s Markov chain. Examine whether
for fixed x ∈ S the output converges to 1/ψ∗(x) as n → ∞.

Finally, let’s consider a slightly more elaborate application, which concerns so-
called (s, S) inventory dynamics. Inventory management is a major topic in opera-
tions research that also plays a role in macroeconomics due to the impact of invento-
ries on aggregate demand. The discrete choice flavor of (s, S) models accord well with
the data on capital investment dynamics.

Let q, Q ∈ {0} ∪N with q ≤ Q, and consider a firm that, at the start of time t, has
inventory Xt ∈ {0, . . . , Q}. Here Q is the maximum level of inventory that the firm is
capable of storing. (We are studying (q, Q) inventory dynamics because the symbol
S is taken.) If Xt ≤ q, then the firm orders inventory Q − Xt, bringing the current
stock to Q. If Xt > q then the firm orders nothing. At the end of the period t demand
Dt+1 is observed, and the firm meets this demand up to its current stock level. Any
remaining inventory is carried over to the next period. Thus

Xt+1 =

{
max{Q − Dt+1, 0} if Xt ≤ q
max{Xt − Dt+1, 0} if Xt > q

If we adopt the notation x+ := max{x, 0} and let 1{x ≤ q} be one when x ≤ q and

15If ψ∗(x) > 0, then (Xt)t≥0 returns to x (infinitely often) with probability one, so the algorithm termi-
nates in finite time with probability one.
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zero otherwise, then this can be rewritten more simply as

Xt+1 = (Xt + (Q − Xt)1{Xt ≤ q} − Dt+1)
+

or, if hq(x) := x + (Q − x)1{x ≤ q} is the stock on hand after orders for inventory are
completed, as

Xt+1 = (hq(Xt)− Dt+1)
+

We assume throughout that (Dt)t≥1 is an IID sequence taking values in {0} ∪N ac-
cording to distribution b(d) := P{Dt = d} = (1/2)d+1.

Exercise 4.58 Let S = {0, 1, . . . , Q} and let Mq be the Markov operator on S corre-
sponding to these dynamics. Show that (P(S), Mq) is always globally stable indepen-
dent of the precise values of q and Q.

In what follows we let ψ∗
q denote the stationary distribution corresponding to

threshold q.

Exercise 4.59 Show numerically that if Q = 5, then

ψ∗
2 = (0.0625, 0.0625, 0.125, 0.25, 0.25, 0.25)

Now consider profits of the firm. To minimize the number of parameters, suppose
that the firm buys units of the product for zero dollars and marks them up by one dol-
lar. Revenue in period t is min{hq(Xt), Dt+1}. Placing an order for inventory incurs
fixed cost C. As a result profits for the firm at time t are given by

πq(Xt, Dt+1) = min{hq(Xt), Dt+1} − C1{Xt ≤ q}

If we now sum across outcomes for Dt+1 taking Xt = x as given, then we get

gq(x) := E[πq(x, Dt+1)] =
∞

∑
d=0

πq(x, d)b(d) =
∞

∑
d=0

πq(x, d)
2d+1

which is interpreted as expected profits in the current period when the inventory state
Xt is equal to x.

Exercise 4.60 One common performance measure for an inventory strategy (in this
case, a choice of q) is long-run average profits, which is defined here as Egq(X) when
X ∼ ψ∗

q (i.e., ∑x∈S gq(x)ψ∗
q (x)). Show numerically that according to this performance

measure, when Q = 20 and C = 0.1, the optimal policy is q = 7.
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4.3.4 The Law of Large Numbers

In this section we continue our discussion of stability by investigating some proba-
bilistic properties of sample paths. In particular, we reinforce our informal discussion
of ergodicity in chapter 1 by analyzing the law of large numbers in the context of
Markov chains.

In algorithm 4.2 (page 77) we computed an approximation to the marginal distri-
bution ψt via Monte Carlo. The basis of Monte Carlo is that if we sample indepen-
dently from a fixed probability distribution and count the fraction of times that an
event happens, that fraction converges to the probability of the event (as determined
by this probability distribution). This is more or less the frequentist definition of prob-
abilities, but it can also be proved from the axioms of probability theory. The theorem
in question is the law of large numbers (LLN), a variation of which is as follows:

Theorem 4.3.6 If F is a cumulative distribution function on R, (Xt)t≥1
IID∼ F, and h : R →

R is a measurable function with
∫
|h(x)|F(dx) < ∞, then

1
n

n

∑
i=1

h(Xi) → Eh(X1) :=:
∫

h(x)F(dx) as n → ∞ with probability one (4.24)

This result is fundamental to statistics. It states that for IID sequences, sample
means converge to means as the sample size gets large. Later we will give a for-
mal definition of independence and prove a version of the theorem. At that time the
term “measurable function” and the nature of probability one convergence will be
discussed. Suffice to know that measurability of h is never a binding restriction for
the problems we consider.

Example 4.3.7 If (Xi)
n
i=1 are independent standard normal random variates, then ac-

cording to theorem 4.3.6 we should find that n−1 ∑n
i=1 X2

i → 1. (Why?) You might like
to check this by simulation.

Another use of the LLN: Suppose that we wish to computeEh(X), where h is some
real function. One approach would be to use pen and paper plus our knowledge of
calculus to solve the integral

∫ ∞
−∞ h(x)F(dx). In some situations, however, this is not

so easy. If instead we have access to a random number generator that can generate
independent draws X1, X2, . . . from F, then we can produce a large number of draws,
take the mean of the h(Xi) terms, and appeal to (4.24).

In (4.24) the sequence of random variables is IID. In some situations the LLN ex-
tends to sequences that are neither independent nor identically distributed. For ex-
ample, we have the following result concerning stable Markov chains:
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Theorem 4.3.8 Let S be finite, let ψ ∈ P(S), let p be a stochastic kernel on S with α(pt) > 0
for some t ∈ N, and let h : S → R. If (Xt)t≥0 is Markov-(p, ψ), then

1
n

n

∑
t=1

h(Xt) → ∑
x∈S

h(x)ψ∗(x) as n → ∞ with probability one (4.25)

where ψ∗ is the unique stationary distribution of p.

The left-hand side is the average value of h(Xt), and the right-hand side is the
expectation of h(X) when X ∼ ψ∗. Note that the result holds for every initial condition
ψ ∈ P(S).

The proof of theorem 4.3.8 requires more tools than we currently have in hand.16

The intuition is that when the chain is globally stable, Xt is approximately distributed
according to ψ∗ for large t. In addition the stability property implies that initial condi-
tions are unimportant, and for the same reason Xt has little influence on Xt+k for large
k. Hence there is a kind of asymptotic independence in the chain. Together, these two
facts mean that our chain approximates the IID property that drives the LLN.

If h(x) = 1 if x = y and zero otherwise (i.e., h(x) = 1{x = y}), then (4.25) becomes

1
n

n

∑
t=1

h(Xt) =
1
n

n

∑
t=1
1{Xt = y} → ψ∗(y) as n → ∞ (4.26)

This provides a new technique for computing the stationary distribution, via Monte
Carlo. Exercise 4.61 illustrates.
Exercise 4.61 Let pH be Hamilton’s kernel, and let h(x) = 1 if x = NG and zero
otherwise. Take any initial condition, and draw a series of length 106. Compute the
left-hand side of (4.25). Compare it with the right-hand side, calculated via the alge-
braic method shown in listing 4.1.

When the state space is small, this is a less efficient technique for computing the
stationary distribution than the algebraic method used in listing 4.1. However, the
computational burden of the algebraic method increases rapidly with the size of the
state space. For large or infinite state spaces, a variation of the LLN technique used in
exercise 4.61 moves to center stage. See §6.1.3 for details.17

The importance of theorem 4.3.8 extends beyond this new technique for computing
stationary distributions. It provides a new interpretation for the stationary distribution:
If we turn (4.26) around, we get

ψ∗(y) ∼= fraction of time that (Xt) spends in state y
16A version of theorem 4.3.8 is proved in §11.1.1.
17The look-ahead method introduced in §6.1.3 concerns infinite state spaces, but it can be applied to finite

state spaces with the obvious modifications.
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This is indeed a new interpretation of ψ∗, although it is not generally valid unless the
chain in question is stable (in which case the LLN applies).

Exercise 4.62 Give an example of a kernel p and initial condition ψ where this inter-
pretation fails.

In the preceding discussion, h was an indicator function, which reduced the dis-
cussion of expectations to one of probabilities. Now let’s consider more general ex-
pectations.

Exercise 4.63 Recall the firm introduced on page 81. Extending exercise 4.61, approx-
imate expected profits at the stationary distribution using theorem 4.3.8. Compare
your results to those of exercise 4.43.

Thus the LLN provides a new way to compute expectations with respect to station-
ary distributions. However, as was the case with probabilities above, it also provides
a new interpretation of these expectations when the Markov chain is stationary. For
example, if h denotes profits as above, then we have

∑
x∈S

h(x)ψ∗(x) ∼= long-run average profits

Again, this interpretation is valid when the chain in question is stationary, but may
not be valid otherwise.

4.4 Commentary

Regarding deterministic, discrete-time dynamical systems, good mathematical intro-
ductions are provided by Holmgren (1996) and Wiggins (2003), who treat elementary
theory, topological conjugacy, and chaotic dynamics. For dynamics from an economic
perspective, see, for example, Stokey and Lucas (1989), Azariadis (1993), de la Fuente
(2000), Shone (2003), Caputo (2005), Gandolfo (2005) or Ljungqvist and Sargent (2018).

The threshold externality model in example 4.1.4 is a simplified version of Azari-
adis and Drazen (1990). See Durlauf (1993) for a stochastic model with multiple equi-
libria. Dosi et al. (2019) study convergence and divergence in a large, agent-based
model using simulation. Johnson and Papageorgiou (2020) review the evidence on
economic development and cross-country convergence.

Our discussion of chaotic dynamics lacked economic applications, but plenty exist.
The Solow–Swan model produces chaotic dynamics with some minor modifications
(e.g., Böhm and Kaas 2000). Moreover rational behavior in infinite-horizon, optimiz-
ing models can lead to chaos, cycles, and complex dynamics. See, for example, Ben-
habib and Nishimura (1985), Venditti (1998), or Mitra and Sorger (1999). For more dis-
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cussion of complex economic dynamics, see Medio (1995), Brock and Hommes (1998),
Kikuchi (2008), or Matsuyama et al. (2016).

For a general discussion of the relationship between complexity theory and eco-
nomics, see Arthur (2010).

Good references on finite state Markov chains include Norris (1997), Häggström
(2002), and Bremaud (2020). These texts provide a more traditional approach to sta-
bility of Markov chains based on irreducibility and aperiodicity. It can be shown that
every irreducible and aperiodic Markov chain is globally stable, and as a result sat-
isfies the conditions of theorem 4.3.5 (in particular, α(pt) > 0 for some t ∈ N). The
converse is not true, so theorem 4.3.5 is more general.

The Dobrushin coefficient was popularized by Dobrushin (1956), although simi-
lar ideas are already present in the original work of the Russian mathematician A.A.
Markov. For an alternative discussion of the Dobrushin coefficient in the context of
finite state Markov chains, see Bremaud (2020).

The treatment of (s, S) dynamics in §4.3.3 is loosely based on Norris (1997). For
another discussion of inventory dynamics see Stokey and Lucas (1989, sec. 5.14). An
interesting analysis of aggregate implications is Nirei (2008). A treatment of discrete
adjustment models can be found in Stokey (2008). Beare (2012) studies stability of
Markov chains generated by Archimedean copulas.



Chapter 5

Further Topics for Finite MCs

We have now covered the fundamental theory of finite state Markov chains. Next let
us turn to more applied topics. In §5.1 below we consider the problem of dynamic
programming, that is, of controlling Markov chains through our actions in order to
achieve a given objective. In §5.2 we investigate the connection between Markov
chains and stochastic recursive sequences.

5.1 Optimization

In this section we take our first look at stochastic dynamic programming. The term
“dynamic programming” was coined by Richard Bellman in the early 1950s, and per-
tains to a class of multistage planning problems. Because stochastic dynamic pro-
gramming problems typically involve Markov chains, they are also called Markov
decision problems, Markov control problems, or Markov control processes. We will
focus on solving a simple example problem, and defer the more difficult proofs until
chapter 10.

5.1.1 Outline of the Problem

We consider a very simple version of household savings and consumption, which
will later be expanded on. Although the model is stylized and implausible, the basic
structure of the optimization problem and the tools we use to tackle it are funda-
mental. Variations are used to solve a vast array of problems in economics, finance,
operations research, and artificial intelligence.

In the version we consider here, income (Zt)t≥1 is IID and drawn each period from

99
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ϕ ∈ P(Z). We assume that ϕ is supported on {0, . . . , z̄}, so that

ϕ(z) = 0 whenever z ∈ Z \ {0, . . . , z̄}

We can think of Zt as defined in units of some good, such as a crop that can be saved
or consumed. To simplify analysis, we assume that a maximum of s̄ units of the good
can be stored at any one time. Household wealth at time t + 1, measured in units of
the good, is Xt+1 = Rt + Zt+1, where Rt is amount stored and carried over in the
previous period.

The timing of the decision process is that the head of the household observes the
current state Xt at the start of time t and responds by storing quantity Rt. The crop is
planted at the start of time t and harvested at the end of period, yielding Zt+1 units at
the start of t + 1. The new state is Xt+1 = Rt + Zt+1 and the process now repeats.

We assume that the head of the household follows a fixed policy function σ, which
means that, on observing state Xt, she stores quantity Rt = σ(Xt) determined only by
Xt and the policy. In effect, this means that, when confronted with the same level of
wealth at two different points in time, she will make the same savings decision. This
assumption is not restrictive, in the sense that, for the set up discussed below, one can
show that following a fixed time-invariant policy is optimal.

For the state space, which is the set of possible values for wealth, we take S :=
{0, . . . , s̄ + z̄}. It should be clear that Xt ∈ S implies Xt+1 ∈ S. The function σ is a map
from S into the action space {0, . . . , s̄}, which is the set of possible savings choices. We
require that σ satisfies the feasibility constraint 0 ≤ σ(x) ≤ x for all x ∈ S. We denote
the set of all feasible policies by Σ.

When the agent chooses a policy σ ∈ Σ, she chooses a Markov chain on S as well.
By this we mean that, for given σ, the state evolves according to

Xt+1 = σ(Xt) + Zt+1, (Zt)t≥1
IID∼ ϕ, X0 = x ∈ S (5.1)

Looking at (5.1), we see that each feasible policy σ gives us a stochastic recursive
sequence, as discussed in §4.2.2, and hence a stochastic kernel on S. We denote this
kernel by pσ.

Exercise 5.1 Write down an expression for pσ(x, y) at any (x, y) ∈ S × S.

Let Mσ be the Markov operator corresponding to the kernel pσ you obtained in
exercise 5.1. For any given h : S → R we have (see (4.17) on page 81)

Mt
σh(x) = ∑

y∈S
pt

σ(x, y)h(y) (t ≥ 0) (5.2)

The head of the household might be a complete lunatic but, putting on the hat
of a faithful mainstream economist, we do not hesitate for a second to model her
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as a rational intertemporal maximizer, with time discount factor ρ and period utility
function U. The optimization problem is

max
σ∈Σ

E

[
∞

∑
t=0

ρtU(Xt − σ(Xt))

]
for (Xt)t≥0 given by (5.1) (5.3)

Let’s try to understand this objective function as clearly as possible. For each fixed
σ, the Markov chain is determined by (5.1). As discussed in §4.2.2, random variables
are best thought of as functions on some underlying space Ω that contains the possible
outcomes of a random draw. At the start of time, nature selects an element ω ∈ Ω
according to a given “probability” P. The shocks (Zt)t≥1 are functions of this out-
come, so the draw determines the path for the shocks as (Zt(ω))t≥1.1 From the rule
Xt+1(ω) = σ(Xt(ω)) + Zt+1(ω) and X0(ω) = x we obtain the time path (Xt(ω))t≥0
for the state. In turn each path gives us a real number Yσ(ω) that corresponds to the
value of the path:

Yσ(ω) =
∞

∑
t=0

ρtU(Xt(ω)− σ(Xt(ω))) (ω ∈ Ω) (5.4)

The value Yσ is itself a random variable, being a function of ω. The objective function
is the expectation of Yσ.

For probabilities on a finite set Ω, the expectation of a random variable Y is given
by the sum ∑ω∈Ω Y(ω)P{ω}. However, in the present case it turns out that Ω must be
uncountable (see definition A.1.2 on page 322), and this sum is not defined. We will
have to wait until we have discussed measure theory before a general definition of
expectation on uncountable spaces can be constructed. We can, however, approximate
(5.3) by truncating at some (large but finite) T ∈ N. This takes us back to a finite
scenario treated above: For given σ ∈ Σ, the chain (Xt)T

t=0 is Markov-(pσ, x), and
we can construct its joint probabilities via (4.20) on page 82. This joint distribution
is defined over the finite set ST+1, and hence expectations with respect to it can be
computed with sums. In particular, if

F : ST+1 3 x := (x0, . . . , xT) 7→
T

∑
t=0

ρtU(xt − σ(xt)) ∈ R

and qT+1 is the joint distribution of (Xt)T
t=0, then

E

[
T

∑
t=0

ρtU(Xt − σ(Xt))

]
= ∑

x∈ST+1

F(x) qT+1(x) (5.5)

1Note that although all random outcomes are determined at the start of time by the realization of ω, the
time t value Zt(ω) is regarded as “unobservable” prior to t.
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In fact, we can simplify further using linearity of expectations:

E

[
T

∑
t=0

ρtU(Xt − σ(Xt))

]
=

T

∑
t=0

ρtEU(Xt − σ(Xt))

Letting rσ(x) := U(x − σ(x)) and using (5.2), we can write

EU(Xt − σ(Xt)) = Erσ(Xt) = ∑
y∈S

pt
σ(x, y)rσ(y) = Mt

σrσ(x)

∴ E

[
T

∑
t=0

ρtU(Xt − σ(Xt))

]
=

T

∑
t=0

ρtMt
σrσ(x) (5.6)

With some measure theory it can be shown (see chapter 10) that the limit of the right-
hand side of (5.6) is equal to the objective function in the infinite horizon problem
(5.3). In particular, if vσ(x) denotes total reward under policy σ when starting at initial
condition x ∈ S, then

vσ(x) := E

[
∞

∑
t=0

ρtU(Xt − σ(Xt))

]
=

∞

∑
t=0

ρtMt
σrσ(x) (5.7)

5.1.2 Value Iteration

The term vσ(x) in (5.7) gives the expected discounted reward from following the pol-
icy σ. Taking x as given, our job is to find a maximizer of vσ(x) over the set of policies
Σ. The first technique we discuss is value iteration. To begin, define the value function

v∗(x) := sup{vσ(x) : σ ∈ Σ} (x ∈ S) (5.8)

A policy σ ∈ Σ is called optimal if vσ(x) = v∗(x) for all x ∈ S, which is to say that
the value obtained from following σ is the maximum possible. The discussion below
shows how to find optimal policies.

Our starting point is to observe that the value function satisfies a restriction known
as the Bellman equation. Letting

Γ(x) := {0, 1, . . . , x ∧ s̄} x ∧ s̄ := min{x, s̄}

be the set of all feasible actions (amount of good that can be stored) when the current
state is x, the Bellman equation can be written as

v∗(x) = max
a∈Γ(x)

{
U(x − a) + ρ

z̄

∑
z=0

v∗(a + z)ϕ(z)

}
(x ∈ S) (5.9)
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The identity in (5.9) is proved carefully later in the text. For now we can recognizing
it as capturing the key trade-off associated with the consumption-savings problem.
More savings today (higher a) means lower current consumption, which decreases
utility U(x − a). At the same time, higher savings improves the state tomorrow by
increasing wealth. The expected value of this improvement, discounted by ρ, is given
by the second term on the right-hand side of (5.9). Savings is chosen to maximize the
sum of these two terms.

More generally, Bellman equations in dynamic programming problems capture
the following idea: if one knows the values of different states in terms of maximum
future rewards, then the best action is found by trading off the two effects inherent
in choosing an action: current reward and future reward after transitioning to a new
state next period (the transition probabilities being determined by the action). The
result of making this trade-off optimally is the maximum value from the current state,
which is the left-hand side of (5.9).

Now let’s think about choosing high payoff actions associated with a given valua-
tion over states. Given a valuation w : S → R, we say that σ ∈ Σ is w-greedy if

σ(x) ∈ argmax
a∈Γ(x)

{
U(x − a) + ρ

z̄

∑
z=0

w(a + z)ϕ(z)

}
(x ∈ S) (5.10)

A key result of dynamic programming, proved in chapter 10, is that a policy σ∗ is
optimal if and only if it is v∗-greedy. This is because a v∗-greedy policy optimally trades
off current and future rewards, as described in our discussion of Bellman equations.

Because of the equivalence of v∗-greedy policies and optimal policies, computing
an optimal policy is trivial if we know the value function v∗. All we need to do from
there is solve (5.10) for each x ∈ S, using v∗ in place of w.

So how does one solve for the value function? Equation (5.9) is a tail-chasing
equation: if we know v∗, then we can substitute it into the right-hand side and find v∗.
When it comes to such equations involving functions, Banach’s fixed point theorem
(page 57) can often be used to unravel them. Let bS be the set of functions w : S → R,2

and define the Bellman operator bS 3 v 7→ Tv ∈ bS by

Tv(x) = max
a∈Γ(x)

{
U(x − a) + ρ

z̄

∑
z=0

v(a + z)ϕ(z)

}
(x ∈ S) (5.11)

As will be proved in chapter 10, T is a uniform contraction of modulus ρ on (bS, d∞),
where d∞(v, w) := supx∈S |v(x)−w(x)|. Inspecting (5.9), we see that, by construction,
Tv∗(x) = v∗(x) for all x ∈ S, so v∗ is a fixed point of T. From Banach’s fixed point

2This is our usual notation for the bounded functions from S to R. Since S is finite, all real-valued func-
tions on S are bounded, and bS is just the real-valued functions on S.
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theorem, v∗ is the only fixed point of T in bS, and d∞(Tnv, v∗) → 0 as n → ∞ for any
given v ∈ bS.3

Algorithm 5.1: Value function iteration algorithm

pick any v ∈ bS
repeat

compute Tv from v
set e = d∞(Tv, v)
set v = Tv

until e is less than some tolerance
solve for a v-greedy policy σ

This suggests the value iteration algorithm presented in algorithm 5.1.4 If the tol-
erance is small, then the algorithm produces a function Tnv that is close to v∗. Since
v∗-greedy policies are optimal, and since Tnv is almost equal to v∗, it seems likely that
Tnv-greedy policies are almost optimal. This intuition is correct, and will be confirmed
in §10.2.1.

Exercise 5.2 Implementation algorithm 5.1 in your preferred programming language.
Set the utility function to U(c) = cβ and the distribution ϕ to be uniform on {0, . . . , z̄}.
For the parameters, use β = 0.5, ρ = 0.9, z̄ = 10 and s̄ = 5. Plot the approximate value
function that results and the corresponding greedy policy.

A solution to exercise 5.2 is given in the Jupyter code book. The value function is
plotted in figure 5.1. It is increasing because utility is increasing, so higher states offer
greater lifetime rewards.

Exercise 5.3 Using the code you wrote in exercise 4.56 (page 92), show that (Xt)t≥0
is stable under the optimal policy by showing numerically that α(pσ∗) > 0. Compute
the stationary distribution of wealth.

Figure 5.2 shows the result of computing the stationary distribution under the op-
timal policy.

3Recall that (bS, d∞) is complete (see theorem 3.2.4 on page 50).
4Which is reminiscent of the iterative technique for computing stationary distributions explored in ex-

ercise 4.55 on page 92.
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5.1.3 Policy Iteration

Another common technique for solving dynamic programming problems is policy it-
eration, as presented in algorithm 5.2.5 This technique is easy to program and of-
ten faster than value iteration. It has the nice feature that for finite state problems
the optimal policy is computed exactly (modulo numerical error) in finite time (theo-
rem 10.2.6, page 241).

Algorithm 5.2: Policy iteration algorithm

pick any σ ∈ Σ
repeat

compute the lifetime value vσ of σ

compute a vσ-greedy policy σ′

set e = σ − σ′

set σ = σ′

until e = 0

First, an arbitrary policy σ is chosen. Next, one computes the value vσ of this
policy. From vσ a vσ-greedy policy σ′ is computed:

σ′(x) ∈ argmax
0≤a≤x∧s̄

{
U(x − a) + ρ

z̄

∑
z=0

vσ(a + z)ϕ(z)

}
(x ∈ S)

and e records the deviation between σ and σ′. If the policies are equal the loop termi-
nates. Otherwise we set σ = σ′ and iteration continues.

To compute vσ we can use linear algebra. From (5.7) we have

vσ =
∞

∑
t=0

ρtMt
σrσ

where Mσ is viewed as a matrix and vσ and rσ are column vectors. Now recall that
if N is a square matrix and ∑∞

t=0 Nt converges, then I − N is invertible, where I is the
identity, and (I − N)−1 = ∑∞

t=0 Nt. This is the standard geometric series result for
matrices, analogous to the scalar geometric series identity ∑∞

t=0 αt = 1/(1 − α) when
|α| < 1.

As a result, we can compute vσ by applying standard numerical linear algebraic
routines to

vσ = (I − ρM)−1rσ

5Sometimes called Howard’s policy improvement algorithm.
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Figure 5.3 Optimal policy as computed by policy iteration

Exercise 5.4 Implement algorithm 5.2. Check that the resulting policy equals the one
that you computed in exercise 5.2.

A solution can be found in the Jupyter code book. The result is plotted in figure 5.3.
For low levels of wealth, the household saves nothing. For high levels, it saves the
maximum value s̄.

5.2 MCs and SRSs

Next we examine some additional aspects of Markov chain theory related to ergodic-
ity and asymptotic stability.

5.2.1 Application: Equilibrium Selection

In this section we consider equilibrium selection in games. We look at how so-called
stochastically stable equilibria can be used to select plausible outcomes in settings
with multiple Pareto-ranked Nash equilibria.

The application we consider is a coordination game with N players. The players
cooperate on a project that involves the use of computers. The agents choose as their
individual operating system (OS) either an OS called U or a second OS called V. For
this project, OS U is inherently superior. At the same time, cooperation is enhanced
by the use of common systems, so V may be preferable if enough people use it.
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Specifically, we assume that the individual one-period rewards for using U and V
are given respectively by

Πu(x) :=
x
N

u and Πv(x) :=
N − x

N
v (0 < v < u)

where x is the number of players using U. Players update their choice of operating
system according to current rewards. As a result of their actions the law of motion for
the number of players using U is xt+1 = B(xt), where the function B is defined by

B(x) :=


N if Πu(x) > Πv(x)
x if Πu(x) = Πv(x) ( ⇐⇒ x = N(1 + u/v)−1)

0 if Πu(x) < Πv(x)

The 45 degree diagram for B is shown in figure 5.4 when N = 12, u = 2 and v = 1.
There are three fixed points: x = 0, x = xb := N(1+ u/v)−1 = 4 and x = N. The point
xb is the value of x such that rewards are exactly equal. That is, Πu(xb) = Πv(xb).

Under these deterministic dynamics, the long-run outcome for the game is deter-
mined by the initial condition x0, which corresponds to the number of players orig-
inally using U. Notice that a larger fraction of initial conditions lead to coordination
on U, which follows from our assumption that U is inherently superior (i.e., u > v).

So far the dynamics are characterized by multiple equilibria and path dependence
(where long-run outcomes are determined by initial conditions). Some authors have
sought stronger predictions for these kinds of coordination models (in the form of
unique and stable equilibria) by adding learning, or “mutation.”
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Suppose, for example, that after determining the choice of OS via the best response
function B, players switch to the alternative OS with independent probability ϵ > 0.
Thus each of the B(x) users of U switches to V with probability ϵ, and each of the
N − B(x) users of V switches to U with the same probability. Using Xt to denote the
(random) number of U users at time t, the dynamics are now

Xt+1 = B(Xt) + Wu
t+1 − Wv

t+1 (5.12)

where Wu
t+1 and Wv

t+1 are independent and binomially distributed with probability ϵ

and sizes N − B(Xt) and B(Xt) respectively.6 Here Wu
t+1 is the number of switches

from V to U, while Wv
t+1 is switches from U to V.

With the addition of random “mutation,” uniqueness and stability of the steady
state is attained:

Exercise 5.5 Let p(x, y) := P{Xt+1 = y | Xt = x} be the stochastic kernel correspond-
ing to the SRS (5.12), let M be the Markov operator, and let S := {0, . . . , N}. Prove
that, for any fixed ϵ ∈ (0, 1), the system (P(S), M) is globally stable.

Let ψ∗
ϵ be the unique stationary distribution for ϵ ∈ (0, 1). It has been shown

(see Kandori, Mailath, and Rob 1993) that as ϵ → 0, the distribution ψ∗
ϵ concentrates

on the Pareto dominant equilibrium, which is N (i.e., ψ∗
ϵ (N) → 1 as ϵ → 0). The

interpretation is that, for low levels of experimentation or mutation, players rarely
diverge from the most attractive equilibrium.

This concentration on N can be observed by simulation: Let (Xϵ
t )

n
t=0 be a time

series generated for some fixed ϵ ∈ (0, 1). Then global stability and the law of large
numbers (theorem 4.3.8, page 95) imply that, for large n,

1
n

n

∑
t=1

{Xϵ
t = N} ∼= ψ∗

ϵ (N)

Figure 5.5 shows a simulation that gives n−1 ∑n
t=1{Xϵ

t = N} as ϵ ranges over the
interval [0.001, 0.1]. The parameters are N = 12, u = 2 and v = 1. The series length n
used in the simulation is n = 10, 000. The figure shows that steady state probabilities
concentrate on N as ϵ → 0.
Exercise 5.6 Replicate figure 5.5. Generate one time series of length n = 100, 000 or
more for each ϵ, and plot the fraction of time each series spends in state N.

One solution to the exercise can be found in the Jupyter code book, accelerated
using a Python JIT compiler.

6A binomial random variable with probability p and size n counts the number of successes in n binary
trials, each with independent success probability p.
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Figure 5.5 Fraction of time spent at N as ϵ → 0

5.2.2 The Coupling Method

Much of the modern theory of Markov chains is based on probabilistic methods (as
opposed to analytical techniques such as fixed point theory). A prime example is
coupling. Found in many guises, coupling is a powerful and elegant technique for
studying all manner of probabilistic phenomena. It has been used to prove stability of
Markov processes since the masterful work of Wolfgang Doeblin (1938).

We will use coupling to prove global stability of Markov chains for which the Do-
brushin coefficient is strictly positive, without recourse to the contraction mapping
argument employed in theorem 4.3.5 (page 91). Our main aim is to provide the basic
feel of the coupling method. When we turn to stability of Markov chains on infinite
state spaces, the intuition you have developed here will be valuable.

Note, however, that the topic treated here is technical, and those who prefer to
learn new applications can safely move on without loss of continuity.

To begin, consider a stochastic kernel p with α(pt) > 0. To simplify the argument,
we are going to assume that t = 1. (The general case is a bit more complicated but
works along the same lines.) A little thought will convince you that α(p) > 0 is
equivalent to strict positivity of

ϵ := min

{
∑
y∈S

p(x, y) · p(x′, y) : (x, x′) ∈ S × S

}
(5.13)
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The condition ϵ > 0 can be understood as follows: If we run two independent chains
(Xt)t≥0 and (X′

t)t≥0, both updated with kernel p, then the kernel for the joint process
((Xt, X′

t))t≥0 on S × S is p(x, y)p(x′, y′). If Xt = x and X′
t = x′, then the probability

both chains hit the same state next period (i.e., the probability that Xt+1 = X′
t+1) is

∑y∈S p(x, y)p(x′, y). Hence ϵ > 0 means that, regardless of the current state, there is a
positive (≥ ϵ) probability the chains will meet next period. This in turn is associated
with stability, as it suggests that initial conditions are relatively unimportant.

To make this argument more concrete, fix ψ ∈ P(S) and consider two inde-
pendent Markov chains (Xt)t≥0 and (X∗

t )t≥0, where (Xt)t≥0 is Markov-(p, ψ) and
(X∗

t )t≥0 is Markov-(p, ψ∗) for some stationary distribution ψ∗ ∈ P(S).7 It follows
that Xt ∼ ψMt and X∗

t ∼ ψ∗. Now consider a third process (X′
t)t≥0, which follows

(Xt)t≥0 until ν := min{t ≥ 0 : Xt = X∗
t }, and then switches to following (X∗

t )t≥0. In
other words, X′

t = Xt for t ≤ ν and X′
t = X∗

t for t ≥ ν. (The random variable ν is
known as the coupling time.) A recipe for generating these three processes is given in
algorithm 5.3.

Algorithm 5.3: Coupling two Markov chains

generate independent draws X0 ∼ ψ and X∗
0 ∼ ψ∗

set X′
0 = X0

for t ≥ 0 do
draw Xt+1 ∼ p(Xt, dy) and X∗

t+1 ∼ p(X∗
t , dy) independently

if X′
t = X∗

t then
set X′

t+1 = X∗
t+1

else
set X′

t+1 = Xt+1

end
end

We claim that the distributions of Xt and X′
t are equal for all t, from which it follows

that X′
t ∼ ψMt. To verify the latter it is sufficient to show that (X′

t)t≥0 is Markov-
(p, ψ). And indeed (X′

t)t≥0 is Markov-(p, ψ) because at time zero we have X′
0 = X0 ∼

ψ, and subsequently X′
t+1 ∼ p(X′

t, dy).
That X′

t+1 is drawn from p(X′
t, dy) at each t ≥ 0 can be checked by carefully work-

ing through algorithm 5.3. Another way to verify that X′
t+1 ∼ p(X′

t, dy) is to cast both
(Xt)t≥0 and (X∗

t )t≥0 as stochastic recursive sequences of the form

Xt+1 = F(Xt, Wt+1), X0 ∼ ψ, X∗
t+1 = F(X∗

t , W∗
t+1), X∗

0 ∼ ψ∗

7At least one must exist by theorem 4.3.2, page 87.
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where the random variables (Wt)t≥0 and (W∗
t )t≥0 are all independent and uniform

on (0, 1], and F is determined in (4.12). Now we create (X′
t)t≥0 by setting X′

0 = X0,
X′

t+1 = F(X′
t, Wt+1) for t < ν and X′

t+1 = F(X′
t, W∗

t+1) for t ≥ ν. By switching the
source of shocks at the coupling time, X′

t changes course and starts to follow (X∗
t )t≥0.

Nevertheless, (X′
t)t≥0 is always updated by F(·, W) for some uniformly distributed

independent W, which means that X′
t+1 ∼ p(X′

t, dy) at every step, and hence X′
t ∼

ψMt as claimed.
The next step of the proof uses the following coupling inequality.

Lemma 5.2.1 If X and Y are any random variables taking values in S and having distribu-
tions ϕX and ϕY respectively, then

‖ϕX − ϕY‖∞ := max
x∈S

|ϕX(x)− ϕY(x)| ≤ P{X 6= Y}

Intuitively, if the probability that X and Y differ is small, then so is the distance
between their distributions. An almost identical proof is given later in the book so we
omit the proof here.8

Let’s apply lemma 5.2.1 to X′
t and X∗

t . Since X′
t ∼ ψMt and X∗

t ∼ ψ∗,

‖ψMt − ψ∗‖∞ ≤ P{X′
t 6= X∗

t }

We wish to show that the right-hand side of this inequality goes to zero, and this is
where the reason for introducing X′

t becomes clear. Not only does it have the distri-
bution ψMt, just as Xt does, but also we know that if X′

t is distinct from X∗
t , then Xj and

X∗
j are distinct for all j ≤ t. Hence P{X′

t 6= X∗
t } ≤ P∩j≤t {Xj 6= X∗

j }.9 Therefore

‖ψMt − ψ∗‖∞ ≤ P∩j≤t {Xj 6= X∗
j } (5.14)

Thus, to show that ψMt converges to ψ∗, it is sufficient to demonstrate that the prob-
ability of Xj and X∗

j never meeting prior to t goes to zero as t → ∞. And this is where
positivity of ϵ in (5.13) comes in. It means that there is an ϵ chance of meeting at each
time j, independent of the locations of Xj−1 and X∗

j−1. Hence the probability of never
meeting converges to zero. Specifically,

Proposition 5.2.2 We have P∩j≤t {Xj 6= X∗
j } ≤ (1 − ϵ)t for all t ∈ N.

It follows from proposition 5.2.2 and (5.14) that if ϵ is strictly positive, then ‖ψMt −
ψ∗‖∞ → 0 at a geometric rate.

8See lemma 11.3.2 on page 273.
9If A and B are two events with A ⊂ B (i.e., occurrence of A implies occurrence of B), thenP(A) ≤ P(B).

See chapter 9 for details.
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Proof of proposition 5.2.2. The process (Xt, X∗
t )t≥0 is a Markov chain on S× S. A typical

element of S × S will be denoted by (x, s). In view of independence of (Xt)t≥0 and
(X∗

t )t≥0, the initial condition of (Xt, X∗
t )t≥0 is ψ × ψ∗ (i.e., P{(X0, X∗

0 ) = (x, s)} =
(ψ × ψ∗)(x, s) := ψ(x)ψ∗(s)), while the stochastic kernel is

k((x, s), (x′, s′)) = p(x, x′)p(s, s′)

To simplify notation let’s write (x, s) as x so that k((x, s), (x′, s′)) can be expressed
more simply as k(x, x′), and set D := {(x, s) ∈ S × S : x = s}. Evidently

P∩j≤t {Xj 6= X∗
j } = P∩j≤t {(Xj, X∗

j ) ∈ Dc}

In view of lemma 4.2.6 this probability is equal to

∑
x0∈Dc

(ψ × ψ∗)(x0) ∑
x1∈Dc

k(x0, x1) · · · ∑
xt−1∈Dc

k(xt−2, xt−1) ∑
xt∈Dc

k(xt−1, xt) (5.15)

Now consider the last term in this expression. We have

∑
xt∈Dc

k(xt−1, xt) = 1 − ∑
xt∈D

k(xt−1, xt)

But from the definitions of k and D we obtain

∑
xt∈D

k(xt−1, xt) = ∑
(xt ,st)∈D

p(xt−1, xt)p(st−1, st) = ∑
y∈S

p(xt−1, y)p(st−1, y)

∴ ∑
xt∈D

k(xt−1, xt) ≥ ϵ

∴ ∑
xt∈Dc

k(xt−1, xt) ≤ 1 − ϵ

Working back through (5.15) and applying the same logic to each term shows that
(5.15) is less than (1 − ϵ)t. This proves the proposition.

5.3 Commentary

Much of the early theory of dynamic programming is due to Bellman (1957). A high
quality introduction to dynamic programming in discrete state environments can be
found in Puterman (1994). An overview with applications in economics is given in
Miranda and Fackler (2002, ch. 7). More modern treatments, with applications to arti-
ficial intelligence and decision making systems, are available in Kochenderfer (2015)
and Bertsekas (2019).
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Further references can be found in the commentary to chapters 6 and 10.
The representation of Markov chains as stochastic recursive sequences in §4.2.2 is

loosely based on Häggström (2002, ch. 3). The application in §5.2.1 is from Kandori,
Mailath, and Rob (1993). The approach to coupling in §5.2.2 is somewhat nonstan-
dard. More information can be found in the commentary to chapter 11.

An excellent overview of stochastically stable equilibria and equilibrium selection
can be found in Wallace and Young (2015).



Chapter 6

Infinite State Space

In this chapter we begin working with stochastic systems on infinite state space. While
a completely rigorous treatment of this area requires measure theory (chapter 7 and
onward), we can build a good understanding of the key topics (dynamics, optimiza-
tion, etc.) by heuristic arguments, simulation, and analogies with the finite case.
Along the way we will meet some more challenging programming problems.

6.1 First Steps

In this section we study dynamics for stochastic recursive sequences (SRSs) taking val-
ues in R. Our main interest is in tracking the evolution of probabilities over time, as
represented by the marginal distributions of the process. We will also look at station-
ary distributions—the infinite state analogue of the stationary distributions discussed
in §4.3.1—and how to calculate them.

6.1.1 Basic Models and Simulation

Our basic model is as follows: Let the state space S be a subset of R and let Z ⊂ R.
Let F : S × Z → S be a given function, and consider the SRS

Xt+1 = F(Xt, Wt+1), X0 ∼ ψ, (Wt)t≥1
IID∼ ϕ (6.1)

Here (Wt)t≥1
IID∼ ϕ means that (Wt)t≥1 is an IID sequence of shocks with cumulative

distribution function ϕ. In other words, P{Wt ≤ z} = ϕ(z) for all z ∈ Z. Likewise ψ
is the cumulative distribution function of X0, and X0 is independent of (Wt)t≥1. Note
that Xt and Wt+1 are independent, since Xt depends only on the initial condition and
the shocks W1, . . . , Wt, all of which are independent of Wt+1.

115
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Figure 6.1 Time series plot

Example 6.1.1 Consider a stochastic version of the Solow–Swan growth model, where
output is a function f of capital k and a real-valued shock W. The sequence of produc-
tivity shocks (Wt)t≥1 is IID∼ ϕ. Capital at time t + 1 is equal to that fraction s of output
that was saved last period, plus undepreciated capital, giving law of motion

kt+1 = F(kt, Wt+1) := s f (kt, Wt+1) + (1 − δ)kt (6.2)

Here 0 ≤ δ ≤ 1. The production function satisfies f : R2
+ → R+ and f (k, z) > 0

whenever k > 0 and z > 0. For the state space we can choose either S0 = R+ or
S = (0, ∞), while Z := (0, ∞).

Exercise 6.1 Show that if k ∈ S0 (resp., S) and z ∈ Z, then next period’s stock F(k, z)
is in S0 (resp., S).

Figure 6.1 shows two time paths simulated from the Solow model, each with inde-
pendent shocks, starting at different levels of capital stock. Details on parameters and
methods can be found in the Jupyter code book (see x).

Example 6.1.2 Let Z = S = R, and consider the smooth transition threshold autore-
gression (STAR) model

Xt+1 = g(Xt) + Wt+1, (Wt)t≥1
IID∼ ϕ (6.3)
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Figure 6.2 The map g provides smooth transition between two affine functions

g(x) := (α0 + α1x)(1 − G(x)) + (β0 + β1x)G(x) (6.4)

Here G : S → [0, 1] is a smooth transition function, such as the logistic function, satis-
fying G′ > 0, limx→−∞ G(x) = 0 and limx→∞ G(x) = 1. STAR models are a nonlinear
extension of standard autoregressive models. Figure 6.2 shows the function g in (6.4)
at a given set of parameters (see the code book for details).

Returning to the generic SRS (6.1), let’s consider the distribution of Xt at some
fixed t ∈ N. This distribution will be denoted by ψt, and you can think of it for now
as a cumulative distribution function (i.e., ψt(x) is the probability that Xt ≤ x). It is
also called the marginal distribution of Xt; conceptually it is equivalent to its discrete
state namesake that we met in §4.2.3.

In order to investigate ψt via simulation, we need to sample from this distribution.
The simplest technique is this: First draw X0 ∼ ψ and generate a sample path stop-
ping at time t. Now repeat the exercise, but with a new set of draws X0, W1, . . . , Wt,
leading to a new draw of Xt that is independent of the first. If we do this n times, we
get n independent samples X1

t , . . . , Xn
t from the target distribution ψt. Algorithm 6.1

contains the pseudocode for this operation. Figure 6.3 is a visualization of the algo-
rithm after 3 iterations of the outer loop.

Exercise 6.2 Investigate the mean of ψt for the Solow–Swan model when f (k, W) =
kαW and ln Wt ∼ N(0, σ2). Carry out a simulation with k0 = 1, t = 20, δ = 0.1,
s = 1/2, σ = 0.2 and α = 0.5. Draw n = 100, 000 samples. Compute Ekt using
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Algorithm 6.1: Draws from the marginal distribution

for i in 1 to n do
draw X from the initial condition ψ

for j in 1 to t do
draw W from the shock distribution ϕ

set X = F(X, W)

end
set Xi

t = X
end
return (X1

t , . . . , Xn
t )

time

X2
t

X1
t

X3
t

0 t

Figure 6.3 Sampling from the marginal distribution
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the statistic n−1 ∑n
i=1 ki

t. Explain how theorem 4.3.6 on page 95 implies consistency of
your statistic.

Exercise 6.3 Repeat exercise 6.2, but now setting s = 3/4. How does your estimate
change? Interpret.

Exercise 6.4 Repeat exercise 6.2, but now set k0 = 5, k0 = 10, and k0 = 20. To the
extent that you can, interpret your results.

Exercise 6.5 Repeat exercise 6.2, but now set t = 50, t = 100, and t = 200. What
happens to your estimates? Interpret.

Recall that if X1, . . . , Xn is a sample of IID random variables, then the sample mean
is defined as X̄n := 1

n ∑n
i=1 Xi, while the sample variance is

σ̂2
n :=

1
n

n

∑
i=1

(Xi − X̄n)
2

Assuming that the second moment of Xi is finite, the central limit theorem and a
convergence result often referred to as Slutsky’s theorem give

√
n(X̄n −EX1)

σ̂n

d→ N(0, 1) as n → ∞, where σ̂n :=
√

σ̂2
n (6.5)

Exercise 6.6 Based on this fact, construct a 95% confidence interval for your estimate
of Ekt. (Use the parameters from exercise 6.2.)

The standard tables for the normal distribution tell us that, when Z ∼ N(0, 1), the
c that solves P{|Z| > c} = 0.05 is ≈ 1.96. Interpreting the right-hand side of (6.5) as
Z and rearranging gives

P

{
X̄n −

σ̂n√
n

c ≤ µ ≤ X̄n +
σ̂n√

n
c
}

= 0.05.

With c = 1.96, the two bounds on µ form the 95% confidence interval for µ. A calcu-
lation of this confidence interval for the sample mean used in exercise 6.2 is given in
the Jupyter code book.

Exercise 6.7 Consider again the Solow model from exercise 6.2. Consumption at t is
ct = s f (kt−1, Wt). The classical “golden rule” optimization problem is to choose the
savings rate s in the Solow–Swan model to maximize steady state consumption. For
the stochastic analogue, the simplest extension is to maximize expected steady state
consumption. For this model, by t = 100 the distribution of cj varies little for j ≥ t
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Figure 6.4 Expected steady state consumption as a function of the savings rate

(we’ll learn more about this later on). As such, let’s consider Ec100 as expected steady
state consumption. Compute n = 100, 000 observations of c100, and take the sample
average to obtain an approximation of the expectation. Repeat for s in a grid of values
in (0, 1). Plot the function and report an approximate maximizer.

The solution to exercise 6.7 is provided in the code book, along with the plot of
expected steady state consumption against the savings rate. When the savings rate is
very high, output is high but little is consumed. When the savings rate is very low,
output is low so consumption cannot be large. The golden rule occurs at intermediate
values of savings.

6.1.2 Distribution Dynamics

While the mean conveys some information about the random variable kt, at times we
wish to know about the entire (cumulative) distribution ψt. How might one go about
computing ψt by simulation?

The standard method is with the empirical distribution function, which, for indepen-
dent samples (Xi)

n
i=1 of random variable X ∈ R, is given by

Fn(x) :=
1
n

n

∑
i=1
1{Xi ≤ x} (x ∈ R) (6.6)

Thus Fn(x) is the fraction of the sample that falls below x. The LLN (theorem 4.3.6,
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Figure 6.5 Empirical distribution functions for the Solow model

page 95) can be used to show that if X has cumulative distribution F, then Fn(x) →
F(x) with probability one for each x as n → ∞.1 These results formalize the funda-
mental idea that empirical frequencies converge to probabilities when the draws are
independent.

Figure 6.5 gives four plots of the empirical distribution function corresponding to
the time t distribution of the Solow–Swan model. The plots are for n = 4, n = 25,
n = 100, and n = 5, 000. The parameters are k0 = 1, t = 20, δ = 0.1, s = 0.5, σ = 0.2,
and α = 0.5.
Exercise 6.8 Replicate the four graphs in figure 6.5 (modulo randomness).

Consider now a variation of our growth model with additional nonlinearities. In
example 4.1.4 (page 62) we looked at a model with “threshold” nonconvexities. A
stochastic version is

kt+1 = sA(kt)kα
t Wt+1 + (1 − δ)kt (6.7)

where the shock is assumed to be lognormally distributed (and independent), and A
is the step function

A(k) = A11{0 < k < kb}+ A21{kb ≤ k < ∞} =

{
A1 if 0 < k < kb

A2 if kb ≤ k < ∞

with kb ∈ S = (0, ∞) interpreted as the threshold, and 0 < A1 < A2.
1Later we will cover how to do these kinds of proofs. In this case much more can be proved—interested

readers should refer to the Glivenko–Cantelli theorem.
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Figure 6.6 Persistence in time series

Figures 6.6 and 6.7 each show two time series generated for this model, with initial
conditions k0 = 1 and k0 = 80. The parameters for figure 6.6 are set at δ = 1, α = 0.5,
s = 0.25, A1 = 15, A2 = 25, σ = 0.1, and kb = 21.6, while for figure 6.7 we set σ = 0.14.
In both cases, initial conditions tend to persist, although in figure 6.7, greater volatility
leads to one crossing of the threshold kb. (Physicists call this a “phase transition.”
Economists call it a “growth miracle.”) Informally, the state variable moves from one
locally attracting region of the state space to another.

How long do we expect it to take on average for the transition (crossing of the
threshold kb) to occur for an economy with initial condition k0 = 1? More mathemat-
ically, what is the expectation of the first passage time τ := inf{t ≥ 0 : kt > kb} when
regarded as a random variable onN?

Exercise 6.9 Using the same parameters as above, with k0 = 1, σ = 0.14 and kb = 21.6,
compute an approximate expectation of τ by generating independent observations
and computing the sample mean.

6.1.3 Density Dynamics

Now let’s look more deeply at distribution dynamics for SRSs, with an emphasis on
density dynamics. In reading this section, you should be aware that all densities gen-
erate distributions but the converse is not true. If f is a density function on R, then
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Figure 6.7 Persistence in time series

F(x) :=
∫ x
−∞ f (u)du is a cumulative distribution function. However, if F is a cumu-

lative distribution function with jumps—corresponding to positive probability mass
on individual points—then there exists no density f with F(x) :=

∫ x
−∞ f (u)du for all

x ∈ R. (More about this later on.)
For the sake of concreteness, let’s focus on an SRS of the form

Xt+1 = g(Xt) + Wt+1, X0 ∼ ψ, (Wt)t≥1
IID∼ ϕ (6.8)

Here Z = S = R, and both ψ and ϕ are density functions on R. For this model, the
distribution of Xt can be represented by a density ψt for any t ≥ 1, and ψt and ψt+1
are linked by the recursion

ψt+1(y) =
∫

p(x, y)ψt(x)dx with p(x, y) := ϕ(y − g(x)) (6.9)

Here p is called the stochastic density kernel corresponding to (6.3). It represents the
distribution of Xt+1 = g(Xt) + Wt+1 given Xt = x, as proved in lemma 6.1.3 below.
The left-hand side of (6.9) is a continuous state version of (4.13) on page 78. It links
the marginal densities of the process from one period to the next. In fact, it defines the
whole sequence of densities (ψt)t≥1 for the process once an initial condition is given.

To clarify why (6.9) holds, we use the following lemma.

Lemma 6.1.3 If W ∼ ϕ, then Y := g(x) + W has density ϕ(y − g(x))dy.2
2Here the symbol dy indicates that ϕ(y − g(x)) is a density in y rather than in x.
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Proof. Let F be the cumulative distribution function (cdf) of Y, and let Φ be the cdf
corresponding to ϕ (i.e., Φ′ = ϕ). We have

F(y) = P{g(x) + W ≤ y} = P{W ≤ y − g(x)} = Φ(y − g(x))

The density of Y is F′(y) = ϕ(y − g(x)) as claimed.

Returning to (6.9), recall that if X and Y are random variables with joint density
pX,Y(x, y), then their marginal densities satisfy

pX(x) =
∫

pX,Y(x, y)dy, pY(y) =
∫

pX,Y(x, y)dx

Moreover the conditional density pY|X(x, y) of Y given X = x is given by

pY|X(x, y) =
pX,Y(x, y)

pX(x)
(x, y ∈ S)

Some simple manipulations now yield the expression

pY(y) =
∫

pY|X(x, y)pX(x)dx (y ∈ S)

We have almost established (6.9). Letting Xt+1 = Y and Xt = X, we have

ψt+1(y) =
∫

pXt+1|Xt
(x, y)ψt(x)dx (y ∈ S)

The function pXt+1|Xt
(x, y) is the density of g(Xt) + Wt+1 given Xt = x, or, more sim-

ply, the density of g(x) + Wt+1. By lemma 6.1.3, this is ϕ(y − g(x)) =: p(x, y), con-
firming (6.9).

Now let’s look at the dynamics implied by the law of motion (6.9). The initial
condition is ψ0 = ψ, which is the density of X0 (regarded as given). From this initial
condition, (6.9) defines the entire sequence (ψt)t≥0. There are a couple of ways that we
can go about computing elements of this sequence. One is numerical integration. For
example, ψ1 could be calculated by evaluating ψ1(y) =

∫
p(x, y)ψ(x)dx at each y ∈ S.

Come to think of it, though, this is impossible: there is an infinity of such y. Instead,
we would have to evaluate on a finite grid, use our results to form an approximation
ψ̂1 of ψ1, then do the same to obtain ψ̂2, and so on.

Actually this process is not very efficient, and it is difficult to obtain a measure of
accuracy. So let’s consider some other approaches. Say that we wish to compute ψt,
where t is a fixed point in time. Since we know how to compute empirical distribution
functions by simulation, we could generate n observations of Xt (see algorithm 6.1),
compute the empirical distribution function Fn

t , and differentiate Fn
t to obtain an ap-

proximation ψn
t to ψt.
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It turns out that this is not a good plan either. The reason is that Fn
t is not differen-

tiable everywhere on S. And although it is differentiable at many points in S, at those
points the derivative is zero. So the derivative of Fn

t contains no information about
ψt.3

Another plan would be to generate observations of Xt and histogram them. This
is a reasonable and common way to proceed—but not without its flaws. The main
problem is that the histogram converges rather slowly to its target ψt. This is because
histograms have no notion of neighborhood, and do not make use of all knowledge
we have at hand. For example, if the number of bins is large, then it is often the case
that no points from the sample will fall in certain bins. This may happen even for bins
close to the mean of the distribution. The result is a “spiky” histogram, even when the
true density is smooth.4

We can include the prior information that the density of ψt is relatively smooth
using Parzen windows, or nonparametric kernel density estimates. The kernel density
estimate fn of unknown density f from observations (Yi)

n
i=1 is defined as

fn(x) :=
1

n · δn

n

∑
i=1

K
(

x − Yi
δn

)
(x ∈ R) (6.10)

where K is some density on R, and δn is either a parameter or a function of the data,
usually referred to as the bandwidth.

Essentially, fn is a collection of n “bumps,” one centered on each data point Yi.
These are then summed and normalized to create a density.

Exercise 6.10 Prove that fn is a density for every n.

The bandwidth parameter plays a role similar to the number of bins used in the
histogram: A high value means that the densities we place on each data point are flat
with large tails. A low value means they are concentrated around each data point,
and fn is spiky.

Exercise 6.11 Implement the nonparametric kernel density estimator (6.10) using a
standard normal density for K. If you can, use a closure to enclose the observations
(Yi), as described in §2.2.1, so that your implementation of fn is a function of x alone.
Generate a sample of 100 observations from the standard normal distribution and plot
the density estimate for bandwidth values 0.01, 0.05, 0.1, and 0.5.

One solution to exercise 6.11 can be found in the code book. The generated output
is shown in figure 6.8.

3Readers familiar with the theory of ill-posed problems will have a feel for what is going on here. The
density computation problem is ill-posed!

4We get ψt by integrating ψt−1 with respect to a kernel ϕ(y − g(x)), and functions produced in this way
are usually smooth rather than spiky.
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Figure 6.8 Nonparametric kernel density estimates of normal sample

The nonparametric kernel density estimator produces good results in a broad range
of environments, provided that the sample size is large and a good choice of band-
width is made. However, it turns out that, for estimating marginal densities of the
SRS (6.8), there is a better way: The look-ahead estimator ψn

t of ψt is defined by generat-
ing n independent draws (X1

t−1, . . . , Xn
t−1) of Xt−1 and then setting

ψn
t (y) :=

1
n

n

∑
i=1

p(Xi
t−1, y) (y ∈ R) (6.11)

where p(x, y) = ϕ(y − g(x)).5 This estimator has excellent asymptotic and finite sam-
ple properties. While we won’t go into them too deeply, note that

Lemma 6.1.4 The look-ahead estimator ψn
t is pointwise unbiased for ψt, in the sense that

Eψn
t (y) = ψt(y) for every y ∈ S. Moreover ψn

t (y) → ψt(y) as n → ∞ with probability one.

Proof. Fix y ∈ S, and consider the random variable Y := p(Xt−1, y). The look-ahead
estimator 1

n ∑n
i=1 p(Xi

t−1, y) is the sample mean of IID copies of Y, while the mean is

EY = Ep(Xi
t−1, y) =

∫
p(x, y)ψt−1(x)dx = ψt(y)

(The last equality is due to (6.9)). The desired result now follows from the fact that the

5The independent draws (X1
t−1, . . . , Xn

t−1) can be obtained via algorithm 6.1 on page 118.
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Figure 6.9 Sequence of marginal densities for the STAR model

sample mean of an IID sequence of random variables is an unbiased and consistent
estimator of the mean.6

Figure 6.9 shows a sequence of densities from the STAR model (6.3), computed
using the look-ahead estimator with 10,000 observations per density. The transition
function G is the logistic function G(x) = 1/(x + e−x). The parameters are α0 = −4,
α1 = 0.4, β0 = 5, and β1 = 0.6. The density ϕ is standard normal.

Notice how the marginal density evolves towards a bimodal distribution. The two
modes are concentrated where the function g in figure 6.2 crosses the 45 degree line.
These regions are locally attracting, analogous to the way that these two fixed points
of g are local attractors.

Exercise 6.12 Implement the look-ahead estimator for the STAR model using the
same parameters used for figure 6.9. Replicate the figure (modulo randomness).

The Jupyter code book (see x) provides a solution to exercise 6.12 using Numba’s
jitclass.

6If you don’t know the proof of this fact then try to do it yourself. Consistency follows from the law of
large numbers (theorem 4.3.6 on page 95).
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6.1.4 Stationary Densities: First Pass

The sequence of densities (ψt)t≥0 in figure 6.9 appears to be converging.7 Indeed it
can be shown (see chapter 8) that there is a limiting distribution ψ∗ to which (ψt)t≥0
is converging, and that the limit ψ∗ is independent of the initial condition ψ0. The
density ψ∗ is called a stationary density, and it satisfies

ψ∗(y) =
∫

p(x, y)ψ∗(x)dx (y ∈ R) (6.12)

More generally, a density ψ∗ on R is called stationary for the SRS (6.8) if (6.12) holds,
where the density kernel p satisfies p(x, y) = ϕ(y − g(x)). The SRS is called globally
stable if there exists one and only one such density onR, and the sequence of marginal
distributions (ψt)t≥0 converges to it as t → ∞. (A more formal definition is given in
chapter 8.)

You will recall that in the finite case a distribution ψ∗ is called stationary if ψ∗ =
ψ∗M, or equivalently, ψ∗(y) = ∑x∈S p(x, y)ψ∗(x) for all y ∈ S. The expression (6.12)
simply replaces the sum with an integral, and the basic idea is the same: if the current
marginal density is stationary, then updating to the next period leaves probabilities
unchanged. Note, however, that when the state space is infinite a stationary density
may fail to exist. You will be asked to give an example in exercise 8.7.

Recall that in the finite state case, when the stochastic kernel p is globally stable,
each Markov chain generated by the kernel satisfies a law of large numbers (theo-
rem 4.3.8, page 95). Here we have an analogous result. As shown in theorem 8.2.11
(page 204), given global stability and a function h such that

∫
|h(x)|ψ∗(x)dx is finite,

we have
1
n

n

∑
t=1

h(Xt) →
∫

h(x)ψ∗(x)dx as n → ∞ (6.13)

with probability one, where (Xt)t≥0 is a time series generated by the model.

Exercise 6.13 Consider the STAR model (6.3) with α0 = β0 = 0 and α1 = β1 = a,
where a is a constant with |a| < 1. Suppose that ϕ is standard normal. We will see later
that this is a stable parameter configuration, and ψ∗ = N(0, 1/(1 − a2)) is stationary
for this kernel. From (6.13) we have

1
n

n

∑
t=1

X2
t
∼=

1
1 − α2 for large n

Write a simulation that compares these two expressions for large n.

7See figure 6.15 on page 138 for another sequence of densities converging to a limit.
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The LLN gives us a method to investigate the steady state distribution ψ∗ for glob-
ally stable systems. For example, we can form the empirical distribution function

Fn(x) :=
1
n

n

∑
t=1
1{Xt ≤ x} =

1
n

n

∑
t=1
1(−∞,x](Xt) (x ∈ R)

where 1(−∞,x](y) = 1 if y ≤ x and zero otherwise and (Xt)t≥0 is a simulated time se-
ries generated by the model. The empirical distribution function was discussed previ-
ously in §6.1.2. We will see in what follows that

∫
1(−∞,x](y)ψ∗(y)dy is the probability

that a draw from ψ∗ falls below x. In other words, F(x) :=
∫
1(−∞,x](y)ψ∗(y)dy is the

cumulative distribution function associated with ψ∗. Setting h = 1(−∞,x] in (6.13), we
then have Fn(x) → F(x) with probability one, ∀x ∈ R, and the empirical distribution
function is consistent for F.
Exercise 6.14 Use the empirical distribution function to compute an estimate of F for
(6.3) under the same parameters used in figure 6.9.

There is, however, a more powerful technique for evaluating ψ∗ when global sta-
bility holds. Taking our simulated time series (Xt)n

t=1, define

ψ∗
n(y) :=

1
n

n

∑
t=1

p(Xt, y) (y ∈ R) (6.14)

This expression is almost identical to the look-ahead estimator developed in §6.1.3
(see (6.11) on page 126), with the difference being that the random samples are now
a single time series rather than repeated draws at a fixed point in time. To study the
properties of ψ∗

n, observe that for any fixed y ∈ S, the LLN (6.13) gives us

ψ∗
n(y) :=

1
n

n

∑
t=1

p(Xt, y) →
∫

p(x, y)ψ∗(x)dx = ψ∗(y)

where the last equality is by (6.12). Thus ψ∗
n(y) is consistent for ψ∗(y).

In fact, much stronger results are true, and ψ∗
n is an excellent estimator for ψ∗ (see,

e.g., Stachurski and Martin 2008). The reason is that while estimators such as Fn use
only the information contained in the sampled time series (Xt), the look-ahead esti-
mator ψ∗

n also incorporates the stochastic kernel p, which encodes the entire dynamic
structure of the model.
Exercise 6.15 Use the look-ahead estimator (6.14) to compute an estimate of ψ∗ for
(6.3) under the same parameters used in figure 6.9.

Here is a second application. Consider the nonconvex growth model in (6.7) on
page 121 with δ = 1. We will prove below that the stochastic density kernel for this
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Figure 6.10 Stationary look-ahead estimator, nonconvex growth model

model is

p(x, y) = ϕ

(
y

sA(x)xα

)
1

sA(x)xα
(x, y > 0) (6.15)

and that the model is globally stable. From stability we obtain the LLN (6.13), and
hence the look-ahead estimator (6.14) is consistent for the unique stationary density
ψ∗. Figure 6.10 shows a realization of ψ∗

n when A is the step function

A(k) := A11{k ≤ kb}+ A21{k > kb} (k > 0)

and Wt = eξ
t , where ξt ∼ N(0, σ2). The parameters are α = 0.5, s = 0.25, A1 = 15,

A2 = 25, kb = 21.6, and k0 = 1.0. The volatility parameter σ varies as shown in the
figure. The time series from which the look-ahead estimates are constructed are all of
length n = 100, 000.

Exercise 6.16 Replicate figure 6.10. Sample a time series (kt)t≥0 from the model, and
implement ψ∗

n with (kt)t≥0 and the kernel in (6.15).8

8Even with n around 100,000, some variation will be observable over different realizations. This is due
to the nonlinearity in the model and resulting slow convergence.
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6.2 Optimal Savings, Infinite State

Let’s now look at a simple optimal savings model on an infinite state space. The model
we consider is simplistic but the methods we cover can be extended in many different
directions.

We will compute the optimal policy for the model numerically using value iter-
ation and policy iteration. We also study via simulation the dynamics of the model
under that policy.

6.2.1 Optimization

We consider a variation on the optimal savings model discussed in §5.1. At time t an
agent owns assets at. During period t, a quantity ct of these assets is consumed. The
remainder st is invested. Given st, wealth at t + 1 is at+1 = f (st, ξt+1), where (ξt)t≥1
is an IID random vector taking values in Z ⊂ Rk according to density ϕ. For example,
we might have ξt = (Rt, yt) for each t, where Rt is a gross rate of return on savings
and yt is nonfinancial income, and then set f (s, ξ) = f (s, (R, y)) = Rs + y.

For simplicity we impose a strict borrowing constraint: assets must be nonnegative
at all times. This can easily be replaced by a weaker constraint, although we put such
extensions aside.

The agent’s behavior is specified by a policy function σ, which is a map from S :=
R+ to R+ satisfying 0 ≤ σ(a) ≤ a for all a ∈ S. The value σ(a) should be interpreted
as the agent’s choice of savings when assets = a, while 0 ≤ σ(a) ≤ a is a feasibility
constraint implying that the agent cannot borrow. The set of all such policies will be
denoted by Σ.

As with the finite state case, choice of a policy function σ ∈ Σ also determines an
SRS for the state variable, in this case given by

at+1 = f (σ(at), ξt+1), (ξt)t≥1
IID∼ ϕ, a0 = a (6.16)

Here a is initial wealth. Letting U be the agent’s utility function and ρ ∈ (0, 1) be the
discount factor, the agent’s decision problem is

max
σ∈Σ

vσ(a), where vσ(a) := E

[
∞

∑
t=0

ρtU(at − σ(at))

]
(6.17)

and (at) is given by (6.16). The value vσ(a) is the expected discounted value of fol-
lowing policy σ when initial income is a0 = a. For now we assume that U : R+ → R+

is bounded and continuous, and that f : R+ × Z → R+ is continuous.
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Given vσ in (6.17), we can define the value function v∗ in the same way as (5.8) on
page 102: v∗(a) := sup{vσ(a) : σ ∈ Σ}. From boundedness of U it can be shown that
this supremum is taken over a bounded set, and hence v∗ is well defined.9

In the next few paragraphs we briefly review the theory of dynamic programming
as it pertains to this problem. For now our objective is to progress quickly to compu-
tation. Later, in chapter 10, we return to the theory and step through it in detail.

As discussed in the finite case—see §5.1.1, and in particular the discussion sur-
rounding (5.4) on page 101—a rigorous definition of the expectation in (6.17) requires
measure theory. The details are deferred until chapter 10. Among other things, we
will see that the expectation can be passed through the sum to obtain

vσ(a) =
∞

∑
t=0

ρtEU(at − σ(at)) (a ∈ S = R+) (6.18)

This expression is simpler to interpret, with each term EU(at − σ(at)) defined via
integrals overR. Specifically, we integrate the function x 7→ U(x − σ(x)) with respect
to the marginal distribution ψt of at, where at is defined recursively in (6.16).

Just as in §5.1.2, the value function satisfies a Bellman equation: Letting Γ(a) :=
[0, a] be the feasible savings choices when wealth is a, we have

v∗(a) = max
s∈Γ(a)

{
U(a − s) + ρ

∫
v∗( f (s, z))ϕ(z)dz

}
(a ∈ S) (6.19)

The intuition behind (6.19) is very similar to that for the finite state Bellman equation
on page 102 and won’t be repeated here. A proof that v∗ satisfies (6.19) will be pro-
vided later, in theorem 10.1.8 on page 232. In the same theorem it is shown that v∗ is
continuous.

Recall that bcS is the set of continuous bounded real-valued functions on S. Given
a w ∈ bcS, we say that σ ∈ Σ is w-greedy if

σ(a) ∈ argmax
s∈Γ(a)

{
U(a − s) + ρ

∫
w( f (s, z))ϕ(z)dz

}
(a ∈ S) (6.20)

In chapter 10 we will see that continuity of w implies continuity of the objective func-
tion in (6.20) and, since Γ(a) is compact, the existence of a maximizer σ(a) for each a
is guaranteed by theorem 3.2.12 (page 53).

We will also prove that, as was true for the finite state case, a policy σ∗ is optimal in
terms of maximizing expected discounted rewards if and only if it is v∗-greedy (theo-
rem 10.1.8). In view of continuity of v∗ and the previous comment regarding existence
of maximizers, this result shows that at least one optimal policy exists. Moreover, we

9See exercise 10.3 on page 232. We treat unbounded rewards in §12.2.
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can compute σ∗ by first solving for v∗ and then obtaining σ∗ as the maximizer in (6.20)
with v∗ in place of w.

In order to compute v∗, we define the Bellman operator T, which maps w ∈ bcS
into Tw ∈ bcS via

Tw(a) = max
s∈Γ(a)

{
U(a − s) + ρ

∫
w( f (s, z))ϕ(z)dz

}
(a ∈ S) (6.21)

We prove in chapter 10 that T is a uniform contraction of modulus ρ on the metric
space (bcS, d∞), where d∞(v, w) := supa∈S |v(a) − w(a)|. In view of Banach’s fixed
point theorem (page 57), T then has a unique fixed point v̄ ∈ bcS, and Tnv → v̄ in d∞
as n → ∞ for all v ∈ bcS. Moreover, it is immediate from the definition of T and the
Bellman equation that Tv∗(a) = v∗(a) for all a ∈ S, so v̄ = v∗. We conclude that all
trajectories of the dynamical system (bcS, T) converge to v∗.

These observations suggest that to solve for an optimal policy we can use the value
iteration technique presented in algorithm 5.1 on page 104, replacing bS with bcS for
the set from which the initial condition is chosen. The algorithm returns a v-greedy
policy σ, computed from a function v ∈ bcS that is close to v∗. If v is close to v∗,
then v-greedy policies are “almost optimal.” §10.2.1 provides full details. For now we
focus on computation.

6.2.2 Fitted Value Iteration

With regard to value iteration, the fact that the state space is infinite means that im-
plementing the sequence of functions generated by the algorithm on a computer is
problematic. Essentially, the issue is that if w is an arbitrary element of bcS, then to
store w in memory we need to store the values w(a) for every a ∈ S. For infinite S this
is not generally possible.

At the same time, some functions from S to R can be stored on a computer. For
example, if w is a polynomial function such as w(x) = ∑n−1

i=0 cixi, then to store w in
memory, we need only store the n coefficients (ci)

n−1
i=0 and the instructions for obtain-

ing w(x) from these coefficients. Functions that can be recorded in this way (i.e., with
a finite number of parameters) are said to have finite parametric representation.

Unfortunately, iterates of the Bellman operator do not naturally present them-
selves in finite parametric form. To get Tv from v, we need to solve a maximization
problem at each a ∈ S = R+ and record the result. Again, this is not possible when S
is infinite. A common “solution” is discretization, where S is replaced with a grid of
size k, and the original model with a “similar” model that evolves on the grid. This is
rarely the best way to treat continuous state problems, since a significant amount of
useful information is discarded, and there is little in the way of theory guaranteeing
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that the limiting policy converges to the optimal policy as k → ∞.10

Another approach is fitted value iteration, as described in algorithm 6.2. Here F
is a class of functions with finite parametric representation. The map v 7→ w defined
by the first two lines of the loop is, in effect, an approximate Bellman operator T̂,
and fitted value iteration is equivalent to iteration with T̂ in place of T. A detailed
theoretical treatment of this algorithm is given in §10.2.3. At this stage let us try to
grasp the key ideas, and then look at implementation.

Algorithm 6.2: Fitted value iteration

initialize v ∈ bcS
repeat

sample the function Tv at finite set of grid points (ai)
k
i=1

use the samples to construct an approximation w ∈ F of Tv
set e = d∞(v, w)
set v = w

until e is less that some tolerance
solve for a v-greedy policy σ

The first thing to consider is the particular approximation scheme to be used in the
step that sends Tv into w ∈ F . A number of schemes have been used in economic
modeling, from Chebychev polynomials to splines and neural nets. In choosing the
best method we need to consider how the scheme interacts with the iteration process
used to compute the fixed point v∗. A scheme that approximates individual functions
well with respect to some given criterion does not always guarantee good dynamic
properties for the sequence (T̂nv)n≥1.

To try to pin down a suitable technique for approximation, let’s decompose T̂ into
the action of two operators L and T. First T is applied to v—in practice Tv is evaluated
only at finitely many points—and then an approximation operator L sends the result
into w = T̂v ∈ F . Thus, T̂ = L ◦ T. Figure 6.11 illustrates iteration of T̂.

We aim to choose L such that (a) the sequence (T̂nv)n≥1 converges, and (b) the
collection of functions F is sufficiently rich that the limit of this sequence (which
lives in F ) can be close to the fixed point v∗ of T (which lives in bcS).11 The richness
of F depends on the choice of the approximation scheme and the number of grid
points k in algorithm 6.2. In the formal results presented in §10.2.3, we will see that

10One reason is that the resulting policy is not an element of the original policy space Σ, making it diffi-
cult to discuss the error induced by approximation. As an aside, some studies actually treat discrete state
problem using continuous approximations in order to reduce the number of parameters needed to store the
value function.

11More correctly, the limit of the sequence lives in cl F ⊂ bcS.
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Figure 6.11 The map T̂ := L ◦ T

the approximation error depends on d∞(Lv∗, v∗), which indicates how well v∗ can be
approximated by an element of F .

Returning to point (a), any serious attempt at theory requires that the sequence
(T̂nv)n≥1 converges in some sense as n → ∞. In this connection, note the following
result.

Exercise 6.17 Let M and N be operators sending metric space (U, d) into itself. Show
that if N is a uniform contraction with modulus ρ and M is nonexpansive, then M ◦ N
is a uniform contraction with modulus ρ.

As T is a uniform contraction on (bcS, d∞), we see that T̂ is uniformly contracting
whenever L is nonexpansive on (bcS, d∞). While for some common approximation
architectures this fails, it does hold for a number of useful schemes. When attention
is restricted to these schemes the sequence (T̂nv)n≥1 is convergent by Banach’s fixed
point theorem, and we can provide a detailed analysis of the algorithm.

Let’s move on to implementation, deferring further theory until §10.2.3. The ap-
proximation scheme we will use is piecewise linear interpolation, as shown in fig-
ure 6.12. (Outside the set of grid points, the approximations are constant.) With ref-
erence to the figure, it is not difficult to see that for any v, w ∈ bcS, and any x in the
domain, we have

|Lv(x)− Lw(x)| ≤ sup
1≤i≤k

|v(xi)− w(xi)| ≤ ‖v − w‖∞

Taking the supremum over x ∈ S, we see that L is nonexpansive on (bcS, d∞).
We set U(c) = c1−γ/(1 − γ), where the risk aversion parameter γ determines the

curvature of U. The function is f is set to f (s, ξ) = Rs + ξ, where R is a positive
constant indicating gross rate of return and ξ, which represents nonfinancial income,
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Figure 6.12 Approximation via linear interpolation

is lognormal. Figure 6.13 shows convergence of the sequence of iterates in fitted value
function iteration, starting from initial condition v ≡ 0. Here the parameters are

γ = 0.5, R = 1.05, ρ = 0.96, ξt = exp(bZt) where Zt ∼ N(0, 1) and b = 0.1 (6.22)

The integrals in the definition of the Bellman operator are computed by Monte Carlo.
In other words, we use the fact that, for given w,∫

w( f (s, z))ϕ(z)dz ≈ 1
n

n

∑
i=1

w( f (s, ξi)) when (ξi)
IID∼ ϕ

The same set of draws (ξi) is used for to evaluate every integral. While Monte Carlo
is not the only option for computing the integral here, it has the significant advantage
that it preserves the contractivity property of the Bellman operator.

Further details on the computation are given in the Jupyter code book.
We can now compute a greedy policy σ from the last of these iterates, as shown in

figure 6.14; along with the function a 7→ Rσ(a)+m, where m is the mean of the income
shock. If the shock is always at its mean, then, from every positive initial condition,
the income process (at)t≥0 would converge to the unique fixed point at ∼= 3.8. Notice
that when assets are low, the agent saves nothing.

What happens when the shock is at its mean provides only limited information on
dynamics. We wish to learn about the entire distribution of the state at each point in
time. To generate the sequence of densities corresponding to the process

at+1 = Rσ(at) + ξt+1

we can use the look-ahead estimator (6.11) on page 126. The look-ahead estimator of
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Figure 6.15 Densities of the asset process

the density ψt of at can be computed via

ψn
t (y) :=

1
n

n

∑
i=1

p(ai
t−1, y) (y ∈ R) (6.23)

where p(x, y) = ϕ(y − g(x)) and (ai
t−1)

n
i=1 is n independent draws of xt−1 starting

from a given initial condition x0. Here ϕ is the density of ξt. Figure 6.15 shows a
sequence of densities (ψt) starting at a0 = 0 and using sample size n = 10, 000.

Exercise 6.18 Using your preferred coding environment, try to replicate figures 6.13
through 6.15. Once you compute the marginal density sequence via the look-ahead
estimator, try experimenting with different initial conditions. Observe how the densi-
ties always converge to the same limit.

Solutions to all parts of Exercise 6.18 can be found in the code book.

6.2.3 Policy Iteration

Recall that in §5.1.3 we solved the finite state problem using a second algorithm, called
policy iteration. (See in particular algorithm 5.2 on page 106.) We can do the same
thing here, although we will need to use approximation techniques similar to those
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we used for fitted value iteration. The basic idea is presented in algorithm 6.3. (In
practice, the functions vσ and σ will have to be approximated at each step.)

Algorithm 6.3: Policy iteration algorithm

pick any σ ∈ Σ
repeat

compute vσ from σ

solve for a vσ-greedy policy σ′

set σ = σ′

until until some stopping condition is satisfied

The theory behind policy iteration is presented in §10.2.2. In this section our inter-
est will be in implementation. When considering implementation the most challeng-
ing part is to compute vσ from σ (i.e., to calculate the value of a given policy). Since
the state space is infinite, we cannot directly apply the matrix inversion method that
we used for the finite state case in §5.1.3.

One natural alternative is the following iterative technique. For given σ ∈ Σ,
define the operator Tσ that sends w ∈ bS into Tw ∈ bS by

Tσw(a) = U(a − σ(a)) + ρ
∫

w( f (σ(a), z))ϕ(z)dz (a ∈ S) (6.24)

As we show in §10.1.3, for each σ ∈ Σ, the operator Tσ is a uniform contraction on
(bS, d∞), and the unique fixed point of Tσ in bS is vσ.12

What this means for us is that from any initial guess v ∈ bcS we have Tn
σ v → vσ

so, by iterating with Tσ, we can obtain an approximation to vσ. In doing so we need to
approximate at each iteration, just as we did for fitted value iteration (algorithm 6.2,
but with Tσ in place of T).

Exercise 6.19 Compute an approximate optimal policy using policy iteration, as in
algorithm 6.3. Use the technique just described to approximate the value of each pol-
icy. Maintain the same parameterization we adopted previously, for value function
iteration. Check that this policy is similar to the one you computed in exercise 6.18.13

12This statement is not completely true. There is a minor technical issue related to the integral on the
right-hand side of (6.24). Some functions in bS, the set of all bounded functions from S toR, are so irregular
that they cannot be nicely handled by standard notions of integral. Hence, to be completely accurate, we
need to replace bS with the set of Borel measurable functions in bS. All of these ideas will be clarified in
full once we start studying measure theory, in chapter 7. For now we can put them aside and focus on
computation.

13Hint: Suppose that σn is the policy computed at the n-th iteration. A good initial condition for the guess
of vσn is vσn−1 .
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6.3 Stochastic Speculative Price

This section applies some of the ideas we have developed to the study of prices in a
commodity market with consumers and speculators. After specifying and solving the
model, we will also investigate how the solution can be obtained using the optimal
growth model of §6.2. In this way, we will see that the optimal growth model, which
at first pass seems rather limited, can in fact be applied to the study of decentralized
economies with a large number of agents.

6.3.1 The Model

Consider a market for a single commodity, whose price is given at t by pt. The “har-
vest” of the commodity at time t is Wt. We assume that the sequence (Wt)t≥1 is IID

with common density function ϕ. The harvests take values in S := [a, ∞), where
a > 0. (These days, goods such as basic computer chips and integrated circuits are
often treated as commodities in financial markets, being highly standardized, and, for
these kinds of commodities, the word “harvest” is clearly not appropriate. Nonethe-
less, we maintain it for simplicity.)

The commodity is purchased by both “consumers” and “speculators.” We assume
that consumers generate demand quantity D(p) corresponding to price p. Regarding
the inverse demand function D−1 =: P we assume that

Assumption 6.3.1 The function P : (0, ∞) → (0, ∞) exists, is strictly decreasing and
continuous, and satisfies P(x) ↑ ∞ as x ↓ 0.

Speculators can store the commodity between periods, with It units purchased in
the current period yielding αIt units in the next, α ∈ (0, 1). For simplicity, the risk free
interest rate is taken to be zero, so expected profit on It units is

Et pt+1 · αIt − pt It = (αEt pt+1 − pt)It

Here Et pt+1 is the expectation of pt+1 taken at time t. Speculators are assumed to be
risk neutral. Nonexistence of arbitrage requires that

αEt pt+1 − pt ≤ 0 (6.25)

Profit maximization gives the additional condition

αEt pt+1 − pt < 0 implies It = 0 (6.26)

We also require that the market clears in each period. Supply Xt is the sum αIt−1 +Wt
of carryover by speculators and the current harvest, while demand is D(pt) + It (i.e.,
purchases by consumers and speculators). The market equilibrium condition is

αIt−1 + Wt =: Xt = D(pt) + It (6.27)
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The initial condition X0 ∈ S is treated as given.
Now to find an equilibrium. Constructing a system (It, pt, Xt)t≥0 for investment,

prices, and supply that satisfies (6.25)–(6.27) is not trivial. Our path of attack will be
to seek a system of prices that depend only on the current state. In other words, we take a
function p : S → (0, ∞) and set pt = p(Xt) for every t. The vector (It, pt, Xt)t≥0 then
evolves as

pt = p(Xt), It = Xt − D(pt), Xt+1 = αIt + Wt+1 (6.28)

For given X0 and exogenous process (Wt)t≥1, the system (6.28) determines the time
path for (It, pt, Xt)t≥0 as a sequence of random variables. We seek a p such that (6.25)
and (6.26) hold for the corresponding system (6.28).14

To this end, suppose that there exists a particular function p∗ : S → (0, ∞) satisfy-
ing

p∗(x) = max
{

α
∫

p∗(αI(x) + z)ϕ(z)dz, P(x)
}

(x ∈ S) (6.29)

where
I(x) := x − D(p∗(x)) (x ∈ S) (6.30)

It turns out that such a p∗ will suffice, in the sense that (6.25) and (6.26) hold for the
corresponding system (6.28). To see this, observe first that15

Et pt+1 = Et p∗(Xt+1) = Et p∗(αI(Xt) + Wt+1) =
∫

p∗(αI(Xt) + z)ϕ(z)dz

Thus (6.25) requires that

α
∫

p∗(αI(Xt) + z)ϕ(z)dz ≤ p∗(Xt)

This inequality is immediate from (6.29). Second, regarding (6.26), suppose that

α
∫

p∗(αI(Xt) + z)ϕ(z)dz < p∗(Xt)

Then by (6.29) we have p∗(Xt) = P(Xt), whence D(p∗(Xt)) = Xt, and It = I(Xt) = 0.
(Why?) In conclusion, both (6.25) and (6.26) hold, and the system (It, pt, Xt)t≥0 is an
equilibrium.

The only issue remaining is whether there does in fact exist a function p∗ : S →
(0, ∞) satisfying (6.29). This is not obvious, but can be answered in the affirmative
by harnessing the power of Banach’s fixed point theorem. To begin, let C denote the
set of decreasing (i.e., nonincreasing) continuous functions p : S → R with p ≥ P
pointwise on S.

14Given (6.28) we have Xt = It + D(pt), so (6.27) automatically holds.
15If the manipulations here are not obvious don’t be concerned—we will treat random variables in detail

later on. The last inequality uses the fact that if U and V are independent and V has density ϕ then the
expectation of h(U, V) given U is

∫
h(U, z)ϕ(z)dz.
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Exercise 6.20 Show that C ⊂ bcS.

Exercise 6.21 Show that if (hn) ⊂ C and d∞(hn, h) → 0 for some function h ∈ bcS,
then h is decreasing and dominates P.

Lemma 6.3.2 The metric space (C , d∞) is complete.

Proof. By theorem 3.2.1 on page 49 (closed subsets of complete spaces are complete)
and the completeness of bcS (theorem 3.2.7 on page 50) we need only show that C is
closed as a subset of bcS. This follows from exercise 6.21.

As C is complete, it provides a suitable space in which we can introduce an opera-
tor from C to C and—appealing to Banach’s fixed point theorem—show the existence
of an equilibrium. The idea is to construct the operator such that (1) any fixed point
satisfies (6.29), and (2) the operator is uniformly contracting on C . The existence of an
operator satisfying conditions (1) and (2) proves the existence of a solution to (6.29).

So let p be a given element of C , and consider the new function on S constructed
by associating to each x ∈ S the real number r satisfying

r = max
{

α
∫

p(α(x − D(r)) + z)ϕ(z)dz, P(x)
}

(6.31)

We denote the new function by Tp, where Tp(x) is the r that solves (6.31), and regard
T as an operator sending elements of C into new functions on S. It is referred to below
as the pricing functional operator.

Exercise 6.22 Prove that if p∗ is a fixed point of T, then it solves (6.29).

Theorem 6.3.3 The following results hold:

1. The pricing functional operator T is well-defined, in the sense that Tp(x) is a uniquely
defined real number for every p ∈ C and x ∈ S. Moreover

P(x) ≤ Tp(x) ≤ v(x) := max
{

α
∫

p(z)ϕ(z)dz, P(x)
}

(x ∈ S)

2. T maps C into itself. That is, T(C ) ⊂ C .

The proof is only sketched. You might like to come back after reading up on mea-
sure theory and fill out the details. To start, let p ∈ C and x ∈ S. Define

hx(r) := max
{

α
∫

p(α(x − D(r)) + z)ϕ(z)dz, P(x)
}

(P(x) ≤ r ≤ v(x))
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Although we skip the proof, this function is continuous and decreasing on the inter-
val [P(x), v(x)]. To establish the claim that there is a unique r ∈ [P(x), v(x)] satisfying
(6.31), we must show that hx has a unique fixed point in this set. As hx is decreas-
ing, uniqueness is trivial.16 Regarding existence, it suffices to show that there exist
numbers r1 ≤ r2 in [P(x), v(x)] with

r1 ≤ hx(r1) and hx(r2) ≤ r2

Why does this suffice? The reason is that if either holds with equality then we are
done, and if both hold inequalities are strict, then we can appeal to continuity of hx
and the intermediate value theorem (page 335).17

A suitable value for r1 is P(x). (Why?) For r2 we can use v(x), as

hx(r2) = max
{

α
∫

p(α(x − D(r2)) + z)ϕ(z)dz, P(x)
}

≤ max
{

α
∫

p(z)ϕ(z)dz, P(x)
}

= v(x) = r2

The claim is now established, and with it part 1 of the theorem.
To prove part 2, we must show that Tp (1) dominates P, (2) is decreasing on S, and

(3) is continuous on S. Of these, (1) is implied by previous results, while (2) and (3)
hold but proofs are omitted—we won’t cover the necessary integration theory until
chapter 7.18

Theorem 6.3.4 The operator T is a uniform contraction of modulus α on (C , d∞).

It follows from theorem 6.3.4 that there exists a unique p∗ ∈ C with Tp∗ = p∗. In
view of exercise 6.22, p∗ satisfies (6.29), and we have solved our existence problem.
Thus it only remains to confirm theorem 6.3.4, which can be proved using Blackwell’s
sufficient condition for a uniform contraction. To state the latter, consider the met-
ric space (M, d∞), where M is a subset of bU, the bounded real-valued functions on
arbitrary set U.

Theorem 6.3.5 (Blackwell) Let M be a subset of bU with the property that u ∈ M and
γ ∈ R+ implies u + γ1U ∈ M. If T : M → M is monotone and

∃ λ ∈ [0, 1) s.t. T(u + γ1U) ≤ Tu + λγ1U ∀ u ∈ M and γ ∈ R+ (6.32)

then T is uniformly contracting on (M, d∞) with modulus λ.

16This was discussed in exercise 3.43 on page 56.
17Can you see why? Apply the theorem to g(r) = r − h(r).
18The proof of (3) uses theorem B.1.3 on page 341.
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Monotonicity means that if u, v ∈ M and u ≤ v, then Tu ≤ Tv, where all inequal-
ities are pointwise on U. The proof of theorem 6.3.5 is given in on page 344, and we
now return to the proof of theorem 6.3.4.

Exercise 6.23 Let h1 and h2 be decreasing functions on S with (necessarily unique)
fixed points x1 and x2. Prove: If h1 ≤ h2, then x1 ≤ x2.

Using this exercise it is easy to see that T is a monotone operator on C : Pick any
p, q ∈ C with p ≤ q, and any x ∈ S. Let r 7→ hp(r) be defined by

hp(r) := max
{

α
∫

p(α(x − D(r)) + z)ϕ(z)dz, P(x)
}

and let hq(r) be defined analogously. Clearly, Tp(x) is the fixed point of r 7→ hp(r),
as is Tq(x) the fixed point of r 7→ hq(r). Since hp(r) ≤ hq(r) for all r, it must be that
Tp(x) ≤ Tq(x). As x was arbitrary we have Tp ≤ Tq.

To apply Blackwell’s condition, we need to show in addition that if p ∈ C and
γ ∈ R+, then (1) p + γ1S ∈ C , and (2) there exists a λ < 1 independent of p and γ
and having the property

T(p + γ1S) ≤ Tp + λγ1S (6.33)

Statement (1) is obviously true. Regarding statement (2), we make use of the following
easy lemma:

Lemma 6.3.6 Let a, b, and c be real numbers with b ≥ 0. We have

max{a + b, c} ≤ max{a, c}+ b

If you’re not sure how to prove these kinds of inequalities, then here is how they
are done: Observe that both

a + b ≤ max{a, c}+ b and c ≤ max{a, c}+ b

∴ max{a + b, c} ≤ max{a, c}+ b

To continue, let p and γ be as above, and let q := p + γ1S. Pick any x ∈ S. Let rp stand
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for Tp(x) and let rq stand for Tq(x). We have

rq = max
{

α
∫

q(α(x − D(rq)) + z)ϕ(z)dz, P(x)
}

≤ max
{

α
∫

q(α(x − D(rp)) + z)ϕ(z)dz, P(x)
}

= max
{

α
∫

p(α(x − D(rp)) + z)ϕ(z)dz + αγ, P(x)
}

≤ max
{

α
∫

p(α(x − D(rp)) + z)ϕ(z)dz, P(x)
}
+ αγ

= rp + αγ

Here the first inequality follows from the fact that rp ≤ rq (since p ≤ q and T is
monotone), and the second from lemma 6.3.6.

We have show that T(p + γ1S)(x) ≤ Tp(x) + αγ. Since x is arbitrary and α < 1,
the inequality (6.33) is established with λ := α.

6.3.2 Numerical Solution

In this section we compute the rational expectations pricing functional p∗ numerically
via Banach’s fixed point theorem. To start, recall that in §6.3.1 we established the
existence of a function p∗ : S → (0, ∞) in C satisfying (6.29). In the proof, p∗ was
shown to be the fixed point of the pricing operator T : C 3 p 7→ Tp ∈ C . In view of
Banach’s theorem we have d∞(Tn p, p∗) → 0 as n → ∞ for any p ∈ C , so a natural
approach to computing p∗ is by iterating on an arbitrary element p of C (such as P).
In doing so, we will need to approximate the iterates Tn p at each step, just as for fitted
value iteration (algorithm 6.2, page 134). As before we use linear interpolation, which
is nonexpansive with respect to d∞.

So suppose that p ∈ C and x ∈ S are fixed, and consider the problem of obtain-
ing Tp(x), which, by definition, is the unique r ∈ [P(x), v(x)] such that (6.31) holds.
Regarding this r,

Exercise 6.24 Show that r = P(x) whenever α
∫

p(z)ϕ(z)dz ≤ P(x).

Exercise 6.25 Show that if α
∫

p(z)ϕ(z)dz > P(x), then r satisfies

r = α
∫

p(α(x − D(r)) + z)ϕ(z)dz

Together, exercises 6.24 and 6.25 suggest the method for finding r presented in
algorithm 6.4, which returns Tp(x) given p and x. Once we can evaluate Tp(x) for
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Algorithm 6.4: Computing Tp(x)

set y = α
∫

p(z)ϕ(z)dz
if y ≤ P(x) then

return P(x)
else

define h(r) = α
∫

p(α(x − D(r)) + z)ϕ(z)dz
return the fixed point of h in [P(x), y]

end

each p and x, we can proceed with the iteration algorithm, as shown in algorithm 6.5.
A sequence of iterates starting at P is displayed in figure 6.16.

Algorithm 6.5: Computing the pricing function

set p = P
repeat

sample Tp at finite set of grid points (xi)
k
i=1

use samples to construct linear interpolant q of Tp
set p = q

until a suitable stopping rule is satisfied

Exercise 6.26 Implement algorithm 6.5 and replicate figure 6.16. In the figure, the
demand curve D is set to 1/x and α = 0.8, while for the shock we assume that Wt =
a + cBt, where Bt is beta with shape parameters (5, 5), a = 5 and c = 2.

Exercise 6.27 In figure 6.16 we see that p∗ ≥ P. Mathematically, this follows directly
from the equilibrium condition (6.29). Try to add some economic intuition. In words,
why does p∗ ≥ P always hold?

Given p∗, we have a dynamic system for quantities defined by

Xt+1 = αI(Xt) + Wt+1, (Wt)t≥1
IID∼ ϕ (6.34)

where I(x) := x − D(p∗(x)). As shown in §6.1.3, the distribution ψt of Xt is a density
for each t ≥ 1, and the densities satisfy

ψt+1(y) =
∫

p(x, y)ψt(x)dx (y ∈ S)
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Figure 6.16 The trajectory TnP and an (approximate) fixed pointp∗

where p(x, y) = ϕ(y − αI(x)), and ϕ is the density of the harvest Wt.19

Exercise 6.28 We will see later that the process (6.34) is stable, with a unique station-
ary density ψ∗. The look-ahead estimator given in (6.14) on page 129 can be used to
estimate it. Using this estimator, show graphically that for these particular parameter
values, speculators do not affect long-run probabilities for the state, in the sense that
ψ∗ ∼= ϕ.20

6.3.3 Equilibria and Optima

In §6.3.1 we used Banach’s fixed point theorem to show the existence of a pricing
functional p∗ such that the resulting system for prices and quantities was a competi-
tive equilibrium. There is another way we can obtain the same result using dynamic
programming and the optimal growth model. Solving the problem this way illustrates
one of the many fascinating links between decentralized equilibria and optimality.

Before getting started we are going to complicate the commodity pricing model
slightly by removing the assumption that the interest rate is zero. With a positive and

19We regard ϕ as defined on all ofR, and zero off its support. Hence, if y < αI(x), then p(x, y) = 0.
20The latter is the distribution that prevails without speculation.
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constant interest rate r, next period returns must be discounted by ρ := 1/(1 + r). As
a result the no arbitrage and profit maximization conditions (6.25) and (6.26) become

ραEt pt+1 − pt ≤ 0 (6.35)

ραEt pt+1 − pt < 0 implies It = 0 (6.36)

As in §6.3.1 we seek a pricing function p∗ such that the system

pt = p∗(Xt), It = Xt − D(pt), Xt+1 = αIt + Wt+1 (6.37)

satisfies (6.35) and (6.36). This can be accomplished directly using the fixed point ar-
guments in §6.3.1, making only minor adjustments to incorporate ρ. However, instead
of going down this path we will introduce a fictitious planner who solves the optimal
growth model described in §6.2.1. Through a suitable choice of primitives, we show
that the resulting optimal policy can be used to obtain such a p∗. Since the optimal
policy exists and can be calculated, p∗ likewise exists and can be calculated.

Regarding the planner’s primitives, the production function f is given by f (s, z) =
αs+ z; the discount factor is ρ := 1/(1+ r); the utility function U is defined by U(c) :=∫ c

0 P(x)dx, where P is the inverse demand function for the commodity pricing model;
and the distribution ϕ of the shock is the distribution of the harvest.

We assume that P is such that U is bounded on R+. By the fundamental theorem
of calculus we have U′ = P. The conditions of assumption 6.3.1 on page 140 also
hold, and as a result the function U is strictly increasing, strictly concave and satisfies
U′(c) ↑ ∞ as c ↓ 0. We remove the assumption in §6.3.1 that the shock is bounded
away from zero, as this restriction is not needed.

Using the arguments in §6.2.1, we know that there exists at least one optimal policy.
In fact, concavity of the primitives implies that there is only one such policy. (For the
proof, see §12.1.2.) The policy, denoted simply by σ, is v∗-greedy, which is to say that

σ(x) = argmax
0≤s≤x

{
U(x − s) + ρ

∫
v∗( f (s, z))ϕ(z)dz

}
(6.38)

for all x. One can also show that v∗ is differentiable with (v∗)′(x) = U′(x − σ(x)), and
that the objective function in (6.38) is likewise differentiable. Using these facts and
taking into account the possibility of a corner solution, it can be shown that σ satisfies

U′ ◦ c(x) ≥ ρ
∫
(U′ ◦ c)[ f (σ(x), z)] f ′(σ(x), z)ϕ(z)dz ∀ x ∈ S (6.39)

Moreover if the inequality is strict at some x > 0, then σ(x) = 0. Here c(x) := x− σ(x)
and f ′(s, z) is the partial derivative of f with respect to s. This is the famous Euler
(in)equality, and full proofs of all these claims can be found via propositions 12.1.12
and 12.1.13 in §12.1.2.
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The main result of this section is that by setting p∗ equal to marginal utility of
consumption we obtain an equilibrium pricing functional for the commodity pricing
model.

Proposition 6.3.7 If p∗ is defined by p∗(x) := U′(c(x)), then the system defined in (6.37)
satisfies (6.35) and (6.36).

Proof. Substituting the definition of p∗ into (6.39) we obtain

p∗(x) ≥ ρ
∫

p∗[ f (σ(x), z)] f ′(σ(x), z)ϕ(z)dz ∀ x ∈ S

with strict inequality at x implying that σ(x) = 0. Using f (s, z) = αs + z this becomes

p∗(x) ≥ ρα
∫

p∗(ασ(x) + z)ϕ(z)dz ∀ x ∈ S

Now observe that since c(x) = x − σ(x), we must have

p∗(x) = U′(x − σ(x)) = P(x − σ(x)) ∀ x ∈ S

∴ D(p∗(x)) = x − σ(x) ∀ x ∈ S

Turning this around, we get σ(x) = x − D(p∗(x)), and the right-hand side is precisely
I(x). Hence σ = I, and we have

ρα
∫

p∗(αI(x) + z)ϕ(z)dz − p∗(x) ≤ 0 ∀ x ∈ S

with strict inequality at x implying that I(x) = 0. Since this holds for all x ∈ S, it
holds at any realization Xt ∈ S, so

ρα
∫

p∗(αI(Xt) + z)ϕ(z)dz − p∗(Xt) ≤ 0

with strict inequality implying I(Xt) = 0. Substituting It and pt from (6.37), and using
the fact that

Et pt+1 =
∫

p∗(αI(Xt) + z)ϕ(z)dz

as shown in §6.3.1, we obtain (6.35) and (6.36).

6.4 Commentary

Further theory and applications of stochastic recursive sequences in economics and
finance can be found in Sargent (1987), Stokey and Lucas (1989), Farmer (1999), Adda
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and Cooper (2003), Acemoglu (2009), Foss et al. (2018) or Ljungqvist and Sargent
(2018). The simulation-based approach to computing marginal and stationary den-
sities of stochastic recursive sequences in §6.1.3 and §6.1.4 was proposed by Glynn
and Henderson (2001). A detailed analysis of the technique and its properties can be
found in Stachurski and Martin (2008).

Our treatment of the infinite horizon optimal savings model in §6.2, also called
the income fluctuation problem, draws on early work by Brock and Mirman (1972),
Mirman and Zilcha (1975), Schechtman (1976), Amir (1996), Chamberlain and Wilson
(2000), and Williams (2004). More recent treatments can be found in Li and Stachurski
(2014), Lehrer and Light (2018) and Ma et al. (2020). For discussion of the stability
properties of the model see §12.1.3. The commentary to that chapter contains addi-
tional references.

The household savings problem is one of the foundation stones of heterogeneous
agent models, which in turn forms a core part of modern macroeconomic theory.
Foundational papers in this field include Bewley (1986), Huggett (1993), Aiyagari
(1994), Krusell and Smith (1998). High quality theoretical studies include Kuhn (2013),
Shanker (2017), Acikgoz (2018), Toda (2019), Cao (2020), and Light (2020). The set of
quantitative papers in this field is vast. Valuable entry points into the literature in-
clude Guvenen (2011), Heathcote et al. (2009), Fagereng et al. (2019), Achdou et al.
(2021) and Hubmer (2021).

While a detailed treatment of heterogeneous agent modeling is omitted from this
text, computational methods for handling a variety of models within this class can be
found in the advanced economics lectures at https://quantecon.org.

The computational challenges associated with dynamic programming problems in
economics increase exponentially with the state space. Recent computational work
aimed at economic modeling in high dimensional settings includes Winschel and
Kratzig (2010), Brumm and Scheidegger (2017), Villa and Valaitis (2019), Scheideg-
ger and Bilionis (2019), Maliar and Maliar (2020), Maliar et al. (2021), and Kahou et al.
(2021).

We saw in §6.3.3 that optimal policies for the optimal savings model coincide with
the market equilibria of certain decentralized economies. For more discussion of the
links between dynamic programming and competitive equilibria, see Stokey and Lu-
cas (1989, ch. 16), or Bewley (2007). Early contributions to this area include Samuelson
(1971), Lucas and Prescott (1971), and Brock (1982).

Under some variations to the standard environment (incomplete markets, produc-
tion externalities, distortionary taxes, etc.), equilibria and optima no longer coincide,
and the problem facing the researcher is to find equilibria rather than optimal policies.
For a sample of the literature, Greenwood and Huffman (1995), Kubler and Schmed-
ders (2002), Reffett and Morand (2003), Krebs (2004), Datta et al. (2005), Miao (2006),
and Angeletos (2007).
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The commodity price model studied in §6.3 is originally due to Samuelson (1971),
who connected equilibrium outcomes with solutions to dynamic programming prob-
lems. Our treatment in §6.3.1 and §6.3.2 follows Deaton and Laroque (1992), who
were the first to derive the equilibrium price directly via Banach’s fixed point theo-
rem. The technique of iterating on the pricing functional is essentially equivalent to
Coleman’s algorithm (Coleman 1990). For more on the commodity pricing model,
see, for example, Scheinkman and Schectman (1983) or Williams and Wright (1991).
An interesting dynamic programming problem with similar flavor and application to
emissions trading is available in Quemin and Trotignon (2021).
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Chapter 7

Integration

Measure and integration theory are among the foundation stones of modern mathe-
matics, and particularly those fields of concern to us. Measure theory also has a rep-
utation for being difficult, and indeed it is both abstract and complex. However, with
a little bit of effort and attention to the exercises, you will find that measure-theoretic
arguments start to seem quite natural, and that the theory has a unique beauty of its
own.

Before attempting this chapter you should have a good grounding in basic real
analysis. Anyone who has solved most of the exercises in appendix A should be up
to the task.

7.1 Measure Theory

In this first section we give a brisk introduction to measure theory. The longer proofs
are omitted, although a flavor of the arguments is provided. If you read this section
carefully you will have a good feel for what measure theory is about, and for why
things are done the way that they are.

7.1.1 Lebesgue Measure

To understand integration, we need to know about Lebesgue measure. The basic
problem of Lebesgue measure is how to assign to each subset of Rk (each element
of P(Rk)) a real number that will represent its “size” (length, area, volume) in the
most natural sense of the word.1 For a set like (a, b] ⊂ R1 there is no debate: The

1Recall that P(A) denotes the set of all subsets of the set A.
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ℓ(I) = (b1 − a1)× (b2 − a2)

a2

b2

a1 b1

I = (a1, b1]× (a2, b2]

Figure 7.1 The measure of a rectangle I ⊂ R2

length is b − a. Indeed, for a rectangle such as ×k
i=1(ai, bi] = {x ∈ Rk : ai < xi ≤

bi, i = 1, . . . , k}, the “measure” of this set is the product of the sides ∏k
i=1(bi − ai). But

for an arbitrary set? For example, how large is Q, the set of rational numbers, when
taken as a subset ofR? And how about the irrational numbers?

A natural approach is to try to extend the notion of size from sets we do know how
to measure to sets we don’t know how to measure. To begin, let J be the set of all
left-open, right-closed rectangles inRk:

J := {×k
i=1(ai, bi] ∈ P(Rk) : ai, bi ∈ R, ai ≤ bi}

Here we admit the possibility that ai = bi for some i, in which case the rectangle
×k

i=1(ai, bi] is the empty set. (Why?) Now let ℓ be the map

ℓ : J 3 I = ×k
i=1(ai, bi] 7→ ℓ(I) :=

k

∏
i=1

(bi − ai) ∈ R+ (7.1)

which assigns to each rectangle its natural measure, with ℓ(∅) := 0 (see figure 7.1).
We want to extend the domain of ℓ to all of P(Rk). Our extension of ℓ to P(Rk) will be
denoted by λ.

The first problem we must address is that there are many possible extensions. For
example, λ(A) = 42 for any A /∈ J is a possible—albeit not very sensible—extension
of ℓ. How will we know whether a given extension is the right one?
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Figure 7.2 A covering of A by elements of J

The solution is to cross-check against our intuition. Our intuition says that size
should be nonnegative. Does our extension λ always give nonnegative values? In
addition λ should obey the fundamental principle that—at least when it comes to
measurement—the whole is the sum of its parts. For example, if Rk = R and A :=
(a, b] ∪ (c, d], where b ≤ c, then we must have λ(A) = b − a + d − c. More generally,
if A and B are disjoint, then one would expect, from our basic intuition about length
or area, that λ(A ∪ B) = λ(A) + λ(B). This property is called additivity, and we will
not be satisfied with our definition of λ unless it holds.

With this in mind, let’s go ahead and attempt an extension of ℓ to P(Rk). Given
arbitrary A ∈ P(Rk), let CA be the set of all countable covers of A. That is,

CA := {(In)n≥1 ⊂ J : ∪n In ⊃ A}

Figure 7.2 shows a (necessarily finite) covering of A by elements of J . Now we define

λ(A) := inf

{
∑
n≥1

ℓ(In) : (In)n≥1 ∈ CA

}
(A ∈ P(Rk)) (7.2)

Thus we are approximating our arbitrary set A by covering it with sets we already
know how to measure, and taking the infimum of the value produced by all such
covers.2 The set function λ is called Lebesgue outer measure. If ∑n≥1 ℓ(In) = ∞ for all
(In)n≥1 ∈ CA, then we set λ(A) = ∞.

Exercise 7.1 (Monotonicity) Show that if A ⊂ B, then λ(A) ≤ λ(B).3

2We are using half-open rectangles here, but it turns out that other kinds of rectangles (closed, open, etc.)
produce the same number.

3Hint: Apply lemma A.2.16 on page 333.
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Exercise 7.2 (Sub-additivity) Show that if A and B are any two subsets of Rk, then
λ(A ∪ B) ≤ λ(A) + λ(B).

Exercise 7.3 Extend sub-additivity to countable sub-additivity if you can: Show that
for any (An) ⊂ P(R) we have λ(∪n An) ≤ ∑n λ(An).

Before we go on, we need to consider whether Lebesgue outer measure is actually
an extension of ℓ—the function defined on J —to P(Rk). Clearly, λ is a well defined
function on P(Rk) (why?), but does it actually agree with the original function ℓ on
J ? In other words, we need to check that λ assigns “volume” to rectangles.

Lemma 7.1.1 λ : P(Rk) → [0, ∞] defined in (7.2) agrees with ℓ on J .

Although the result seems highly likely, the proof is not entirely trivial. It can be
found in any text on measure theory.

Now the task is to see whether λ agrees with our intuition in the ways that we dis-
cussed above (nonnegativity, additivity, etc.). Nonnegativity is obvious, but when it
comes to additivity we run into problems: Additivity fails. In 1905 G. Vitali succeeded
in constructing sets A, B ∈ P(R) that are so nasty and intertwined that λ(A)+λ(B) >
λ(A ∪ B).5

Well, we said at the start that we were not prepared to accept the validity of our
extension unless it preserves additivity. So must (7.2) be abandoned? It might seem
so, but no obvious alternatives present themselves.6 The solution of Henri Lebesgue
was to restrict the domain of the set function λ to exclude those nasty sets that cause
additivity to break down. The method succeeds because the sets remaining in the
domain after this exclusion process turn out to be all those sets we will ever need in day
to day analysis.

The actual restriction most commonly used in modern texts is due to the Greek
mathematician Constantin Carathéodory, who considers the class of sets A ∈ P(Rk)
satisfying

λ(B) = λ(B ∩ A) + λ(B ∩ Ac) for all B ∈ P(Rk) (7.3)

This collection of sets is denoted by L and called the Lebesgue measurable sets. The
restriction of λ to L is called Lebesgue measure.

Exercise 7.4 Show thatRk ∈ L and ∅ ∈ L . Show that if N ⊂ R and λ(N) = 0, then
N ∈ L .

Our first important observation is that Lebesgue measure is additive on L . In fact
one of the central facts of measure theory is that, restricted to this domain, λ is not just

5His construction uses the dreaded Axiom of Choice.
6We could try approximating sets from the inside (“inner” measure rather than outer measure), but this

is less convenient and it turns out that the same problem reappears.
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additive, but countably additive (definition below). This turns out to be crucial when
trying to show that λ interacts well with limiting operations. Equally important, L is
very large, containing the open sets, closed sets, countable sets, and more.7

Let’s state without proof the countable additivity property of λ on L .

Theorem 7.1.2 If (An)n≥1 is disjoint in L , then λ(∪n An) = ∑n≥1 λ(An).

Note that the value +∞ is permitted here. Disjointness of the sequence (An)n≥1
means that Ai ∩ Aj = ∅ whenever i 6= j.

Exercise 7.5 Show that countable additivity implies (finite) additivity.

Exercise 7.6 Prove: If A and B are two sets in L with A ⊂ B and λ(B) < ∞, then
λ(B \ A) = λ(B)− λ(A).

To learn a bit more about the properties of λ, consider the following exercise: We
know that {x} ∈ L for all x ∈ Rk because L contains all closed sets. Let’s show that
λ({x}) = 0 for any point x ∈ R. It is enough to show that for any ϵ > 0, we can find
a sequence (In)n≥1 ⊂ J containing x and having ∑n≥1 ℓ(In) ≤ ϵ. (Why?) So pick
such an ϵ, and take a cover (In)n≥1 such that the first rectangle I1 satisfies I1 3 x and
ℓ(I1) ≤ ϵ, and then In = ∅ for n ≥ 2. Now ∑n≥1 ℓ(In) ≤ ϵ as required.

Exercise 7.7 Show that λ(Rk) = ∞.

Exercise 7.8 Show that countable sets have zero measure.

Exercise 7.8 implies that inRwe must have λ(Q) = 0. By additivity, then, λ(R) =
λ(Qc). In this sense there are “many more” irrational numbers than rational numbers.
(Incidentally, uncountable sets can also have measure zero. An often cited example is
the Cantor set, a construction of which can be found in any text on measure theory.)

7.1.2 Measurable Spaces

We mentioned above that the set of Lebesgue measurable sets L contains all of the
sets we typically deal with in analysis, In addition it has nice “algebraic” properties.
In particular, it is a σ-algebra:

Definition 7.1.3 Let S be any nonempty set. A nonempty family of sets S ⊂ P(S) is
called a σ-algebra if

1. A ∈ S implies Ac ∈ S , and

2. if (An)n≥1 is a sequence with An in S for all n, then ∪n An ∈ S .
7For the definition of countable (and uncountable) sets see page 322.
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The pair (S, S ) is called a measurable space, and elements of S are called mea-
surable sets. Properties 1–2 are usually expressed by saying that the collection S is
“closed” or “stable” under complementation and countable unions, in the sense that
these operations do not take us outside the collection S . From De Morgan’s law
(∩n An)c = ∪n Ac

n, we see that S is also stable under countable intersections. (Why?)

Exercise 7.9 If you look at other texts on measure theory, you will often see the
statement S ∈ S or ∅ ∈ S included as part of the definition of a σ-algebra. In
fact, these properties are implied by our definition. In particular, check that if S is a
σ-algebra as defined above, then both S ∈ S and ∅ ∈ S .

An example of a σ-algebra on S is P(S). This is true for every set S. For example,
if A ∈ P(S), then Ac := {x ∈ S : x /∈ A} is also a subset of S by its very definition.
On the other hand, the collection O of open subsets of R is not a σ-algebra because it
is not stable under complements.

Incidentally, the concept of σ-algebras plays a major role in measure theory, and
these collections of sets sometimes seem intimidating and abstract to the outsider.
But the use of σ-algebras is less mysterious than it appears. When working with a
σ-algebra, we know that if we start with some measurable sets, take unions, then
complements, then intersections, and so on, the new sets we create are still measur-
able sets. By definition, σ-algebras are stable under the familiar set operations, so we
need not worry that we will leave our safe environment when using these standard
operations.

Example 7.1.4 Let S be any nonempty set. The set of sets S := {∅, S} is a σ-algebra of
subsets of S, as follows easily from the definition. (Check that if A ∈ S , then Ac ∈ S ,
etc.) On the other hand, J is not a σ-algebra onRk. For example, the complement of
a left-open right-closed rectangle is not generally a left-open right-closed rectangle.

Exercise 7.10 If {Sα}α∈Λ is any collection of σ-algebras on S, then their intersection
∩αSα is all B ⊂ S such that B ∈ Sα for every α ∈ Λ. Show that ∩αSα is itself a
σ-algebra on S.

One of the most common ways to define a particular σ-algebra is to take a collec-
tion C of subsets of S, and consider the smallest σ-algebra that contains this collection.

Definition 7.1.5 If S is any set and C is any collection of subsets of S, then the σ-
algebra generated by C is the smallest σ-algebra on S that contains C , and is denoted by
σ(C ). More precisely, σ(C ) is the intersection of all σ-algebras on S that contain C . In
general, if σ(C ) = S , then C is called a generating class for S .

Exercise 7.11 Show that if C is a σ-algebra, then σ(C ) = C , and that if C and D are
two collections of sets with C ⊂ D , then σ(C ) ⊂ σ(D).
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Now let’s return to the Lebesgue measurable sets. As discussed above, it can be
shown that L is a σ-algebra, and that it contains all the sets we need in day-to-day
analysis.8 In fact, L contains more sets than we actually need, and is not easily ab-
stracted to more general spaces. As a result we will almost invariably work with a
smaller domain called the Borel sets, and denoted B(Rk). The collection B(Rk) is
just the σ-algebra generated by the open subsets ofRk.9 More generally,

Definition 7.1.6 Let S be any metric space. The Borel sets on S are the sets B(S) :=
σ(O), where O is the open subsets of S.

In the case of S = Rk this collection B(Rk) is surprisingly large. In fact, it is quite
difficult to construct a subset of Rk that is not in B(Rk). Moreover B(Rk) is a subset
of L , and hence all of the nice properties that λ has on L it also has on B(Rk). In
particular, λ is countably additive on B(Rk).

Exercise 7.12 Show that B(S) contains the closed subsets of S. Show, in addition,
thatQ ∈ B(R).

The following theorem gives some indication as to why the Borel sets are so natural
and important to analysis.

Theorem 7.1.7 Let O , C , and K be the open, closed, and compact subsets ofRk respectively.
We have

B(Rk) := σ(O) = σ(C ) = σ(K ) = σ(J )

Let’s just show that B(Rk) = σ(K ). To see that B(Rk) ⊃ σ(K ), note that B(Rk)
is a σ-algebra containing all the closed sets, and hence all the compact sets. (Why?) In
which case it also contains σ(K ). (Why?) To show that B(Rk) ⊂ σ(K ), it suffices to
prove that σ(K ) contains C . (Why?) To see that σ(K ) contains C , pick any C ∈ C
and let Dn := {x ∈ Rk : ‖x‖ ≤ n}. Observe that Cn := C ∩ Dn ∈ K for every n ∈ N
(why?), and that C = ∪nCn. Since Cn ∈ K for all n, we have C = ∪nCn ∈ σ(K ), as
was to be shown.

Exercise 7.13 Let A be the set of all open intervals (a, b). Show that σ(A ) = B(R).10

8To prove that L is a σ-algebra, one can easily check from the definition (7.3) that R ∈ L and that
A ∈ L implies Ac ∈ L . To show that L is stable under countable unions is a bit more subtle and the proof
is omitted.

9The open subsets ofRk are determined by the Euclidean metric d2. But any metric defined from a norm
onRk gives us the same open sets (theorem 3.2.14), and hence the same Borel sets.

10Hint: Every open subset ofR can be expressed as a countable union of open intervals.
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7.1.3 General Measures and Probabilities

Measure theory forms the foundations of modern probability. Before we study this in
earnest, let’s think a little bit about why it might be fruitful to generalize the concept of
“measures.” To start, imagine a space S, which you might like to visualize as a subset
of the planeR2. Like a satellite photograph of the earth at night, the space is sprinkled
with lots of tiny glowing particles. If we take a region E of the space S, you might ask
how many of these particles are contained in E, or alternatively, what fraction of the
total quantity of the particles are in E?

Let µ be a set function on P(S) such that µ(E) is the fraction of particles in E. It
seems that µ is going to be nonnegative, monotone (E ⊂ F implies µ(E) ≤ µ(F)), and
additive (E, F disjoint implies µ(E ∪ F) = µ(E) ∪ µ(F)), just as the Lebesgue measure
λ was. So perhaps µ is also some kind of “measure,” and can be given a neat treatment
by using similar ideas.

These considerations motivate us to generalize the notion of Lebesgue measure
with an abstract definition. As is always the case in mathematics, abstracting in a
clever way will save us saying things over and over again, and lead to new insights.

Definition 7.1.8 Let (S, S ) be a measurable space. A measure µ on (S, S ) is a function
from S to [0, ∞] such that

1. µ(∅) = 0, and

2. µ is countably additive: If (An) ⊂ S is disjoint, then µ(∪n An) = ∑n µ(An).

The triple (S, S , µ) is called a measure space.

In the definition of a measure, condition (1) is just to rule out trivial cases, and is
almost redundant given (2). To see why, complete the next exercise.

Exercise 7.14 Show that if µ is a function from S to [0, ∞] such that there exists an
A ∈ S with µ(A) < ∞, then (2) implies (1).

Exercise 7.15 Show that if µ is a measure on (S, S ), E, F ∈ S and E ⊂ F, then
µ(E) ≤ µ(F).

Exercise 7.16 Show that a measure µ on (S, S ) is always sub-additive: If A and B are
any elements of S (disjoint or otherwise), then µ(A ∪ B) ≤ µ(A) + µ(B).

Let (An)n≥1 ⊂ S have the property that An+1 ⊂ An for all n ∈ N, and let A :=
∩n An. We say that the sequence (An)n≥1 decreases down to A, and write An ↓ A.
On the other hand, if An+1 ⊃ An for all n ∈ N and A := ∪n An, then we say that
(An)n≥1 increases up to A, and write An ↑ A. For such “monotone” sequences of sets,
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an arbitrary measure µ on (S, S ) has certain continuity properties, as detailed in the
next exercise.

Exercise 7.17 Let (An)n≥1 be a sequence in S . Show that

1. if An ↑ A, then µ(An) ↑ µ(A), and

2. if µ(A1) < ∞ and An ↓ A, then µ(An) ↓ µ(A).

Example 7.1.9 Consider the measurable space (N,P(N)) formed by the set of natural
numbersN and the set of all its subsets. On this measurable space define the counting
measure c, where c(B) is simply the number of elements in B, or +∞ if B is infinite.
You can either try to show that c is indeed a measure on (N,P(N)), or complete the
next exercise (which treats a more general case).

Exercise 7.18 Let (an) ⊂ R+. Let µ be defined on (N,P(N)) by µ(A) = ∑j∈A aj.
Show that µ is a measure on (N,P(N)).

When we get to integration, it will be shown that series of real numbers can be in-
terpreted as integrals with respect to the counting measure. Repackaging summation
as integration leads to a handy set of results on passing limits through infinite sums.

Next, let’s look at “probability measures,” which are the most important kind of
measures for us after Lebesgue measure. In what follows (S, S ) is any measurable
space.

Definition 7.1.10 A probability measure µ is a measure on (S, S ) such that µ(S) = 1.
The triple (S, S , µ) is called a probability space. The set of all probability measures on
(S, S ) is denoted by P(S, S ). When S is a metric space, elements of P(S, B(S)) are
called Borel probability measures. For brevity we will write P(S, B(S)) as P(S).

In the context of probability theory, a set E in S is usually called an event, and
µ(E) is interpreted as the probability that when uncertainty is realized the event E
occurs. Informally, µ(E) is the probability that x ∈ E when x is drawn from the set S
according to µ. The empty set ∅ is called the impossible event, and S is called the certain
event.

Defining µ on a σ-algebra works well in terms of probabilistic intuition. For exam-
ple, the impossible and certain events are always in S . Also, we want Ec to be in S
whenever E is: If the probability of E occurring is defined, then so is the probability
of E not occurring. And if E and F are in S , we want E ∩ F ∈ S so that we can
talk about the probability that both E and F occur, and so forth. These properties are
assured by the definition of σ-algebras.
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Given measurable space (S, S ) and point x ∈ S, the Dirac probability measure δx ∈
P(S, S ) is the distribution that puts all mass on x. More formally, δx(A) = 1A(x) for
all A ∈ S .

Exercise 7.19 Confirm that δx is a probability measure on (S, S ).

7.1.4 Existence of Measures

Suppose that we release at time zero a large number of identical, tiny particles into
water at a location defined as zero, and then measure the horizontal distance of the
particles from the origin at later point in time t. As Albert Einstein pointed out, the
independent action of the water molecules on the particles and the central limit theo-
rem tell us that, at least in this idealized setting, and at least for E = (a, b] ∈ J , the
fraction of the total mass contained in E should now be approximately

µ(E) = µ((a, b]) =
∫ b

a

1√
2πt

exp
−x2

2t
dx (7.4)

One can think of µ(E) as the probability that an individual particle finds itself in E at
time t.

In (7.4) we have a way of computing probabilities for intervals (a, b] ∈ J , but
no obvious way of measuring the probability of more complex events. For example,
what is µ(Q), where Q is the rational numbers? Measuring intervals is all well and
good, but there will certainly be times that we want to assign probabilities to more
complex sets. In fact, we need to do this to develop a reasonable theory of integration.

How to extend µ from J to a larger class of subsets of R? Taking our cue from
the process for Lebesgue measure, we could assign probability to an arbitrary set A
by setting

µ∗(A) := inf ∑
n≥1

µ(In) = inf ∑
n≥1

∫ bn

an

1√
2πt

exp
−x2

2t
dx (A ⊂ R) (7.5)

where the infimum is over all sequences of intervals (In)n≥1, with In := (an, bn] ∈ J
for each n, and with the sequence covering A (i.e., ∪n In ⊃ A). This extension would
be suitable if (1) it agrees with µ on J , and (2) it is a measure, at least when restricted
to a nice subset of P(R) such as B(R). Being a measure implies attractive properties
such as nonnegativity, monotonicity, and additivity.11

11For probabilities, monotonicity should be interpreted as follows: A ⊂ B means that whenever A hap-
pens, B also happens. In which case B should be at least as likely to occur as A, or µ∗(A) ≤ µ∗(B).
Additivity is familiar from elementary probability. For example, the probability of getting an even number
when you roll a dice is the probability of getting a 2 plus that of getting a 4 plus that of getting a 6. (Note
that monotonicity is implied by nonnegativity and additivity—see exercise 7.15).
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Instead of dealing directly with µ, let’s look at this extension process in an abstract
setting. As with all abstraction, the advantage is that we can cover a lot of cases in one
go. The disadvantage is that the statement of results is quite technical. It is provided
mainly for reference purposes, rather than as material to be worked through step by
step. The idea is to formulate a system for constructing measures out of set functions
that behave like measures (i.e., are countably additive) on small, concrete classes of
sets called semi-rings.

Definition 7.1.11 Let S be a nonempty set. A nonempty collection of subsets R is
called a semi-ring if, given arbitrary sets I and J in R, we have

1. ∅ ∈ R,

2. I ∩ J ∈ R, and

3. I \ J can be expressed as a finite union of elements of R.

The definition is not particularly attractive, but all we need to know at this stage
is that J , the half-open rectangles ×k

i=1(ai, bi] in Rk, form a semi-ring. Although the
proof is omitted, a little thought will convince you that J is a semi-ring when k = 1.
You might like to give a sketch of the proof for the case ofR2 by drawing pictures.

We now give a general result for existence of measures. Let S be any nonempty
set, and let R be a semi-ring on S. A set function µ : R → [0, ∞] is called a pre-measure
on R if µ(∅) = 0 and µ(∪n In) = ∑n µ(In) for any disjoint sequence (In)n≥1 ⊂ R with
∪n In ∈ R. For any A ⊂ S, let CA be the set of all countable covers of A formed from
elements of R. That is,

CA := {(In)n≥1 ⊂ R : ∪n In ⊃ A}

Now define the outer measure generated by µ as

µ∗(A) := inf

{
∑
n≥1

µ(In) : (In)n≥1 ∈ CA

}
(A ∈ P(S)) (7.6)

The restriction of µ∗ to σ(R) turns out to be a measure, and is typically denoted simply
by µ. Formally,

Theorem 7.1.12 Let S be any nonempty set and let R be a semi-ring on S. If µ is a pre-
measure on R, then the outer measure (7.6) agrees with µ on R and is a measure on (S, σ(R)).
If there exists a sequence (In) ⊂ R with ∪n In = S and µ(In) < ∞ for all n, then the
extension is unique in the sense that if ν is any other pre-measure that agrees with µ on R,
then its extension agrees with µ on all of σ(R).
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The proof is quite similar to the construction of Lebesgue measure sketched in
§7.1.1. First one defines the outer measure µ∗ by (7.6). Since µ∗ is not necessarily
additive over all of P(S) (think of the case of Lebesgue measure), we then restrict
attention to those sets S that satisfy Carathéodory’s condition: All A ∈ P(S) such
that

µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac) for all B ∈ P(S) (7.7)

It can be proved that S is a σ-algebra containing R, and that µ∗ is a measure on S .
Evidently σ(R) ⊂ S (why?), and the restriction of µ∗ to σ(R) is simply denoted by
µ.

Let’s consider applications of theorem 7.1.12. One is Lebesgue measure onRk. For
the semi-ring we take J . It can be shown that ℓ defined on J by (7.1) on page 156 is
a pre-measure. As a result ℓ extends uniquely to a measure on σ(J ) = B(Rk). This
gives us Lebesgue measure on B(Rk).

A second application is probabilities on R, such as the Gaussian probability de-
fined in (7.4). Recall that F : R → R is called a cumulative distribution function on
R if it is nonnegative, increasing, right-continuous, and satisfies limx→−∞ F(x) = 0
and limx→∞ F(x) = 1. We imagine F(x) represents the probability that random vari-
able X takes values in (−∞, x]. More generally, for interval (a, b] the probability that
X ∈ (a, b] is given by F(b)− F(a).

Fix any distribution function F, and let J be the semi-ring of all intervals (a, b],
where a ≤ b. Although the proof is not trivial, one can show using the properties of F
that µF : J → R+ defined by

µF((a, b]) = F(b)− F(a)

is a pre-measure on J . Clearly, there exists a sequence (In) ⊂ J with ∪n In = R and
µF(In) < ∞ for all n. As a result there exists a unique extension of µF to a measure
on σ(J ) = B(R) with µF(A) := inf ∑n≥1(F(bn) − F(an)) for all A ∈ B(R). The
infimum is over all sequences of intervals (In) with In := (an, bn] ∈ J for each n and
∪n In ⊃ A.

It follows that to each cumulative distribution function on R there corresponds a
unique Borel probability measure. Conversely, suppose that µ ∈ P(R), and let F be
defined by F(x) = µ((−∞, x]) for x ∈ R.

Exercise 7.20 Show that F is a cumulative distribution function onR.

Putting this together and filling in some details, one can show that

Theorem 7.1.13 There is a one-to-one pairing between the collection of all distribution func-
tions on R and P(R), the set of all Borel probability measures on R. If F is a distribution
function, then the corresponding probability µF satisfies

µF((−∞, x]) = F(x) (x ∈ R)
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Let’s look back and see what we have accomplished. The main result here is the-
orem 7.1.12, which helps us construct measures. To understand it’s importance, sup-
pose that we propose a would-be measure such as (7.4). To check that this is indeed
a measure on the Borel sets is a tough ask. After all, what does an arbitrary Borel set
look like? But to show that µ((a, b]) =

∫ b
a (2πt)−1/2e−x2/2tdx is a pre-measure on the

nice semi-ring J of intervals (a, b] is much easier. Once this is done theorem 7.1.12
can be applied.

7.2 Definition of the Integral

Elementary calculus courses use the Riemann definition of integrals. As a result of its
construction the Riemann integral is inherently limited, in terms of both its domain
of definition and its ability to cope with limiting arguments. We want to construct an
integral that extends the Riemann integral to a wider domain, and has nice analytical
properties to boot. With this goal in mind, let’s start to develop a different theory of
integration (the Lebesgue theory), beginning with the case of functions from R to R,
and working up to more abstract settings.

7.2.1 Integrating Simple Functions

Let’s start with the easiest case. A simple function is any real-valued function taking
only finitely many different values. Consider a simple function s : R → R that takes
values α1, . . . , αN on a corresponding disjoint intervals I1, . . . , IN in J . Exploiting the
assumption that the intervals are disjoint, the function s can be expressed as a linear
combination of indicator functions: s = ∑N

n=1 αn1In .12 Take a moment to convince
yourself of this.

Since our integral is to be an extension of the Riemann integral, and since the Rie-
mann integral of s is well defined and equal to the sum over n of αn times the length
of In, the Lebesgue integral must also be

λ(s) :=:
∫

sdλ :=
N

∑
n=1

αn(bn − an) =
N

∑
n=1

αnλ(In) (7.8)

where λ on the right-hand side is the Lebesgue measure.
The symbol

∫
sdλ is reminiscent of the traditional notation

∫
s(x)dx. Using dλ

reminds us that we are integrating with respect to Lebesgue measure. Later, more
general integrals are defined. The alternative notation λ(s) for the integral of function

12In other words, s(x) = ∑N
n=1 αn1In (x) for every x ∈ R, where 1In (x) = 1 if x ∈ In and zero otherwise.
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Figure 7.3 A simple function on the plane

s with respect to measure λ is also common. It reminds us that we are defining a map
that sends functions into numbers.

Little effort is needed to shift our theory up from R to Rk. For a function s : Rk →
R defined by s = ∑N

n=1 αn1In , where each In = ×k
i=1(ai, bi] is an element of J ⊂

P(Rk) and the rectangles are disjoint, we set

λ(s) :=:
∫

sdλ :=
N

∑
n=1

αnλ(In) (7.9)

Here λ on the right-hand side is Lebesgue measure onRk. Figure 7.3 shows an exam-
ple of such a function s onR2.

Having defined an integral for simple functions that are constant on rectangles,
the next step is to extend the definition to the B(Rk)-simple functions sB(Rk), each
of which takes only finitely many values, but on Borel sets rather than just rectangles.
More succinctly, sB(Rk) is all functions of the form ∑N

n=1 αn1Bn , where the Bn’s are
nonempty disjoint Borel sets. For now let’s think about nonnegative simple functions
(αn ≥ 0 for all n), the set of which we denote sB(Rk)+. A natural extension of our
integral (7.9) to sB(Rk)+ is given by

λ(s) :=:
∫

sdλ :=
N

∑
n=1

αnλ(Bn) (7.10)

This is already a generalization of the Riemann integral. For example, the Riemann
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integral is not defined for 1Q, which is an element of sB(R)+. Note also that λ(s) =
∞ is a possibility, and we do not exclude this case.

Exercise 7.21 Show that the integral of 1Q is zero.

So far we have defined integrals of (finite-range) functions defined overRk, where
integration was with respect to Lebesgue measure. Next, just as we abstracted from
Lebesgue measure to arbitrary measures, let us now introduce integrals of simple
functions using general measures.

Suppose that we have a measure µ on an arbitrary measurable space (S, S ). We
can define the real-valued simple functions sS on (S, S ) in the same way that we
defined the Borel simple functions sB(Rk) on Rk, replacing B(Rk) with S in the
definition. In other words, sS is those functions of the form s = ∑N

n=1 αn1An , where
the sets A1, . . . , AN are nonempty, disjoint and An ∈ S for all n. The set sS + is the
nonnegative functions in sS .

By direct analogy with (7.10), the integral of s ∈ sS + is defined as

µ(s) :=:
∫

sdµ :=
N

∑
n=1

αnµ(An) (7.11)

To give an illustration of (7.11), consider an experiment where a point ω is selected
from some set Ω according to probability measure P. Here P is defined on some σ-
algebra F of subsets of Ω, and P(E) is interpreted as the probability that ω ∈ E for
each E ∈ F . Suppose that we have a discrete random variable X taking ω ∈ Ω and
sending it into one of N values. Specifically, X sends points in An ∈ F into αn ∈ R,
where A1, . . . , AN is a partition of Ω. Intuitively, the expectation of X is then

N

∑
n=1

αn Prob{X = αn} =
N

∑
n=1

αn Prob{ω ∈ An} =
N

∑
n=1

αnP(An)

Comparing the right-hand side of this expression with (7.11), it becomes clear that the
expectation of X is precisely the integralP(X) :=:

∫
XdP. A more traditional notation

is EX. We will come back to expectations later on.
Returning to general (S, S , µ), integrals of simple functions have some useful

properties.

Proposition 7.2.1 For s, s′ ∈ sS + and γ ≥ 0, the following properties hold:

1. γs ∈ sS + and µ(γs) = γµ(s).

2. s + s′ ∈ sS + and µ(s + s′) = µ(s) + µ(s′).

3. If s ≤ s′ pointwise on S, then µ(s) ≤ µ(s′).
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We say that on sS + the integral µ is positive homogeneous, additive, and mono-
tone respectively.

Exercise 7.22 Prove part 1 of proposition 7.2.1. Prove parts 2 and 3 in the special case
where s = α1A and s′ = β1B.

7.2.2 Measurable Functions

So far we have extended the integral to sS +. This is already quite a large class of
functions. The next step is to extend it further by a limiting operation (a method of
definition so common in analysis!). To do this, we need to define a class of functions
that can be approximated well by simple functions. This motivates the definition of a
measurable function:

Definition 7.2.2 Let (S, S ) and (R, R) be two measurable spaces, and let f : S → R.
The function f is called S , R-measurable if f−1(B) ∈ S for all B ∈ R. If (R, R) =
(R, B(R)), then f is called S -measurable. If, in addition, S is a metric space and
S = B(S), then f is called Borel measurable.

While this definition is very succinct, it is also rather abstract, and the implications
of measurability are not immediately obvious. However, we will see that—for the
kinds of functions we want to integrate—measurability of a function f is equivalent
to the existence of a sequence of simple functions (sn)n≥1 that converges to f in a
suitable way (see lemma 7.2.5 below). We will then be able to define the integral of f
as the limit of the integrals of the sequence (sn)n≥1.

Exercise 7.23 Show that if (S1, S1), (S2, S2) and (S3, S3) are any three measurable
spaces, f : S1 → S2 is S1, S2-measurable and g : S2 → S3 is S2, S3-measurable, then
h := g ◦ f : S1 → S3 is S1, S3-measurable.

With measure theory the notation keeps piling up. Here is a summary of the nota-
tion we will use for functions from (S, S ) intoR:

• mS is defined to be the S -measurable functions on S,

• mS + is defined to be the nonnegative functions in mS , and

• bS is defined to be the bounded functions in mS .

Exercise 7.24 Let S be any set. Argue that every f : S → R is P(S)-measurable, while
only the constant functions are {S, ∅}-measurable.
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Exercise 7.25 Let (S, S ) be any measurable space. Show that sS ⊂ mS .

The following lemma is very useful when checking measurability. The proof is
typical of measure-theoretic arguments.

Lemma 7.2.3 Let (E, E ) and (F, F ) be two measurable spaces, and let f : E → F. Let G be
a generator of F , in the sense that σ(G ) = F . Then f is E , F -measurable if and only if
f−1(B) ∈ E for all B ∈ G .

Proof. Necessity is obvious. Regarding sufficiency, let

M := {B ∈ F : f−1(B) ∈ E }

It is left to the reader to verify that M is a σ-algebra containing G .13 But then F =
σ(G ) ⊂ σ(M ) = M . (Why?) Hence F ⊂ M , which is precisely what we wish to
show.

In other words, to check measurability of a function, we need only check measurability
on a generating class. For example, to verify measurability of a function into (R, B(R)),
we need only check that the preimages of open sets are measurable. The next exercise
shows why this is useful.

Exercise 7.26 Let S be any metric space. Show that if f : S → R is continuous, then f
is Borel measurable (i.e., in mB(S)).

In fact, one can show (cf., e.g., exercise 7.13) that families such as

(a, b) with a ≤ b, (a, ∞) with a ∈ R, and (−∞, b] with b ∈ R

all generate B(R). So for f : S → R to be in S -measurable (given σ-algebra S on S),
it is sufficient that, for example, {x ∈ S : f (x) ≤ b} ∈ S for all b ∈ R. In what follows
we usually write { f ≤ b} for the set {x ∈ S : f (x) ≤ b}, and so on. In this notation,
the same result can be stated as

Lemma 7.2.4 f ∈ mS if and only if { f ≤ b} ∈ S for all b ∈ R.

To get a feel for why this is useful, try the next two exercises:

Exercise 7.27 Let f : R → R. If f is either increasing or decreasing, then f is Borel
measurable.

Exercise 7.28 Let (S, S ) be a measurable space, and let ( fn) ⊂ mS . If f : S → R is a
function satisfying f (x) = supn fn(x) for x ∈ S, then f ∈ mS .

13Hint: See lemma A.1.1 on page 321.
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b

f

s

c

a

f−1([b, c])f−1([0, a)) f−1([a, b))

Figure 7.4 A measurable function

When defining integrals of measurable functions, our approach will be to approx-
imate them with simple functions, which we saw how to integrate in §7.2.1. While the
definition of measurability is rather abstract, it turns out that functions are measurable
precisely when they can be well approximated by simple functions. In particular,

Lemma 7.2.5 A function f : S → R+ is S -measurable if and only if there is a sequence
(sn)n≥1 in sS + with sn ↑ f pointwise on S.

That the existence of such an approximating sequence is sufficient for measurabil-
ity follows from exercise 7.28. (Why?) Let’s sketch the proof of necessity in the case of
S = R and S = B(R). Figure 7.4 might help with intuition. In this case the function
f is bounded above by c. The range space [0, c] is subdivided into the intervals [0, a),
[a, b), and [b, c]. Using f , this partition also divides the domain (the x-axis) into the
sets f−1([0, a)), f−1([a, b)) and f−1([b, c]). We can now define a simple function s by

s = 0 × 1 f−1([0,a)) + a × 1 f−1([a,b)) + b × 1 f−1([b,c])

Notice that as drawn, s ∈ sB(R)+, because s takes only finitely many values on
finitely many disjoint sets, and these sets f−1([0, a)), f−1([a, b)), and f−1([b, c]) are all
intervals, which qualifies them as members of B(R). Notice also that s lies below f .

By looking at the figure, you can imagine that if we refine our partition of the range
space, we would get another function s′ that dominates s but still lies below f , and
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is again an element of sB(R)+. Continuing in this way, it seems that we can indeed
approximate f from below by an increasing sequence of elements of sB(R)+.

The function f we chose was a bit special—in particular, it is increasing, which
means that the sets f−1([0, a)), f−1([a, b)) and f−1([b, c]) are intervals, and there-
fore elements of B(R). Were they not elements of B(R), we could not say that
s ∈ sB(R)+. This is where the definition of Borel measurability comes in. Even if
f is not increasing, we require in lemma 7.2.5 that it is at least Borel measurable. In
which case sets like f−1([a, b)) are always elements of B(R), because [a, b) is a Borel
set. As a result the approximating simple functions are always in sB(R)+.

For arbitrary (S, S ), elements of mS play nicely together, in the sense that when
standard algebraic and limiting operations are applied to measurable functions the
resulting functions are themselves measurable:

Theorem 7.2.6 If f , g ∈ mS , then so is α f + βg for any α, β ∈ R. The product f g is also
in mS . If ( fn)n≥1 is a sequence in mS with fn → f pointwise, where f : S → R, then
f ∈ mS . If f ∈ mS , then | f | ∈ mS .

Exercise 7.29 Show that if f ∈ mS , then | f | ∈ mS .

7.2.3 Integrating Measurable Functions

Now we are ready to extend our notion of integral from simple functions to measur-
able functions. Let (S, S , µ) be any measure space and consider first integration of a
nonnegative measurable function f : S → R+ (i.e., an element of mS +). We define the
integral of f on S with respect to µ by

µ( f ) :=:
∫

f dµ := lim
n→∞

µ(sn) where (sn)n≥1 ⊂ sS + with sn ↑ f (7.13)

We are appealing to lemma 7.2.5 for the existence of at least one sequence (sn)n≥1 ⊂
sS + with sn ↑ f . Note that µ(sn) always converges in [0, ∞] as a result of monotonic-
ity (see proposition 7.2.1).

Regarding notation, all of the following are common alternatives:

µ( f ) :=:
∫

f dµ :=:
∫

f (x)µ(dx)

In the case of Lebesgue measure we will also use
∫

f (x)dx:

λ( f ) :=:
∫

f dλ :=:
∫

f (x)λ(dx) :=:
∫

f (x)dx

Isn’t it possible that the number we get in (7.13) depends on the particular approx-
imating sequence (sn)n≥1 that we choose? The answer is no. If (sn)n≥1 and (s′n)n≥1
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are two sequences in sS + with sn ↑ f and s′n ↑ f , then µ(sn) and µ(s′n) always have
the same limit.14 The number given by taking any of these limits is in fact equal to

sup
{

µ(s) : s ∈ sS +, 0 ≤ s ≤ f
}
∈ [0, ∞] (7.14)

Example 7.2.7 Recall the counting measure c on (N,P(N)) introduced on page 163. A
nonnegative function f : N → R+ is just a nonnegative sequence, and we emphasize
this by writing f as ( fn). Since N is paired with its power set (the set of all subsets),
there is no issue with measurability—all such functions (sequences) are measurable.

The function ( fn) is simple if it takes only finitely many values. Suppose in partic-
ular that fn = 0 for all n ≥ N ∈ N. Then, by the definition of the integral on simple
functions,

c( f ) :=:
∫

f dc =
N

∑
n=1

fn c(n) =
N

∑
n=1

fn

so integration with respect to c is equivalent to summation.
Now consider the case of a general nonnegative sequence f = ( fn). For simple

functions converging up to f we can take f N := ( f N
n ), which is defined as equal to fn

if n ≤ N and to zero if n > N. In light of (7.13) we have

c( f ) :=:
∫

f dc = lim
N→∞

∫
f Ndc = lim

N→∞

N

∑
n=1

fn

which is the standard definition of the infinite series ∑n fn. Again, integration with
respect to c is equivalent to summation.

So far we have only defined the integral of nonnegative measurable functions.
Integration of general measurable functions is also straightforward: Split the function
f into its positive part f+ := max{0, f } and its negative part f− := max{0,− f }, so
f = f+ − f−. Then set

µ( f ) := µ( f+)− µ( f−) (7.15)

The only issue here is that we may end up with the expression ∞ − ∞, which is defi-
nitely not allowed—in this case the integral is not defined.

Definition 7.2.8 Let (S, S , µ) be a measure space, and let f ∈ mS . The function f is
called integrable if both µ( f+) and µ( f−) are finite. If f is integrable, then its integral
µ( f ) is given by (7.15). The set of all integrable functions on S is denoted L1(S, S , µ),
or simply L1(µ).

14The reason that the approximating sequence in (7.13) is required to be monotone is to ensure that this
independence holds. The proof is not difficult but let’s take it as given.
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How do we define integration of a function f ∈ L1(µ) over a subset E of S, rather
than over the whole space? The answer is by setting∫

E
f dµ :=

∫
1E f dµ :=: µ(1E f )

Here the function 1E f evaluated at x is the product 1E(x) · f (x).
Although we omit the proof, if f is a continuous real function on R with the

property that f = 0 outside an interval [a, b]—so that the Riemann integral is well-
defined—then λ( f ) is precisely the Riemann integral of f on [a, b]. We can go ahead
and integrate f as our high school calculus instinct tells us to. Hence we have suc-
ceeded in extending the elementary integral to a larger class of functions.

7.3 Properties of the Integral

Having defined the abstract Lebesgue integral, let’s now look at some of its proper-
ties. As we will see, the integral has nice algebraic properties, and also interacts well
with limiting operations. Section §7.3.1 focuses on nonnegative functions, while §7.3.2
treats the general case.

7.3.1 Basic Properties

Recall that functions constructed from measurable functions using standard algebraic
and limiting operations are typically measurable (theorem 7.2.6). This leads us to con-
sider the relationship between the integrals of the original functions and the integrals
of the new functions. For example, is the integral of the sum of two measurable func-
tions equal to the sum of the integrals? And is the integral of the limit of measurable
functions equal to the limit of the integrals? Here is a summary of the key results:

Theorem 7.3.1 Given an arbitrary measure space (S, S , µ), the integral has the following
properties on mS +:

M1. If A ∈ S and f := 1A, then µ(1A) = µ(A).

M2. If f = 1∅ ≡ 0, then µ( f ) = 0.

M3. If f , g ∈ mS + and α, β ∈ R+, then µ(α f + βg) = αµ( f ) + βµ(g).

M4. If f , g ∈ mS + and f ≤ g pointwise on S, then µ( f ) ≤ µ(g).

M5. If ( fn)n≥1 ⊂ mS +, f ∈ mS + and fn ↑ f , then µ( fn) ↑ µ( f ).

Property M1 is immediate from the definition of the integral, and M2 is immediate
from M1. Properties M3 and M4 can be derived as follows:
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Exercise 7.30 Show that if γ ∈ R+ and f ∈ mS +, then µ(γ f ) = γµ( f ). Show
further that if f , g ∈ mS +, then µ( f + g) = µ( f ) + µ(g). Combine these two results
to establish M3.

Exercise 7.31 Prove M4.

Property M5 is fundamental to the success of Lebesgue’s integral, and is usually
referred to as the monotone convergence theorem (although we give a more general
result with that name below). Note that µ( f ) = ∞ is permitted. The proof of M5 is
based on countable additivity of µ, and is one of the reasons that countable additivity
(as opposed to finite additivity) is so useful. You can consult any book on measure
theory and integration to see the proof.

The next result clarifies the relationship between measures and integrals.

Theorem 7.3.2 Let (S, S ) be any measurable space. For each measure µ : S 3 B 7→
µ(B) ∈ [0, ∞], there exists a function µ : mS + 3 f 7→ µ( f ) ∈ [0, ∞] with properties M1–
M5. Conversely, each function µ : mS + → [0, ∞] satisfying properties M2–M5 creates a
unique measure on (S, S ) via M1.

One can think of a measure µ on (S, S ) as a kind of “pre-integral,” defined on the
subset of mS + that consists of all indicator functions (the integral of 1A being µ(A)).
The process of creating an integral on mS + via simple functions and then monotone
limits can be thought of as one that extends the domain of µ from indicator functions in
mS + to all functions in mS +.

Exercise 7.32 Show that if µ : mS + → [0, ∞] satisfies M2–M5, then the map µ̂ : S →
[0, ∞] defined by µ̂(A) = µ(1A) is a measure on S .

Exercise 7.33 Use M1–M5 to prove the previously stated result (see exercise 7.17 on
page 163) that if (En) ⊂ S with En ⊂ En+1 for all n, then µ(∪nEn) = limn→∞ µ(En).

Lemma 7.3.3 Let A, B ∈ S , and let f ∈ mS +. If A and B are disjoint, then∫
A∪B

f dµ =
∫

A
f dµ +

∫
B

f dµ

Proof. We have 1A∪B f = (1A + 1B) f = 1A f + 1B f . Now apply M3.

One of the most important facts about the integral is that integrating over sets of
zero measure cannot produce a positive number:

Theorem 7.3.4 If f ∈ mS +, E ∈ S , and µ(E) = 0, then
∫

E f dµ = 0.
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Proof. Since f ∈ mS +, there is a sequence (sn)n≥1 ⊂ sS + with sn ↑ f , and hence
1Esn ↑ 1E f .15 But

1Esn =
K

∑
k=1

αk(1E · 1Ak ) =
K

∑
k=1

αk1E∩Ak

∴ µ(1Esn) =
K

∑
k=1

αkµ(E ∩ Ak) = 0 ∀ n ∈ N

since µ(E) = 0. By property M5, we have µ(1E f ) = limn→∞ µ(1Esn) = 0.

7.3.2 Finishing Touches

Let (S, S , µ) be any measure space. By using the five fundamental properties M1–
M5, one can derive the classical theorems about integrals on L1(µ) := L1(S, S , µ),
the set of functions defined on page 174. The next few results show that many results
from the previous section that hold for nonnegative functions also hold for the (not
necessarily nonnegative) elements of L1(µ).

To state the results we introduce the concept of properties holding “almost every-
where.” Informally, if f , g ∈ mS and P(x) is a statement about f and g at x (e.g.,
f (x) = g(x) or f (x) ≤ g(x)), then we say f and g have property P µ-almost everywhere
(µ-a.e.) whenever the set of all x such that P(x) fails has µ-measure zero. For example,
if the set of x ∈ S such that f (x) 6= g(x) has measure zero then f and g are said to be
equal µ-a.e. In addition we say that fn → f µ-a.e. if lim fn = f µ-a.e. The key idea is
that null sets don’t matter when it comes to integration, so it’s enough for properties
to hold everywhere off a null set.

Theorem 7.3.5 Let f , g ∈ L1(µ), and let α, β ∈ R. The following results hold:

1. α f + βg ∈ L1(µ) and µ(α f + βg) = αµ( f ) + βµ(g).

2. If E ∈ S with µ(E) = 0, then
∫

E f dµ = 0.

3. If f ≤ g µ-a.e., then µ( f ) ≤ µ(g).

4. | f | ∈ L1(µ), and |µ( f )| ≤ µ(| f |).

5. µ(| f |) = 0 if and only if f = 0 µ-a.e.

This list is not minimal. For example, part 2 follows from parts 4 and 5. Part
1 follows from the definitions and M3 (i.e., linearity of the integral on the space of

15That is, the convergence 1E(x)sn(x) → 1E(x)sn(x) holds at each point x ∈ S, and that 1E(x)sn(x) gets
progressively larger with n for each x ∈ S.
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nonnegative measurable functions). See, for example, Dudley (2002, thm. 4.1.10). Part
2 can also be obtained from the identity f = f+ − f−, part 1 and theorem 7.3.4:

µ(1E f ) = µ(1E f+ − 1E f−) = µ(1E f+)− µ(1E f−) = 0 − 0

Exercise 7.34 Prove that if µ(E) = 0 and f ∈ L1(µ), then
∫

Ec f dµ =
∫

f dµ, and if
f , g ∈ L1(µ) with f = g µ-a.e., then µ( f ) = µ(g).

Exercise 7.35 Prove part 3 using properties M1–M5.

Exercise 7.36 Prove part 4 using the identity | f | = f+ + f−.

Regarding part 5, suppose that f 6= 0 on a set E with µ(E) > 0. We will prove that
µ(| f |) > 0. To see this, define En := {x : | f (x)| > 1/n}. Observe that En ⊂ En+1
for each n, and that E = ∪nEn. From exercise 7.17 (page 163) there is an N with
µ(EN) > 0. But then µ(| f |) ≥ µ(1EN | f |) ≥ µ(EN)/N > 0. The converse implication
follows from exercise 7.34.

Now we come to the classical convergence theorems for integrals, which can be
derived from M1–M5. They are among the foundation stones of modern real analysis.

Theorem 7.3.6 (Monotone convergence theorem) Let (S, S , µ) be a measure space, and
let ( fn)n≥1 be a sequence in mS . If fn ↑ f ∈ mS µ-almost everywhere and µ( f1) > −∞,
then limn→∞ µ( fn) = µ( f ).16

Theorem 7.3.7 (Dominated convergence theorem) Let (S, S , µ) be a measure space, let
g ∈ L1(µ) and let ( fn)n≥1 ⊂ mS with | fn| ≤ g for all n. If fn → f µ-almost everywhere,
then f ∈ L1(µ) and limn→∞ µ( fn) = µ( f ).

It’s almost impossible to overemphasize what a useful result the dominated con-
vergence theorem is, and the proof can be found in any text on measure theory. For a
neat little illustration,

Corollary 7.3.8 Consider the collection of real sequences

a = (a1, a2, . . .), ak = (ak
1, ak

2, . . .) (k ∈ N)

Suppose that ak is dominated pointwise by a sequence b = (bn) for all k, in the sense that
|ak

n| ≤ bn for all k, n. Suppose further that limk→∞ ak
n = an for each n. If ∑n bn < ∞, then

lim
k→∞

∑
n≥1

ak
n = ∑

n≥1
lim
k→∞

ak
n = ∑

n≥1
an

16In fact, for this theorem to hold the limiting function f need not be finite everywhere (or anywhere) on
S. See Dudley (2002, thm. 4.3.2).
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E

T

T−1(E)

S S′

µ ◦ T−1 lives hereµ lives here

Figure 7.5 Image measure

Proof. Apply the dominated convergence theorem with (S, S , µ) = (N,P(N), c),
where c is the counting measure (recall example 7.2.7).

Let’s conclude with the topic of image measures. To define image measures, let
(S, S , µ) be any measure space, let (S′, S ′) be a measurable space, and let T : S → S′

be S , S ′-measurable. If E is some element of S ′, then T−1(E) ∈ S , so µ ◦ T−1(E) =
µ(T−1(E)) is well defined. In fact, E 7→ µ ◦ T−1(E) is a measure on (S′, S ′), called the
image measure of µ under T. Figure 7.5 provides a picture. The value of µ ◦ T−1(E) is
obtained by pulling E back to S and evaluating with µ.

Exercise 7.37 Show that µ ◦ T−1 is indeed a measure on (S′, S ′).17

The following result shows how to integrate with image measures:18

Theorem 7.3.9 Let (S, S , µ) be any measure space, let (S′, S ′) be a measurable space, let
T : S → S′ be a measurable function, and let µ ◦ T−1 be the image measure of µ under T.
If w : S′ → R is S ′-measurable and either w is nonnegative or µ(|w ◦ T|) is finite, then
µ ◦ T−1(w) = µ(w ◦ T), where the first integral is over S′ and the second is over S.

17You might find it useful to refer to lemma A.1.1 on page 321.
18A full proof can be found in Dudley (2002, thm. 4.1.11).
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One application of this theorem is when µ is Lebesgue measure, and µ ◦ T−1 is
more complex. If we don’t know how to integrate with respect to this new measure,
we can use the change of variable to get back to an integral of the form

∫
f dµ.

7.3.3 The Space L1

In this section we specialize to the case (S, S , µ) = (S, B(S), λ), where S is a Borel
subset ofRk. Most of the results we discuss hold more generally, but such extra gener-
ality is not needed here. Our interest is in viewing the space of integrable functions as
a metric space. To this end, we define the “distance” d1 on L1(λ) := L1(S, B(S), λ)
by

d1( f , g) :=
∫

| f − g|dλ :=: λ(| f − g|) (7.18)

Alternatively, we can set

d1( f , g) := ‖ f − g‖1 where ‖h‖1 := λ(|h|)

From the pointwise inequalities | f − g| ≤ | f |+ |g| and | f + g| ≤ | f |+ |g| plus linearity
and monotonicity of the integral, we have

‖ f − g‖1 ≤ ‖ f ‖1 + ‖g‖1 and ‖ f + g‖1 ≤ ‖ f ‖1 + ‖g‖1

The first inequality tells us that d1( f , g) is finite for any f , g ∈ L1(λ). From the second
we can show that d1 satisfies the triangle inequality on L1(λ) using add and subtract:

‖ f − g‖1 = ‖( f − h) + (h − g)‖1 ≤ ‖ f − h‖1 + ‖h − g‖1

Since d1 satisfies the triangle inequality it seems plausible that d1 is a metric (see the
definition on page 40) on L1(λ). However, there is a problem: We may have f 6=
g and yet d1( f , g) = 0, because functions that are equal almost everywhere satisfy∫
| f − g|dλ = 0. (Why?) For example, when S = R, the functions 1Q and 0 := 1∅ are

at zero distance from one another. Hence (L1(λ), d1) fails to be a metric space. Rather
it is what’s called a pseudometric space:

Definition 7.3.10 A pseudometric space is a nonempty set M and a function ρ : M ×
M → R such that, for any x, y, v ∈ M,

1. ρ(x, y) = 0 if x = y,

2. ρ(x, y) = ρ(y, x), and

3. ρ(x, y) ≤ ρ(x, v) + ρ(v, y).
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In contrast to a metric space, in a pseudometric space distinct points are permitted
to be at zero distance from one another.

Exercise 7.38 On the spaceR2 consider the function ρ(x, y) = |x1 − y1|, where x1 and
y1 are the first components of x = (x1, x2) and y = (y1, y2) respectively. Show that
(R2, ρ) is a pseudometric space. Is it true that distinct points can be at zero distance
from one another?

It is not difficult to convert a pseudometric space into a metric space: We simply
regard all points at zero distance from each other as the same point. In other words,
we partition the original space into equivalence classes of points at zero distance from
one another, and consider the set of these classes as a new space. Figure 7.6 illustrates
for the space in exercise 7.38.

The distance between any two equivalence classes is just the distance between
arbitrarily chosen members of each class. This value does not depend on the particular
members chosen: If x and x′ are equivalent, and y and y′ are equivalent, then ρ(x, y) =
ρ(x′, y′) because

ρ(x, y) ≤ ρ(x, x′) + ρ(x′, y′) + ρ(y′, y)

= ρ(x′, y′) ≤ ρ(x′, x) + ρ(x, y) + ρ(y, y′) = ρ(x, y)

The space of equivalence classes and the distance just described form a metric space.
In particular, distinct elements of the derived space are at positive distance from one
another (otherwise they would not be distinct).

The metric space derived from the pseudometric space (L1(λ), d1) is traditionally
denoted (L1(λ), d1), and has a major role to play in the rest of this book.19 Since two
functions in L1(λ) are at zero distance if and only if they are equal almost everywhere,
the new space (L1(λ), d1) consists of equivalences classes of functions that are equal
almost everywhere.

A density on S is a nonnegative measurable function that integrates to one. We
are interested in describing the set of densities as a metric space, with the intention of
studying Markov chains such that their marginal distributions evolve in the space of
densities. The densities are embedded into L1(λ) as follows:

Definition 7.3.11 The space of densities on S is written as D(S) and defined by

D(S) := { f ∈ L1(λ) : f ≥ 0 and ‖ f ‖1 = 1}

In the definition, f is actually an equivalence class of functions f ′, f ′′, etc., that are
all equal almost everywhere. The statement f ≥ 0 means that all of these functions
are nonnegative almost everywhere, while ‖ f ‖1 = 1 means that all integrate to one.

19To simplify notation, we are using the symbol d1 to represent distance on both spaces.
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equivalence classes

x1

x2

Figure 7.6 Equivalence classes for (R2, ρ)

(More generally, if f ∈ L1(λ), then ‖ f ‖1 is the integral of the absolute value of any
element in the equivalence class.)

Theorem 7.3.12 The spaces (L1(λ), d1) and (D(S), d1) are both complete.

A proof of completeness of (L1(λ), d1) can be found in any good text on measure
theory. Completeness of (D(S), d1) follows from the fact that D(S) is closed as a subset
of (L1(λ), d1) and theorem 3.2.1 (page 49). The proof that D(S) is closed is left as an
exercise for enthusiastic readers.

Densities are used to represent distributions of random variables. Informally, the
statement that X has density f ∈ D(S) means that X is in B ⊂ S with probability∫

B f ′(x)dx :=:
∫

B f ′ dλ, where f ′ is some member of the equivalence class. Note that
it does not matter which member we pick, as all give the same value here. In this sense
it is equivalence classes that represent distributions rather than individual densities.

Finally, Scheffés identity provides a nice quantitative interpretation of d1 distance
between densities: For any f and g in D(S),

‖ f − g‖1 = 2 × sup
B∈B(S)

∣∣∣∣∫B
f (x)dx −

∫
B

g(x)dy
∣∣∣∣ (7.19)

It follows that if ‖ f − g‖1 ≤ ϵ, then for any event B of interest, the deviation in the
probability assigned to B by f and g is less than ϵ/2.20

20A proof of this identity is given later in a more general context (see lemma 11.1.13).
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7.4 Commentary

The treatment of measure theory and integration in this chapter is fairly standard
among modern expositions. There are many excellent references with which to round
out the material. Good starting points are Williams (1991) and Taylor (1997). Alipran-
tis and Burkinshaw (1998) is more advanced, and contains many exercises. The books
by Pollard (2002), Dudley (2002), and Schilling (2005) are also highly recommended.





Chapter 8

Density Markov Chains

In this chapter we take an in-depth look at Markov chains on state space S ⊂ Rn with
the property that conditional (and hence marginal) distributions can be represented
by densities. These kinds of processes were previously studied in chapter 6. Now that
we have measure theory under our belts, we will be able to cover a number of deeper
results.

Not all Markov chains fit into the density framework (see §9.2 for the general case).
For those that do, however, the extra structure provided by densities aids us in analyz-
ing dynamics and computing distributions. In addition densities have a concreteness
that abstract probability measures lack, in the sense that they are easy to represent vi-
sually. This concreteness makes them a good starting point when building intuition.

8.1 Outline

We start with the basic theory of Markov chains with density representations. After
defining density Markov chains, we will illustrate the connection to stochastic recur-
sive sequences (stochastic difference equations). In §8.1.3 we introduce the Markov
operator for the density case, and show how the marginal distributions of a density
Markov chain can be generated by iterating on the Markov operator. This theory
closely parallels the finite case, as discussed in §4.2.3.

Here and below, unless otherwise stated, S is a Gδ subset of Rn (see remark 3.1.9
for the definition).

185
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8.1.1 Stochastic Density Kernels

We met some examples of density kernels in chapter 6. Let’s now give the formal
definition of a density kernel.

Definition 8.1.1 A stochastic density kernel on S is a Borel measurable function p : S ×
S → R+ such that∫

p(x, y)dy :=:
∫

p(x, y)λ(dy) :=: λ(p(x, ·)) = 1 for all x ∈ S (8.1)

In particular, the function y 7→ p(x, y) is a density for each x ∈ S. We can think
of p as a family of density functions, one for each point in the state space. In what
follows, we will use the notation p(x, y)dy to represent the density function y 7→ p(x, y).
A second point is that S × S is a subset of R2n, and Borel measurability of p refers to
Borel subsets of this space. In practice, one rarely encounters stochastic kernels where
Borel measurability is problematic.

To illustrate the definition, consider the kernel p defined by

p(x, y) =
1√
2π

exp
(
− (y − ax − b)2

2

)
((x, y) ∈ S × S = R×R)

In other words, p(x, y)dy = N(ax+ b, 1). The kernel is presented visually in figure 8.1.
Each point on the x-axis picks out a distribution N(ax + b, 1), which is represented as
a density running along the y-axis. In this case a is positive, so an increase in x leads to
an increase in the mean of the corresponding density p(x, y)dy, and the density puts
probability mass on larger y.

From an initial condition ψ ∈ D(S) and a density kernel p, we can generate a
Markov chain (Xt)t≥0. Here is a definition paralleling the finite case (page 74):

Definition 8.1.2 Let ψ ∈ D(S). A random sequence (Xt)t≥0 on S is called Markov-
(p, ψ) if

1. at time zero, X0 is drawn from ψ, and

2. at time t + 1, Xt+1 is drawn from p(Xt, y)dy.

In the case of the kernel p(x, y)dy = N(ax + b, 1), we draw X0 from some given
ψ and then, at each time t, draw Xt+1 ∼ N(aXt + b, 1). One sample path is shown in
figure 8.2. Details are in the Jupyter code book.

There is another way to visualize the dynamics associated with our stochastic ker-
nel. Recall the 45 degree diagram technique for studying univariate deterministic
dynamic systems we introduced in figure 4.3 (page 62). Now consider figure 8.3, each
panel of which shows a series generated by the kernel p(x, y)dy = N(ax + b, 1). The
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Figure 8.1 The stochastic kernel p(x, y)dy = N(ax + b, 1)

kernel itself is represented in the graphs by shading. You should understand this
shading as a “contour” representation of the 3D graph in figure 8.1, with lighter areas
corresponding to higher probability. For each graph the sequence of arrows traces out
an individual time series. The initial condition is X0 = −4, and X1 is then drawn from
N(aX0 + b, 1). We trace this value back to the 45 degree line to obtain the distribution
for X2 ∼ N(aX1 + b, 1), and so on.

When most of the probability mass lies above the 45 degree line, the value of the
state tends to increase. When most is below the 45 degree line, the value tends to
decrease. The actual outcome, however, is random, depending on the sequence of
draws that generate the time series.

8.1.2 Connection with SRSs

Suppose that we wish to investigate a stochastic recursive sequence (SRS) where the
state space S is a Gδ subset of Rn, Z is a Gδ subset of Rk, F : S × Z → S is a given
function, and

Xt+1 = F(Xt, Wt+1), X0 ∼ ψ ∈ D(S), (Wt)t≥1
IID∼ ϕ ∈ D(Z) (8.2)
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Figure 8.2 Time series generated by the Gaussian stochastic kernel

We would like to know when there exists a stochastic density kernel p on S that repre-
sents (8.2), in the sense that (Xt)t≥0 defined in (8.2) is Markov-(p, ψ). Put differently,
we wish to know when there exists a density kernel p such that, for all x ∈ S,

p(x, y)dy = the density of F(x, W) when W ∼ ϕ (8.3)

Such a p will do the job for us because, if the state Xt arrives at any x ∈ S, then
drawing Xt+1 from p(x, y)dy is—by definition of p—probabilistically equivalent to
drawing Wt+1 from ϕ and setting Xt+1 = F(x, Wt+1).

The reason for our interest in this question is that the theory of Markovian dy-
namics is more easily developed in the framework of stochastic kernels than in that
of SRSs such as (8.2). This is largely because the stochastic density kernel captures
the stochastic law of motion for the system in one single object. To apply the theory
developed below, it is necessary to be able to take a given model of the form (8.2) and
obtain its density kernel representation.

The existence of a stochastic density kernel p satisfying (8.3) is not guaranteed, as
not all random variables have distributions that can be represented by densities. Let
us try to pin down simple sufficient conditions implying that F(x, W) can be repre-
sented by a density.
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Here is a more general question: If Y is a random variable on S, when does there
exist a density ϕ ∈ D(S) such that ϕ represents Y in the sense that, for every B ∈ B(S),
the number

∫
B ϕdλ :=:

∫
B ϕ(x)dx gives the probability that Y ∈ B? In essence the

answer is that Y must not take values in any Lebesgue null set with positive probability. To
see this, suppose that N ∈ B(S) with λ(N) = 0 and Y ∈ N with positive probability.
Then regardless of which ϕ ∈ D(S) we choose, theorem 7.3.4 implies that

∫
N ϕ(x)dx =

0, and hence ϕ does not represent Y.
Now let us consider the distribution of Y = F(x, W), W ∼ ϕ ∈ D(Z). The follow-

ing theorem, though not as general as some, will be sufficient for our purposes:

Theorem 8.1.3 Let W be a random variable on Rn with density ϕ, let γ ∈ Rn, and let Γ be
an n × n matrix. If det Γ 6= 0, then Y = γ + ΓW has density ϕY onRn, where

ϕY(y) := ϕ(Γ−1(y − γ))|det Γ−1| (y ∈ Rn)

Why is det Γ 6= 0 required? If det Γ = 0 then Y = γ + ΓW takes values in a
subspace of dimension less than n. In Rn, such subspaces have Lebesgue measure
zero. Hence Y takes values in a Lebesgue null set with positive probability, in which
case it cannot be represented by a density.

Before looking at the proof, let’s see how we can use the theorem. In §8.1.1 we
looked at a process (Xt)t≥0 defined by kernel p(x, y)dy = N(ax + b, 1). This corre-
sponds to the SRS

Xt+1 = aXt + b + Wt+1, (Wt)t≥1
IID∼ ϕ = N(0, 1)

In other words, p(x, y)dy = N(ax + b, 1) is the density of Y = ax + b + W when
W ∼ ϕ. This claim is easily verified. From theorem 8.1.3 the density ϕY of Y is ϕY(y) =
ϕ(y − ax − b). Since ϕ = N(0, 1), this becomes

ϕY(y) =
1√
2π

exp
(
− (y − ax − b)2

2

)
= N(ax + b, 1)

Exercise 8.1 Consider theRn-valued SRS

Xt+1 = AXt + b + Wt+1, (Wt)t≥1
IID∼ ϕ ∈ D(Rn) (8.4)

where A is an n × n matrix and b is an n × 1 vector. Show that the stochastic density
kernel corresponding to this model is p(x, y) = ϕ(y − Ax − b).

Under the stated assumptions, Xt+1 has the same distribution as Y = γ + ΓWt+1
when γ := Ax + b and Γ is the identity. The representation p(x, y) = ϕ(y − Ax − b)
now follows directly from theorem 8.1.3.
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Exercise 8.2 Consider the well-known threshold autoregression model (Chan and
Tong 1986). The model is a nonlinear AR(1) process

Xt+1 =
K

∑
k=1

(AkXt + bk)1Bk (Xt) + Wt+1, (Wt)t≥1
IID∼ ϕ ∈ D(Rn) (8.5)

where Xt takes values in Rn, the family of sets (Bk)
K
k=1 is a (measurable) partition of

Rn, and (Ak)
K
k=1 and (bk)

K
k=1 are n × n-dimensional matrices and n × 1-dimensional

vectors respectively. The idea is that when Xt is in the region of the state space Bk,
the state variable follows the law of motion AkXt + bk. Show that the corresponding
density kernel is

p(x, y) = ϕ

[
y −

K

∑
k=1

(Akx + bk)1Bk (x)

]
(8.6)

Example 8.1.4 Consider again the Solow–Swan model. Set δ = 1 and f (k, W) =
f (k)W. In other words, the state evolves according to

kt+1 = s f (kt)Wt+1, (Wt)t≥1
IID∼ ϕ (8.7)

Suppose that s > 0 and f (k) > 0 whenever k > 0, and take S = Z = (0, ∞). We wish
to determine the stochastic density kernel p(x, y)dy; equivalently, we wish to find the
density ϕY of the random variable Y = s f (x)W when x ∈ S is fixed and W ∼ ϕ.

The only obstacle to applying theorem 8.1.3 in this case is that Z is a proper subset
ofR, notR itself. Hence ϕ is not necessarily defined on all ofR. However, we can get
around this easily enough by setting ϕ = 0 on the complement (−∞, 0] of Z.

When x ∈ S is fixed, s f (x) is a strictly positive constant, and from theorem 8.1.3
the density of Y = s f (x)W is

p(x, y) = ϕ

(
y

s f (x)

)
1

s f (x)
(8.8)

Exercise 8.3 Consider again example 8.1.4, but this time with δ < 1. In other words,
(kt)t≥0 evolves according to

kt+1 = s f (kt)Wt+1 + (1 − δ)kt, (Wt)t≥1
IID∼ ϕ

Show that the stochastic density kernel is now given by

p(x, y) = ϕ

(
y − (1 − δ)x

s f (x)

)
1

s f (x)

Notice that if y < (1 − δ)x, then ϕ is evaluated at a negative number. This is why
we need to extend ϕ to all ofR, with ϕ(z) = 0 for all z ≤ 0.
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Exercise 8.4 In §6.1.2 we considered a stochastic threshold externality model with
multiple equilibria, with law of motion for capital given by

kt+1 = sA(kt)kα
t Wt+1, (Wt)t≥1

IID∼ ϕ (8.9)

Here k 7→ A(k) is any function with A(k) > 0 when k > 0. Set Z = S = (0, ∞). Derive
the stochastic density kernel p corresponding to this model.

Now let’s sketch the proof of theorem 8.1.3. We will use the following standard
change-of-variable result:

Theorem 8.1.5 Let A and B be open subsets of Rk, and let T : B → A be a C1 bijection. If
f ∈ L1(A, B(A), λ), then∫

A
f (x)dx =

∫
B

f ◦ T(y) · |det JT(y)|dy (8.10)

Here JT(y) is the Jacobian of T evaluated at y, and C1 means that T is continuously
differentiable on B.1

Example 8.1.6 Let A = R, let B = (0, ∞), and let Tx = ln(x). Then |det JT(y)| = 1/y,
and for any measurable f onR with finite integral we have∫

R
f (x)dx =

∫
(0,∞)

f (ln y)
1
y

dy

Now suppose we have a random variable W with density ϕ ∈ D(Rn), and we
transform W with some function h to create a new random variable Y = h(W). In
the case of theorem 8.1.3 the transformation h is the linear function z 7→ γ + Γz. The
following generalization of theorem 8.1.3 holds:

Theorem 8.1.7 Let S and T be open subsets of Rn, and let W be a random vector on S,
distributed according to density ϕ on S. Let Y = h(W), where h : S → T is a bijection and
the inverse h−1 is a C1 function. In that case Y is a random vector on T with density ϕY,
where

ϕY(y) := ϕ(h−1(y)) · |det Jh−1(y)| (y ∈ T) (8.11)

The proof can be constructed along the following lines: The statement that ϕY is
the density of Y means that P{Y ∈ B} =

∫
B ϕY(y)dy holds for every B ∈ B(T). By an

application of theorem 8.1.5 we get

P{Y ∈ B} = P{W ∈ h−1(B)}

=
∫

h−1(B)
ϕ(x)dx =

∫
B

ϕ(h−1(y))|det Jh−1(y)|dy =
∫

B
ϕY(y)dy

1Theorem 8.1.5 is actually a special case of theorem 7.3.9 on page 179.
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8.1.3 The Markov Operator

Let p be a density kernel on S, a Gδ subset of Rn, let ψ ∈ D(S) be an initial condition,
and let (Xt)t≥0 be Markov-(p, ψ). As usual, let ψt be the (marginal) distribution of
Xt for each t ≥ 0. In §6.1.3 we saw that if X and Y are random variables on S with
marginals pX and pY, and if pY|X is the conditional density of Y given X, then pY(y) =∫

pY|X(x, y)pX(x)dx for all y ∈ S. Letting Xt+1 = Y and Xt = X, we obtain

ψt+1(y) =
∫

p(x, y)ψt(x)dx (y ∈ S) (8.12)

Equation (8.12) is just (6.9) on page 123, translated to a more general setting. It is the
continuous state version of (4.13) on page 78 and the intuition is roughly the same:
The probability of being at y tomorrow is the probability of moving from x today to y
tomorrow, summed over all x and weighted by the probability ψt(x)dx of observing
x today.

Now define an operator M sending ψ ∈ D(S) into ψM ∈ D(S) by

ψM(y) =
∫

p(x, y)ψ(x)dx (y ∈ S) (8.13)

This operator is called the Markov operator corresponding to stochastic density kernel
p, and parallels the definition of the Markov operator for the finite state case given on
page 78. As in that case, M acts on distributions (densities) to the left rather than the
right, and is understood as updating the distribution of the state: If the state is cur-
rently distributed according to ψ then next period its distribution is ψM. In particular,
(8.12) can now be written as

ψt+1 = ψtM (8.14)

This a density version of (4.15) on page 78. Iterating backward we get the representa-
tion ψt = ψMt for the distribution of Xt given X0 ∼ ψ.

Technical note: An element of D(S) such as ψ is actually an equivalence class of
functions on S that are equal almost everywhere—see §7.3.3. This does not cause
problems for the definition of the Markov operator, since applying M to any element
of the equivalence class yields the same function: If ψ′ and ψ′′ are equal off a null set
E, then the integrands in (8.13) are equal off E for every y, and hence both integrate to
the same number. Thus ψM in (8.13) is a well-defined function on S, and we embed
it in D(S) by identifying it with the equivalence class of functions to which it is equal
almost everywhere.

That M does in fact map D(S) into itself can be verified by showing that ψM is
nonnegative and integrates to 1. That ψM integrates to 1 can be seen by changing the
order of integration:∫

ψM(y)dy =
∫ ∫

p(x, y)ψ(x)dxdy =
∫ [∫

p(x, y)dy
]

ψ(x)dx
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Since
∫

p(x, y)dy = 1 and
∫

ψ(x)dx = 1, the proof is done. Regarding nonnegativity,
fix any y ∈ S. Since p ≥ 0 and since ψ ≥ 0 almost everywhere, the integrand in (8.13)
is nonnegative almost everywhere, and ψM(y) ≥ 0.

Before moving on let us briefly investigate the iterates of the Markov operator M.
Recall that when we studied finite Markov chains, the t-th order kernel pt(x, y) was
defined by

p1 := p, pt(x, y) := ∑
z∈S

pt−1(x, z)p(z, y)

Analogously, let p be a stochastic density kernel p, and define a sequence (pt)t≥1 of
kernels by

p1 := p, pt(x, y) :=
∫

pt−1(x, z)p(z, y)dz (8.15)

Below pt is called the t-th order density kernel corresponding to p. As in the finite state
case, pt(x, y)dy can be interpreted as the distribution (density) of Xt when X0 = x.

Exercise 8.5 Using induction, verify that pt is density kernel on S for each t ∈ N.

Lemma 8.1.8 If M is the Markov operator associated with stochastic density kernel p on S,
then Mt is the Markov operator associated with pt. In other words, for any ψ ∈ D(S), we
have

ψMt(y) =
∫

pt(x, y)ψ(x)dx (y ∈ S)

This lemma is the continuous state version of lemma 4.2.5 on page 80. Essentially
it is telling us what we claimed above: that pt(x, y)dy is the distribution of Xt given
X0 = x. The proof is an exercise.

Given any kernel p on S, the Markov operator M is always continuous on D(S)
(with respect to d1). In fact it is nonexpansive. To see this, observe that for any ϕ, ψ ∈
D(S), we have

‖ϕM − ψM‖1 =
∫ ∣∣∣∣∫ p(x, y)(ϕ(x)− ψ(x))dx

∣∣∣∣ dy

≤
∫ ∫

p(x, y)|ϕ(x)− ψ(x)|dxdy

=
∫ ∫

p(x, y)dy|ϕ(x)− ψ(x)|dx = ‖ϕ − ψ‖1

8.2 Stability

Let’s now turn to the topic of stability. The bad news is that for density Markov chains
on infinite state spaces, the theory is considerably more complex than for the finite
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case (see §4.3.3). The good news is that we can build on the intuition gained from
studying the finite case, and show how the concepts can be extended to cope with in-
finite state spaces. After reviewing the density analogue of the Dobrushin coefficient,
we look at drift conditions that keep probability mass within a “bounded” region
of the state space as the Markov chain evolves. Combining drift conditions with a
concept related to positivity of the Dobrushin coefficient, we obtain a rather general
sufficient condition for stability of density Markov chains, and apply it to several ap-
plications.

8.2.1 The Big Picture

Before plunging into the formal theory of stability, we are going to spend some time
building intuition. In particular, we would like to know under what circumstances
stability will fail, with the aim of developing conditions that rule out these kinds of
circumstances. This section considers these issues in a relatively heuristic way. We
begin with the definitions of stationary densities and global stability.

Let p be a stochastic density kernel on S, and let M be the corresponding Markov
operator. As before, S is a Borel subset of Rn endowed with the standard Euclidean
metric d2. Since M sends D(S) into D(S), and since D(S) is a well-defined metric
space with the distance d1 (see §7.3.3), the pair (D(S), M) is a dynamical system in the
sense of chapter 4. The trajectory (ψMt)t≥0 of a point ψ ∈ D(S) corresponds to the
sequence of marginal distributions for a Markov-(p, ψ) process (Xt)t≥0.

Now consider the stability properties of the dynamical system (D(S), M). We are
interested in existence of fixed points and global stability. A fixed point ψ∗ of M is
also called a stationary density, and, by definition, satisfies

ψ∗(y) =
∫

p(x, y)ψ∗(x)dx (y ∈ S)

Exercise 8.6 Consider the linear AR(1) model

Xt+1 = aXt + Wt+1, (Wt)t≥1
IID∼ ϕ = N(0, 1) (8.16)

with |a| < 1. The corresponding density kernel is p(x, y)dy = N(ax, 1). Using pencil
and paper, show that the normal density N(0, 1/(1 − a2)) is stationary for this kernel.

In the finite state case every Markov chain has a stationary distribution (theo-
rem 4.3.2, page 87). When S is not finite, however, stationary distributions can eas-
ily fail to exist. Consider, for example, the model (8.16) with α = 1, which is called
a random walk. With a bit of thought, you will be able to convince yourself that
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diverging

Figure 8.4 Divergence to +∞

Xt ∼ N(X0, t), and hence

pt(x, y) =
1√
2πt

exp
(
−(y − x)2

2t

)
((x, y) ∈ R×R)

Exercise 8.7 Show that p has no stationary distribution by arguing that if ψ∗ is a
stationary density, then

ψ∗(y) =
∫

pt(x, y)ψ∗(x)dx

for all t ∈ N and y ∈ R, which leads to a contradiction.2

Translated to the present context, global stability of (D(S), M) is equivalent to the
existence of a unique stationary density ψ∗ such that

ψMt → ψ∗ in d1 as t → ∞ for every ψ ∈ D(S)

Let’s try to work out when such stability can be expected. First, we have to rule out the
kind of behavior exhibited by the random walk above. In this case the density of Xt
becomes more and more spread out over R. In fact ψt converges to zero everywhere
because

ψt(y) = (ψMt)(y) =
∫

pt(x, y)ψ(x)dx → 0 (t → ∞)

for all y ∈ R by the dominated convergence theorem.
A similar problem arises when densities are diverging off to the right or the left, as

illustrated in figure 8.4. In either case probability mass is escaping from the “center”
of the state space. In other words, it is not concentrating in any one place.

What we need then is to ensure that densities concentrate in one place, or that
“most” of the probability mass stays in the “center” for all densities in the trajectory.
Another way of putting this is to require that, for each density, most of the mass is on
a bounded set K, as in figure 8.5. More mathematically, we require the existence of a
bounded set K such that

∫
K ψt(x)dx ∼= 1 for all t. (Requiring that all mass stays on K

is too strict because there will always be tails of the densities poking out.)
2Hint: What happens to pt as t → ∞?
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K

Figure 8.5 Nondiverging sequence

Now, having said that K must be bounded, the truth of the matter is that bounded-
ness is not enough. Suppose that we are studying a system not on S = R, but rather
on S = (−1, 1). And suppose, for example, that the densities are shifting all their mass
toward 1.3 Now this is also an example of instability (after all, there is no limiting den-
sity for such a sequence to converge to), and it has a similar feel to the divergence in
figure 8.4 (in the sense that probability mass is leaving the center of the state space).
But we cannot rule this problem out by requiring that probability remains on some
bounded set K ⊂ (−1, 1); it already stays on the bounded set (−1, 1). To keep prob-
ability mass in the center of the state space, what we really need is an interval [a, b]
with [a, b] ⊂ (−1, 1) and most of the mass remaining on [a, b].

A suitable condition, then, is to require that K be not only bounded but also com-
pact. That is, we require that most of the probability mass stays on a compact subset
of S. For example, we might require that, given any ϵ > 0, there is a compact set
K ⊂ S such that

∫
K ψt(x)dx ≥ 1 − ϵ for all t. Indeed, this is precisely the definition of

tightness, and we will see it plays a crucial role in what follows.
Tightness is necessary for stability, but it is not sufficient. For example, consider

the model represented in figure 8.6, which is a stochastic version of the model in ex-
ample 4.1.4 (page 62). The deterministic model is kt+1 = h(kt) := sA(kt)kα

t , and
the function h is the bold curve in figure 8.6. The stochastic version is given by
kt+1 = Wt+1h(kt), where the shock sequence (Wt)t≥1 is supported on a bounded
interval [a, b]. The functions k 7→ ah(k) and k 7→ bh(k) are represented by dashed
lines.

A little thought will convince you that the two intervals marked in the figure are
invariant sets, which is to say that if the state enters either of these sets, then it cannot
escape—it remains there with probability one. As a result global stability fails, even
though tightness appears likely to hold. (It does, as we’ll see later on.)

3We can imagine this might be the case if we took the system in figure 8.4 and transformed it via a
change of variables such as y = arctan(x) into a system on (−1, 1).
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h
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bh

kt

kt+1

Figure 8.6 Multiple invariant sets

The problem here is that there is insufficient mixing for global stability to obtain.
What we need, then, is a condition to ensure sufficient mixing, as well as a condition
for tightness. Finally, we need a minor technical condition called uniform integrability
that ensures trajectories do not pile up on a set of measure zero—as does, for example,
the sequence of densities N(0, 1/n)—in which case the limiting distribution cannot be
represented by a density, and hence does not exist in D(S).

We now turn to a formal treatment of these conditions for stability.

8.2.2 Dobrushin Revisited

On page 90 we introduced the Dobrushin coefficient for the finite case. Replacing
sums with integrals, we get

α(p) := inf
{∫

p(x, y) ∧ p(x′, y)dy : (x, x′) ∈ S × S
}

For densities f and g the pointwise minimum f ∧ g is sometimes called the affinity
between f and g, with a maximum of 1 when f = g and a minimum of zero when
f and g have disjoint supports. The Dobrushin coefficient reports the infimum of the
affinities for all density pairs in the stochastic kernel.

The proof of theorem 4.3.4 (page 90) carries over to the density case almost un-
changed, replacing sums with integrals at each step. That is to say,

‖ϕM − ψM‖1 ≤ (1 − α(p))‖ϕ − ψ‖1 ∀ ϕ, ψ ∈ D(S)
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−n 0

∫
pt(x, y) ∧ pt(x′, y)dy

n

Figure 8.7 Dobrushin coefficient is zero

and, moreover, this bound is the best available, in the sense that

∀ λ < 1 − α(p), ∃ ϕ, ψ ∈ D(S) such that ‖ϕM − ψM‖1 > λ‖ϕ − ψ‖1 (8.17)

From completeness of D(S), Banach’s fixed point theorem, and lemma 4.1.5 (see page 65),
it now follows (supply the details) that (D(S), M) is globally stable whenever there
exists a t ∈ N such that α(pt) > 0.

On the other hand, positivity of α(pt) for some t is no longer necessary for global
stability.4 This is fortunate because in many applications we find that α(pt) = 0 for
all t ∈ N. To give an example, consider the stochastic density kernel p given by
p(x, y)dy = N(ax, 1), which corresponds to the AR(1) process (8.16). If |a| < 1 then
this process is globally stable, as was shown in chapter 1 using elementary arguments.
However, it turns out that α(pt) = 0 for every t ∈ N. Indeed, for fixed t, pt(x, y)dy =
N(cx, d) for some constants c and d. Choosing x, x′ so that cx = n ∈ N and cx′ = −n,
the integral of pt(x, y) ∧ pt(x′, y) is the area of the two tails shown in figure 8.7. This
integral can be made arbitrarily small by choosing n sufficiently large.

Thus, in view of (8.17), the Markov operator M associated with the AR(1) process
is not uniformly contracting, and neither is any iterate Mt. Hence Banach’s fixed point
theorem does not apply.

Fortunately we can get around this negative result and produce a highly service-
able sufficient condition for stability. However, a bit of fancy footwork is required.
The rest of this section explains the details.

4If you did the proof of necessity in exercise 4.52 (page 92) you will understand that finiteness of S is
critical.
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First, even when Mt fails to be a uniform contraction on D(S), it may still be a
contraction, in the sense that

‖ϕMt − ψMt‖1 < ‖ϕ − ψ‖1 whenever ϕ 6= ψ (8.18)

In fact, the following result holds (see the appendix to this chapter for a proof.)

Lemma 8.2.1 Let t ∈ N, let p be a stochastic density kernel on S, and let M be the Markov
operator corresponding to p. If∫

pt(x, y) ∧ pt(x′, y)dy > 0 for all x, x′ ∈ S (8.19)

then Mt is a contraction on D(S); that is, (8.18) holds.

The existence of a t such that (8.19) holds is a mixing condition. (The need for
mixing was discussed in §8.2.1.) A simple but important special case is when p is
strictly positive on S× S (an example is the kernel p associated with the AR(1) process
in exercise 8.6), in which case p(x, y) ∧ p(x′, y) > 0 for each y. Integrating a positive
function over a set of positive measure produces a positive number (theorem 7.3.5,
page 177), and condition (8.19) is satisfied.

Contractiveness can be used to prove global stability when paired with compact-
ness of the state space. In particular, if h : U → U is contracting and U is compact,
then the dynamical system (U, h) is globally stable (see theorem 3.2.17 on page 58). In
our case this result is potentially helpful, but does not immediately apply. The reasons
is that when S is infinite, D(S) = (D(S), d1) is not compact.

Exercise 8.8 Let S = R, and let (ϕn)n≥1 ⊂ D(S) be given by ϕn := 1[n,n+1). Show
that d1(ϕn, ϕm) = 2 whenever n 6= m. Conclude that this sequence has no subsequence
converging to a point in D(S).

The previous exercise shows one way that compactness of (D(S), d1) fails: there is
so much “space” in the infinite dimensional setting, that we can always select another
point on the surface of the unit sphere that is completely isolated from all previous
ones (when distance is measured using d1).

Another way that it fails is because we can take sequences of densities that bunch
up into a point mass.

Exercise 8.9 Let S = (0, 1), and let (ϕn)n≥1 ⊂ D(S) be given by ϕn := n · 1(0,1/n).
Suppose that d1(ϕn, ϕ) → 0 for some ϕ ∈ D(S). Using your measure-theoretic bag of
tricks, show that λ(ϕ) = 0, contradicting ϕ ∈ D(S).

In exercise 8.9, you showed that (ϕn) cannot converge to any point in D(S). If we
shift the argument to a subsequence we get the same result, so there is no subsequence
converging to a point in D(S).
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Fortunately there is a way around this problem created by lack of compactness
of D(S). Recall from exercise 4.5 (page 62) that a dynamical system (U, h) is called
Lagrange stable if every trajectory is precompact in U. Lagrange stability is weaker
than compactness of U,5 but it turns out that if (U, h) is contracting and Lagrange stable
then it is globally stable.6

So suppose that (8.19) holds for some t ∈ N, and hence Mt is contracting. If
we can prove that all trajectories of (D(S), M) are precompact, then all trajectories
of (D(S), Mt) are also precompact (subsets of precompact sets are precompact), and
(D(S), Mt) is globally stable. Finally, lemma 4.1.5 (page 65) implies that if (D(S), Mt)
is globally stable, then so is (D(S), M). Let’s record this as a theorem.

Theorem 8.2.2 Let (D(S), M) be Lagrange stable. If Mt is a contraction for some t ∈ N,
then (D(S), M) is globally stable.

But how to prove precompactness of trajectories? We need the following two def-
initions:

Definition 8.2.3 Let M be a subset of D(S). The collection of densities M is called
tight if

∀ ϵ > 0, ∃ a compact set K ⊂ S such that sup
ψ∈M

∫
Kc

ψ(x)dx ≤ ϵ

It is called uniformly integrable if

∀ ϵ > 0, ∃ δ > 0 such that λ(A) < δ implies sup
ψ∈M

∫
A

ψ(x)dx ≤ ϵ

Here λ is Lebesgue measure. Essentially, tightness rules out the violation of com-
pactness seen in exercise 8.8, while uniform integrability rules out that seen in ex-
ercise 8.9. Tightness and uniform integrability are important to us because of the
following result:

Theorem 8.2.4 Let p be a stochastic density kernel on S, and let M be the corresponding
Markov operator. Let ψ ∈ D(S). If the sequence (ψMt)t≥0 is both tight and uniformly
integrable, then it is also precompact in D(S).

While the proof is omitted, those readers familiar with functional analysis will un-
derstand that tightness and uniform integrability together imply weak precompact-
ness in L1. Further, the fact that M is an integral operator means it is sufficiently

5If U is compact then (U, h) is always Lagrange stable (why?), but the converse is not true (example?).
6Proof: Fix x ∈ U, and define Γ(x) to be the closure of {hn(x) : n ∈ N}. The set Γ(x) is a compact subset

of U. (Why?) Moreover h sends Γ(x) into itself (see exercise 4.2, page 60). Hence (Γ(x), h) is a dynamical
system where h is contracting and Γ(x) is compact, implying the existence of a unique fixed point x∗ ∈ Γ(x)
with hn(x) → x∗ (theorem 3.2.17, page 58). Finally, h has at most one fixed point in U by contractiveness
over U. Therefore x∗ does not depend on x, and (U, h) is globally stable.
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smoothing that it sends weakly precompact sets into (strongly) precompact sets. The
proof of the latter result can be found in Lasota (1994, thm. 4.1).

8.2.3 Drift Conditions

How might one verify the tightness and uniform integrability of a given trajectory
(ψMt)t≥0? Tightness is usually established using drift inequalities. We will use a
variety that rely on the concept of norm-like functions (Meyn and Tweedie 2009):

Definition 8.2.5 A measurable function w : S → R+ is called norm-like if all of its
sublevel sets (i.e., sets of the form Ca := {x ∈ S : w(x) ≤ a}, a ∈ R+) are precompact
in (S, d2).

Example 8.2.6 Let S = Rn, and let w(x) := ‖x‖, where ‖ · ‖ is any norm onRn (defini-
tion 3.1.2, page 41). This function w is norm-like on S because the sublevel sets of w are
bounded with respect to the metric induced by ‖ · ‖, and hence bounded for d2 (the-
orem 3.2.14, page 54). For subsets of (Rn, d2), boundedness implies precompactness
(theorem 3.2.10, page 52).

We can now state our drift condition:

Definition 8.2.7 Let p be a stochastic density kernel on S. We say that p satisfies
geometric drift to the center if there exists a norm-like function w on S and positive
constants α < 1 and β < ∞ such that∫

w(y)p(x, y)dy ≤ αw(x) + β (x ∈ S)

As we will see, this condition is often easy to check in applications. Moreover

Proposition 8.2.8 If p satisfies geometric drift to the center, then (ψMt) is tight for every
ψ ∈ D(S).

The proof is given in the appendix to the chapter, but the intuition is not difficult:
Under geometric drift, the ratio

∫
w(y)p(x, y)dy/w(x) is dominated by α + β/w(x).

Norm-like functions tend to get large as x moves away from the center of the state
space, so if x is sufficiently far from the center, then α + β/w(x) < 1. In which case∫

w(y)p(x, y)dy, the expectation of w(Xt+1) given Xt = x, is less than w(x). This
in turn means that probability mass is moving back toward the center, where w is
smaller. Keeping probability mass in the center of the state space is the essence of
tightness.

Let’s conclude this section by showing that the AR(1) model

Xt+1 = aXt + b + Wt+1, (Wt)t≥1
IID∼ ϕ = N(0, 1), |a| < 1
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is Lagrange stable. Since its stochastic kernel

p(x, y) = ϕ(y − ax − b), ϕ(z) :=
1√
2π

exp(−z2/2)

is strictly positive on R×R (and hence its Markov operator is contracting), this im-
plies global stability.

Regarding tightness, let w be the norm-like function | · |. The change of variable
z = y − ax − b gives∫

|y|p(x, y)dy =
∫

|y|ϕ(y − ax − b)dy

=
∫

|ax + b + z|ϕ(z)dz ≤ α|x|+ β, α := |a|, β := |b|+
∫

|z|ϕ(z)dz

Since |a| < 1 the geometric drift condition is satisfied, and, in view of proposition
8.2.8, every trajectory is tight.

Only uniform integrability of trajectories remains to be checked. To do this, pick
any ψ ∈ D(S). Observe there is a constant K such that p(x, y) ≤ K for every x, y.
Hence, for any A ∈ B(R), t ∈ N,∫

A
ψMt(y)dy =

∫
A

[∫
p(x, y)ψMt−1(x)dx

]
dy

=
∫ [∫

A
p(x, y)dy

]
ψMt−1(x)dx ≤

∫
Kλ(A)ψMt−1(x)dx = Kλ(A)

Now fix ϵ > 0. If λ(A) < ϵ/K, then
∫

A ψMt(y)dy < ϵ, independent of t. Hence
uniform integrability of (ψMt)t≥0 is established. Theorem 8.2.4 now tells us that
(D(S), M) is Lagrange stable, and hence globally stable.

We will see in the next section that these ideas can be used to prove the stability
of much more complex models. Before discussing applications in earnest, let’s try to
package our results in a simple format. On the Lagrange stability side, we can make
our life easier with the following result:

Proposition 8.2.9 Let ψ ∈ D(S), let p be a stochastic density kernel on S, and let M be the
corresponding Markov operator. If the sequence (ψMt)t≥0 is tight, and in addition there exists
a continuous function m : S → R such that p(x, y) ≤ m(y) for all x, y ∈ S, then (ψMt)t≥0
is also uniformly integrable.

The proof is an extension of the proof of uniform integrability of the AR(1) system
above, where we used the fact that p is bounded above by a constant (which is cer-
tainly a continuous function). It is given in the appendix to the chapter and should be
skipped on first pass.

Now let’s put this all together:
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Theorem 8.2.10 Let p be a stochastic density kernel on S, and let M be the corresponding
Markov operator. If

1. ∃ t ∈ N such that
∫

pt(x, y) ∧ pt(x′, y)dy > 0 for all (x, x′) ∈ S × S,

2. p satisfies geometric drift to the center, and

3. ∃ a continuous m : S → R such that p(x, y) ≤ m(y) for all x, y ∈ S,

then the dynamical system (D(S), M) is globally stable.

Proof. In view of theorem 8.2.2, we need only show that (ψMt)t≥0 is precompact for
every ψ ∈ D(S). So pick any ψ ∈ D(S). Since p satisfies geometric drift, (ψMt)t≥0
is tight. By proposition 8.2.9 it is also uniformly integrable, and therefore precompact
(theorem 8.2.4).

Just as for the finite state case, stability is connected with the law of large numbers
(recall theorem 4.3.8 on page 95). For example, take the stochastic recursive sequence

Xt+1 = F(Xt, Wt+1), X0 ∼ ψ, (Wt)t≥1
IID∼ ϕ (8.20)

where the state space S is a Borel subset of Rn, Z is a Borel subset of Rk, ϕ ∈ D(Z)
and ψ ∈ D(S). Let kernel p represent this SRS on S in the sense of (8.3) on page 188.
Let M be the corresponding Markov operator. We have the following result:

Theorem 8.2.11 Let h : S → R be a Borel measurable function, and let (Xt)t≥0, the kernel
p and the Markov operator M be as above. If (D(S), M) is globally stable with stationary
distribution ψ∗, then

1
n

n

∑
t=1

h(Xt) →
∫

h(x)ψ∗(x)dx as n → ∞

with probability one whenever
∫
|h(x)|ψ∗(x)dx is finite.

The meaning of probability one convergence will be discussed later, but for now
you can understand it as it sounds: The probability of generating a path (Wt)t≥1 such
that this convergence fails is zero. Notice that convergence holds independent of the
initial condition ψ.

The proof of the theorem is beyond the scope of this book. See Nummelin (1984,
prop. 6.3) and Meyn and Tweedie (2009, thm. 17.1.7). Note that theorem 8.2.11 justifies
the stationary density look-ahead estimator introduced in §6.1.4, at least when stabil-
ity holds. Also, as we saw in the finite state case, the LLN leads to a new interpretation
of the stationary density that is valid in the globally stable case:∫

B
ψ∗(x)dx ∼= the fraction of time that (Xt)t≥0 spends in B
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for any B ∈ B(S). To see this, take h = 1B. Then theorem 8.2.11 gives

1
n

n

∑
t=1

h(Xt) =
1
n

n

∑
t=1
1B(Xt) →

∫
B

ψ∗(x)dx as n → ∞ (8.21)

8.2.4 Applications

Let’s turn to applications. To start, recall the model of commodity dynamics with
speculation discussed in §6.3.2. The state evolves according to

Xt+1 = αI(Xt) + Wt+1, (Wt)t≥1
IID∼ ϕ

where I is the equilibrium investment function defined in (6.30), page 141. Suppose
for now that ϕ is a lognormal density. The stochastic kernel is

p(x, y) = ϕ(y − αI(x)) ((x, y) ∈ S × S)

where ϕ(z) = 0 when z < 0. The state space is S = R+.
This model is easily seen to be globally stable. Regarding condition 1 of theo-

rem 8.2.10, pick any x, x′ ∈ S. Let E be all y ∈ S such that y > αI(x) and y > αI(x′).
On E the function y 7→ p(x, y) ∧ p(x′, y) is strictly positive, and integrals of strictly
positive functions on sets of positive measure are positive (theorem 7.3.5, page 177).
Hence condition 1 holds for t = 1.

Regarding condition 2, let w(x) = x. This function is norm-like on S. (Proof?)
Moreover geometric drift to the center holds because, using the change of variable
z = y − αI(x),∫

yp(x, y)dy =
∫

yϕ(y − αI(x))dy = αI(x) +
∫

zϕ(z)dz ≤ αx +
∫

zϕ(z)dz

Condition 3 is trivial because p(x, y) ≤ K for some constant K, and constant functions
are continuous. Hence global stability holds.

Next, recall the STAR model of example 6.1.2, where Z = S = R, and the state
evolves according to

Xt+1 = g(Xt) + Wt+1, (Wt)t≥1
IID∼ ϕ ∈ D(R) (8.22)

with g(x) := (α0 + α1x)(1 − G(x)) + (β0 + β1x)G(x). Here G : S → [0, 1] is a smooth
transition function satisfying G′ > 0, limx→−∞ G(x) = 0, and limx→∞ G(x) = 1.
Suppose that ϕ is bounded, everywhere positive onR,

γ := |α1| ∨ |β1| < 1, and
∫

|z|ϕ(z)dz < ∞
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Exercise 8.10 Show that under these assumptions there exists a constant c such that
|g(x)| ≤ γ|x|+ c for all x ∈ S = R.

Since the stochastic density kernel p(x, y) = ϕ(y − g(x)) is strictly positive on
S × S, condition 1 of theorem 8.2.10 holds. Regarding condition 2, set w(x) = |x|. The
change of variable z = y − g(x) gives∫

|y|p(x, y)dy =
∫

|y|ϕ(y − g(x))dy =
∫

|g(x) + z|ϕ(z)dz ≤ γ|x|+ c +
∫

|z|ϕ(z)dz

Since γ < 1, condition 2 is satisfied.
Condition 3 is trivial because ϕ and hence p are bounded by some constant K.

Setting m(y) = K for all y gives a continuous upper bound.
As another application, consider again the threshold autoregression model, where

S = Z = Rn, and

Xt+1 =
K

∑
k=1

(AkXt + bk)1Bk (Xt) + Wt+1, (Wt)t≥1
IID∼ ϕ ∈ D(Rn)

In exercise 8.2 you showed that the stochastic kernel is given by

p(x, y) = ϕ

[
y −

K

∑
k=1

(Akx + bk)1Bk (x)

]
((x, y) ∈ S × S) (8.23)

Assume that ϕ is strictly positive onRn, bounded, and that
∫
‖z‖ϕ(z)dz < ∞ for some

norm ‖ · ‖ on Rn. Conditions 1 and 3 of theorem 8.2.10 can be verified in much the
same way as the previous example. Regarding condition 2, let γk be a real number
such that ‖Akx‖ ≤ γk‖x‖ for all x. Assume that γ := maxk γk < 1. Then, using a
change of variable again,

∫
‖y‖p(x, y)dy =

∫ ∥∥∥∥∥ K

∑
k=1

(Akx + bk)1Bk (x) + z

∥∥∥∥∥ ϕ(z)dz

≤
K

∑
k=1

‖Akx + bk‖1Bk (x) +
∫

‖z‖ϕ(z)dz

≤
K

∑
k=1

γk‖x‖1Bk (x) +
K

∑
k=1

‖bk‖+
∫

‖z‖ϕ(z)dz

≤ γ‖x‖+ β, β :=
K

∑
k=1

‖bk‖+
∫

‖z‖ϕ(z)dz

Since γ < 1 and ‖ · ‖ is norm-like, condition 2 is also satisfied, and the model is
globally stable.
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Before starting the next application, let’s think a little more about norm-like func-
tions (i.e., nonnegative functions with precompact sublevel sets). For the metric space
(Rn, d2) we can equate precompactness with boundedness (theorem 3.2.10, page 52).
For S ⊂ Rn, bounded subsets of (S, d2) are not necessarily precompact (e.g., see ex-
ercise 3.32 on page 51), making precompactness and hence the norm-like property
harder to check. The next result gives some guidance when S is an open interval inR.
The proof is an exercise.

Lemma 8.2.12 If S = (u, v), where u ∈ {−∞} ∪R and v ∈ {+∞} ∪R, then w : S → R+

is norm-like if and only if limx→u w(x) = limx→v w(x) = ∞.7

As a consequence w(x) := | ln x| is a norm-like function on S = (0, ∞). We exploit
this fact below.

Now for the last application. In exercise 8.4 you derived the stochastic kernel
for the nonconvex growth model kt+1 = sA(kt)kα

t Wt+1, where S = Z = (0, ∞) and
(Wt)t≥1 is IID with density ϕ ∈ D(Z). It has the form

p(x, y) = ϕ

(
y

sA(x)xα

)
1

sA(x)xα
((x, y) ∈ S × S) (8.24)

Suppose that A takes values in [a1, a2] ⊂ S and that α < 1. Regarding the density
ϕ, assume that ϕ is strictly positive on (0, ∞), that

∫
| ln z|ϕ(z)dz is finite, and that

ϕ(z)z ≤ M for some M < ∞ and all z ∈ (0, ∞). For example, the lognormal density
satisfies all of of these conditions.

Now let’s check the conditions of theorem 8.2.10. Condition 1 holds because p is
strictly positive on S × S. Regarding condition 2, set w(x) = | ln x|, so∫

w(sA(x)xαz)ϕ(z)dz =
∫

| ln s + ln A(x) + α ln x + ln z|ϕ(z)dz

≤ | ln s|+ | ln A(x)|+ α| ln x|+
∫

| ln z|ϕ(z)dz

Setting β := | ln s|+ max{| ln a1|, | ln a2|}+
∫
| ln z|ϕ(z)dz we obtain∫

w(sA(x)xαz)ϕ(z)dz ≤ α| ln x|+ β = αw(x) + β

Since w is norm-like on (0, ∞), condition 2 is proved.
Finally, consider condition 3. Given any x and y in S we have

p(x, y) = p(x, y)
y
y
= ϕ

(
y

sA(x)xα

)
y

sA(x)xα

1
y
≤ M

y

Since m(y) := M/y is continuous on S, condition 3 is satisfied.
7Here limx→a f (x) = ∞ means that for any xn → a and any M ∈ N, there exists an N ∈ N such that

n ≥ N implies f (xn) ≥ M. Hint: Show that K ⊂ S is precompact in S if and only if no sequence in K
converges to either u or v.
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8.3 Commentary

The material in this chapter draws heavily on Lasota and Mackey (1994), and also
on a slightly obscure but fascinating paper of Lasota (1994). Theorem 8.2.10 is from
Mirman, Reffett, and Stachurski (2005).



Chapter 9

Measure-Theoretic Probability

In the first few decades of the twentieth century, mathematicians realized that through
measure theory it was possible to place the slippery subject of probability in a com-
pletely sound and rigorous framework, where manipulations are straightforward and
powerful theorems can be proved. This integration of probability and measure yielded
a standard language for research in probability and statistics shared by mathemati-
cians and other scientists around the world. A careful read of this chapter will provide
sufficient fluency to understand and participate in their conversation.

9.1 Random Variables

The language of probability begins with random variables and their distributions.
Let’s start with a detailed treatment of these topics, beginning with basic definitions
and moving on to key concepts such as expectations and independence.

9.1.1 Basic Definitions

In probability theory, the term random variable is just another way of saying F -
measurable real-valued function on some measure space (Ω, F ). In other words, a
random variable on (Ω, F ) is a map X : Ω → R with the property that X−1(B) ∈ F
for all B ∈ B(R). For historical reasons random variables are typically written with
upper-case symbols such as X and Y, rather than lower-case symbols such as f and
g. The measurable space (Ω, F ) is usually paired with a probability measure P (see
page 163), which assigns probabilities to events E ∈ F .

Why restrict attention to F -measurable functions? Well, suppose that P is a prob-
ability on (Ω, F ). We can think of a draw from P as an experiment that results in a

209
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nonnumerical outcome ω ∈ Ω, such as “three heads and then two tails.” In order to
make the outcome of this experiment more amenable to analysis, we specify a func-
tion X : Ω → R that maps outcomes into numbers. Suppose further that we wish to
evaluate the probability that X ≥ a, or

P{ω ∈ Ω : X(ω) ≥ a} :=: P{X ≥ a} :=: PX−1([a, ∞))

Since P is only defined on the sets in F , this requires X−1([a, ∞)) ∈ F . The latter is
guaranteed by F -measurability of X.

Actually, the definition of random variables as real-valued functions is not general
enough for our purposes. We need to consider random “objects,” which are like (real-
valued) random variables except that they take values in other spaces (such as Rn, or
abstract metric space). Some authors use the term “random object,” but we will call
them all random variables:

Definition 9.1.1 Let (Ω, F ,P) be a probability space, and let (S, S ) be any mea-
surable space. An S-valued random variable is a function X : Ω → S that is F , S -
measurable: X−1(B) ∈ F whenever B ∈ S . (If S = R, then S is taken to be
the Borel sets unless otherwise stated.) The distribution of X is the unique measure
µX ∈ P(S, S ) defined by

µX(B) := P(X−1(B)) = P{ω ∈ Ω : X(ω) ∈ B} (B ∈ S )

Note that µX , which gives the probability that X ∈ B for each B ∈ S , is just
the image measure P ◦ X−1 of P under X (see page 179 for a discussion of image
measures). Distributions play a central role in probability theory.

A quick but important point on notation: In probability theory it is standard to use
the abbreviation {X has property P} for the set {ω ∈ Ω : X(ω) has property P}. We
will follow this convention. Similarly, 1{X ∈ A} is the indicator function for the set
{ω ∈ Ω : X(ω) ∈ A}.

Exercise 9.1 Let S be a metric space, and let (Ω, F ) be any measurable space. Let
f : Ω → S be F , B(S)-measurable, and let g : S → R be a continuous function. Show
that X := g ◦ f is a random variable on (Ω, F ).

The integral of a real-valued random variable X on (Ω, F ,P) is called its expecta-
tion, and written E(X) or just EX. That is,

EX :=
∫

X dP :=:
∫

X(ω)P(dω) :=: P(X)

The definition on the far right is the linear functional notation for the integral, which
I personally prefer, as it eliminates the need for the new symbol E, and forces us to
specify the underlying probability whenever we want to take expectations. However,
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theE notation is more traditional, and is used in all of what follows—albeit with some
resentment on my part.

Our definition of E has a sound probabilistic interpretation. If X is simple, taking
values α1, . . . , αN on A1, . . . , AN respectively, then the expectationEX = ∑n αnP(An),
which is the sum of all possible values taken by the random variable X multiplied by
the probability that each such value occurs. If X is not simple, then to calculate ex-
pectation we approximate X by simple functions (see page 173), in which case similar
intuition applies.

Exercise 9.2 Consider the probability space (S, S , δz), where δz is the degenerate
probability measure introduced in §7.1.3. The expectation of f ∈ mS + is E f :=∫

f dδz. Intuitively, E f = f (z), since we are sure that δz will pick out the point z.
Confirm this intuition.

There is a close connection between distributions and expectations:

Theorem 9.1.2 If X is an S-valued random variable on (Ω, F ,P) with distribution µX ∈
P(S, S ), and if w ∈ mS is nonnegative or E|w(X)| < ∞, then

Ew(X) :=
∫

w ◦ X dP =
∫

w dµX :=: µX(w) (9.1)

This is just a special case of theorem 7.3.9 on page 179, which gives∫
w dµX :=

∫
w d(P ◦ X−1) =

∫
w ◦ X dP

Let (Ω, F ,P) be a probability space, let X be a real-valued random variable on
this space, and let k ∈ N. The k-th moment of X is E(Xk), which may or may not exist
as an expectation. By definition, existence of the expectation requires that E|X|k < ∞.
The elementary inequality aj ≤ ak + 1 for all j ≤ k and a ≥ 0 can be used to prove
that if j ≤ k and the k-th moment is finite, then so is the j-th: By the previous bound
we have |X|j ≤ |X|k + 1Ω, where the inequality is understood to hold pointwise on
Ω (i.e., for all ω ∈ Ω). Referring to properties M1–M5 of the integral (page 175), we
conclude that E|X|j ≤ E|X|k + 1 < ∞.

Let X and Y be real-valued random variables with finite second moment. The
variance of X is the real number Var(X) := E[(X −EX)2], while the covariance of X
and Y is

Cov(X, Y) := E[ (X −EX)(Y −EY) ]

Exercise 9.3 Show that if X has finite second moment and if a and b are constants, then
Var(aX + b) = a2 Var(X). Show in addition that if Cov(X, Y) = 0, then Var(X + Y) =
Var(X) + Var(Y).
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In the results that follow, we will often need to say something along the lines of “let
X be a random variable on (Ω, F ,P) taking values in (S, S ) and having distribution
µ.” It is fortunate then that:

Theorem 9.1.3 Given any measurable space (S, S ) and µ ∈ P(S, S ), there exists a prob-
ability space (Ω, F ,P) and a random variable X : Ω → S such that X has distribution µ.

Exercise 9.4 Prove theorem 9.1.3 by setting (Ω, F ,P) = (S, S , µ) and X = the iden-
tity map on S. Show, in particular, that X is measurable and has distribution µ.

Sometimes it’s useful to construct a supporting probability space a little more ex-
plicitly. Here’s a neat way to do it when S = R. Consider an arbitrary Borel probabil-
ity measure µ on R. By theorem 7.1.13 on page 166, the measure µ can be identified
with a cumulative distribution function H. For simplicity, we assume that H is strictly
increasing (a discussion of the general case can be found in Williams 1991, ch. 3). Let
X : (0, 1) → R be the inverse function of H. As usual, let B(0, 1) be the Borel sub-
sets of (0, 1), and let λ be Lebesgue measure. I claim that X is a random variable on
(Ω, F ,P) = ((0, 1), B(0, 1), λ) with distribution H. The proof is left to you.

Exercise 9.5 Confirm that X : (0, 1) → R is a Borel measurable function.

Exercise 9.6 Show that X has distribution H, in that P{X ≤ z} = H(z) for all z ∈ R.

Next we introduce Chebychev’s inequality, which allows us to bound tail probabili-
ties in terms of expectations—the latter being easier to calculate in many applications.

Theorem 9.1.4 Let X be an S-valued random variable on (Ω, F ,P). If h : S → R+ is a
measurable function and δ ∈ R, then δP{h(X) ≥ δ} ≤ Eh(X).

Proof. Observe that h(X) ≥ h(X)1{h(X) ≥ δ} ≥ δ1{h(X) ≥ δ} pointwise on Ω.
Now integrate, using properties M1–M5 as required.

Two special cases are used repeatedly in what follows: First, if X is a nonnegative
random variable then setting h(x) = x gives

P{X ≥ δ} ≤ EX
δ

(δ > 0) (9.2)

Second, application of the bound to Y := X −EX with h(x) = x2 gives

P{|X −EX| ≥ δ} = P{(X −EX)2 ≥ δ2} ≤ Var(X)

δ2 (δ > 0) (9.3)

As we will see, (9.3) can be used to prove a law of large numbers.
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9.1.2 Independence

We have already used the concept of independence repeatedly in the text. It’s now
time for a formal definition.

Definition 9.1.5 Random variables X and Y taking values in (S, S ) and (T, T ) re-
spectively are said to be independent whenever

P{X ∈ A} ∩ {Y ∈ B} = P{X ∈ A} ·P{Y ∈ B} for all A ∈ S and B ∈ T

More generally, a finite collection of random variables X1, . . . , Xn with Xi taking val-
ues in (Si, Si) is called independent if

P∩n
i=1 {Xi ∈ Ai} =

n

∏
i=1
P{Xi ∈ Ai} =

n

∏
i=1

µXi (Ai) (9.4)

for any sets with Ai ∈ Si. An infinite collection of random variables is called inde-
pendent if any finite subset of the collection is independent.

Exercise 9.7 Let X, Y be random variables on (Ω, F ,P) taking values in measure
space (S, S ) and let g, h be measurable functions from (S, S ) to (T, T ). Prove that
g(X) and h(Y) are also independent.

In (9.4), the right-hand side is the product of the marginal distributions. Hence
the joint distributions of independent random variables are just the product of their
marginals. The next result extends this “independence means multiply” rule from
probabilities to expectations.

Theorem 9.1.6 If X and Y are independent real-valued random variables with E|X| < ∞
and E|Y| < ∞, then E|XY| < ∞ and E(XY) = EXEY.

Exercise 9.8 Show that if X and Y are independent, then Cov(X, Y) = 0.

One important consequence of independence is the following result

Theorem 9.1.7 (Fubini) Let X and Y be as above, and let S and T be subsets of Rn and Rk

respectively. Let h ∈ bB(S × T) or mB(S × T)+. In other words, h is a either a bounded or
a nonnegative Borel measurable function on the space where the pair (X, Y) takes values. If X
and Y are independent, then

Eh(X, Y) =
∫ ∫

h(x, y)µX(dx)µY(dy) =
∫ ∫

h(x, y)µY(dy)µX(dx)

Things start to get interesting when we have an infinite number of random vari-
ables on the one probability space indexed by a value that often represents time. These
collections of random variables are called stochastic processes. A formal definition
follows.
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Definition 9.1.8 Let (S, S ) be a measurable space. An S-valued stochastic process is a
tuple

(Ω, F ,P, (Xt)t∈T)

where (Ω, F ,P) is a probability space, T is an index set such as N or Z, and Xt is an
S-valued random variable on (Ω, F ,P) for all t ∈ T.

With stochastic processes, the idea is that, at the “start of time,” a point ω is se-
lected by “nature” from the set Ω according to the probability law P (i.e., P(E) is the
probability that ω ∈ E). This is a once-off realization of all uncertainty, and Xt(ω)
simply reports the time t outcome for the variable of interest as a function of that
realization.

The simplest kinds of stochastic processes are the IID processes:

Definition 9.1.9 An S-valued stochastic process (Ω, F ,P, (Xt)t∈T) is called indepen-
dent and identically distributed (IID) if the sequence (Xt)t∈T is independent and each Xt
has the same distribution, in the sense that

P{Xt ∈ B} = P{Xs ∈ B} for any s, t ∈ T and any B ∈ S

For an IID process, any event that occurs at each t with nonzero probability occurs
eventually with probability one. To see this, suppose that (Ω, F ,P, (Xt)t∈N) is an
IID stochastic process, and that the common distribution of each Xt is µ ∈ P(S, S ).
Consider a set A ∈ S with µ(A) > 0.

Exercise 9.9 Show that P{Xt /∈ A, ∀t ∈ N} ≤ (1 − µ(A))T for all T ∈ N. Con-
clude that this probability is zero, and hence that Xt ∈ A for at least one t ∈ N with
probability one.

9.1.3 Back to Densities

We have mentioned a few times that some but not all distributions can be represented
by densities. Let’s now clarify exactly when distributions do have density representa-
tions, as well as collecting some miscellaneous facts about densities.

Let S be a Borel subset of Rn. Recall that a density on S is a function ϕ ∈ mB(S)+

with the property that
∫

ϕ(x)dx :=:
∫

ϕdλ :=: λ(ϕ) = 1. The set of all densities on
S is denoted by D(S). Each density ϕ ∈ D(S) creates a distribution µϕ ∈ P(S) via
µϕ(B) =

∫
B ϕ(x)dx.

Exercise 9.10 Confirm that this µϕ is countably additive.

We can go the other way, from distribution to associated density. In particular,
suppose that S ∈ B(Rn), and let µ ∈ P(S). The distribution µ is said to have a
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density representation ϕ if ϕ ∈ D(S) and

µ(B) =
∫

B
ϕ(x) dx (B ∈ B(S)) (9.5)

However, the pairing of D(S) and P(S) in (9.5) is not a one-to-one correspondence.
Every density creates a distribution, but there are distributions in P(S) without such
an “integral” representation by an element of D(S). Here is an example:

Exercise 9.11 Let a ∈ R, and let δa be the element of P(R) that puts unit mass on a.
That is, δa(B) = 1 if a ∈ B and zero otherwise. Argue that there is no ϕ ∈ D(R) such
that δa(B) =

∫
B ϕ(x)dx for all B ∈ B(R).

So when do density representations exist? The following fundamental theorem
answers that question. The proof is omitted, but you can find it in any text on measure
theory.

Theorem 9.1.10 (Radon–Nikodym) Let µ ∈ P(S), where S ∈ B(Rn), and let λ be the
Lebesgue measure. The distribution µ has a density representation if and only if µ(B) = 0
whenever B ∈ B(S) and λ(B) = 0.

When densities exist, they can make our life much easier. The next theorem indi-
cates how density representations can be used to compute expectations by changing
the measure used to integrate from a given distribution to Lebesgue measure. Often
the transformation results in a standard Riemann integral, which can be solved using
calculus.

Theorem 9.1.11 Let S ∈ B(Rn). If distribution µ ∈ P(S) has density representation
ϕ ∈ D(S), and if h ∈ bB(S) or h ∈ mB(S)+, then

µ(h) =
∫

h(x)ϕ(x)dx (9.6)

Proof. The proof follows a very standard argument, and is probably worth reading
through at least once. Let’s focus on the case of h ∈ bB(S). Suppose first that h = 1B,
where B ∈ B(S). For such an h the equality (9.6) holds by (9.5). Now suppose that
h is a simple function: h ∈ sB(S), h = ∑N

n=1 αn1Bn , Bn ∈ B(S). Since the integral is
linear, we have

µ

(
N

∑
n=1

αn1Bn

)
=

N

∑
n=1

αnµ(1Bn) =
N

∑
n=1

αn

∫
1Bn(x)ϕ(x)dx =

∫ N

∑
n=1

αn1Bn(x)ϕ(x)dx

In other words, (9.6) holds for h ∈ sB(S). Now let h ∈ bB(S) with h ≥ 0. By
lemma 7.2.5 (page 172) there is a sequence (sk) ⊂ sB(S)+ with sk ↑ h. Since (9.6)
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holds for each sk, we have

µ(sk) =
∫

sk(x)ϕ(x)dx (k ∈ N)

Taking limits with respect to k and using the monotone convergence theorem gives
(9.6). Finally, for general h ∈ bB(S), we have h = h+ − h−, and another application
of linearity completes the proof.

9.2 General State Markov Chains

It’s time to develop a general theory of Markov chains on uncountably infinite state
spaces.1 In chapter 8 we covered uncountable state spaces when the stochastic (den-
sity) kernel was a family of densities p(x, y)dy, one for each x in the state space. We
now drop the assumption that these distributions can be represented as densities and
permit them to be arbitrary probability measures.

9.2.1 Stochastic Kernels

For discrete time Markov chains of all shapes and forms, the most important primitive
is the stochastic kernel.2 You have already met some stochastic kernels: The first was
the finite kernel p, living on a finite set S, with the property that p(x, y) ≥ 0 and
∑y∈S p(x, y) = 1. The second was the density kernel p(x, y)dy on a Borel subset S of
Rk. Here is the general (i.e., probability measure) case:

Definition 9.2.1 Let S be a Borel subset of Rn. A stochastic kernel on S is a family of
probability measures

P(x, dy) ∈ P(S) (x ∈ S)

where x 7→ P(x, B) is Borel measurable for each B ∈ B(S).3

Each finite kernel p on finite S defines a general kernel P on S by

P(x, B) = ∑
y∈B

p(x, y) (x ∈ S, B ⊂ S)

Each density kernel p on Borel set S ⊂ Rn defines a general kernel P on S by

P(x, B) =
∫

B
p(x, y)dy (x ∈ S, B ∈ B(S))

1In order to be consistent with earlier theory and what lies ahead, we stick to state spaces that are subsets
ofRk . The theory for abstract measure spaces differs little.

2Stochastic kernels are also called Markov kernels, or transition probability functions.
3This last property is just a regularity condition to make sure that various integrals we want to use will

make sense.
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The next definition provides a link between Markov chains and kernels.

Definition 9.2.2 Let ψ ∈ P(S). A stochastic process (Xt)t≥0 on S is called Markov-
(P, ψ) if

1. at time zero, X0 is drawn from ψ, and

2. at time t + 1, Xt+1 is drawn from P(Xt, dy).

If ψ = δx for some x ∈ S, then we say (Xt)t≥0 is Markov-(P, x).

While this definition is intended to parallel the finite and density case definitions
given on pages 74 and 186 respectively, it is time to address an issue that needs clarifi-
cation: If the Markov-(P, ψ) process (Xt)t≥0 is to be regarded a stochastic process, then,
by definition of stochastic processes (see page 214) it must be a sequence of S-valued
random variables, all defined on a common probability space (Ω, F ,P). In the defini-
tion above no probability space is mentioned, and it is not clear how (Xt)t≥0 is defined
as a sequence of functions from Ω to S.

While construction of the underlying probability space can be undertaken without
any additional assumptions—interested readers are referred to Pollard (2002, §4.8) or
Shiryaev (1996, page 249)—the construction is usually redundant in economic appli-
cations because Markov chains typically present themselves in the form of stochas-
tic recursive sequences (SRSs). Such representations simultaneously determine the
stochastic kernel P, provide the probability space (Ω, F ,P), and furnish us with the
random variables (Xt)t≥0 living on that space. Let’s see how this works, starting with
the following definition.

Definition 9.2.3 Let S ∈ B(Rn), Z ∈ B(Rk), ϕ ∈ P(Z), and ψ ∈ P(S). Let F : S ×
Z → S be Borel measurable. The canonical stochastic recursive sequence (Xt)t≥0 is
defined by

Xt+1 = F(Xt, Wt+1), (Wt)t≥1
IID∼ ϕ, X0 ∼ ψ (9.7)

The random variables (Wt)t≥1 and X0 are defined on a common probability space
(Ω, F ,P) and are jointly independent.

In the definition, each Xt is defined as a random variable on (Ω, F ,P) as follows:
Given ω ∈ Ω, we have (Wt(ω))t≥1 and X0(ω). From these, (Xt(ω))t≥0 is recursively
determined by

Xt+1(ω) = F(Xt(ω), Wt+1(ω))

Note that according to the definition, Xt is a function only of X0 and W1, . . . , Wt. Hence
Xt and the current shock Wt+1 are independent.

There is a unique stochastic kernel P on S that represents the dynamics implied
by F and ϕ. To define P, we need to specify P(x, B) for arbitrary x ∈ S and B ∈
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B(S), corresponding to the probability that Xt+1 ∈ B given Xt = x. Since Xt+1 =
F(Xt, Wt+1), we get

P(x, B) = P{F(x, Wt+1) ∈ B} = E1B[F(x, Wt+1)]

(Recall that the expectation of an indicator function is equal to the probability of the
event it refers to.) Since Wt+1 is distributed according to ϕ ∈ P(Z), this becomes

P(x, B) =
∫
1B[F(x, z)]ϕ(dz) (x ∈ S, B ∈ B(S)) (9.8)

The integral is over the space Z on which the shock is defined.
In what follows, whenever we introduce a Markov-(P, ψ) process (Xt)t≥0, it will be

implicitly assumed that P is derived from the canonical SRS via (9.8), and that (Xt)t≥0
is the sequence of random variables defined recursively in (9.7). This way, (Xt)t≥0
is always a well-defined stochastic process living on the probability space (Ω, F ,P)
that supports the shocks (Wt)t≥1 and initial condition X0.4

Example 9.2.4 In §6.1 we introduced a stochastic Solow–Swan growth model where
output is a function f of capital k and a real-valued shock W. The sequence of produc-
tivity shocks (Wt)t≥1 is IID with distribution ϕ ∈ P(R). Capital at time t + 1 is equal
to that fraction s of output saved last period, plus undepreciated capital. As a result
kt follows the law

kt+1 = s f (kt, Wt+1) + (1 − δ)kt (9.9)

Let f : R+×R→ R+. A suitable state space is S = R+, and the shock space is Z = R.
We set

F(x, z) = s f (x, z) + (1 − δ)x

which clearly maps S × Z into S. Using (9.8), the “Solow-Swan stochastic kernel” is
given by

P(x, B) =
∫
1B(s f (x, z) + (1 − δ)x)ϕ(dz)

Example 9.2.5 Consider the deterministic model Xt+1 = h(Xt). Since P(x, B) is the
probability that Xt+1 ∈ B given Xt = x, we can set P(x, B) = 1B(h(x)) = 1h−1(B)(x).5

4Two technical notes: Given a distribution ϕ on Z, there always exists a probability space (Ω, F ,P) and
an independent sequence of random variables (Wt)t≥1 on (Ω, F ,P) such that the distribution of Wt is ϕ
(i.e.,P ◦ W−1

t = ϕ) for each t. See, for example, Pollard (2002, §4.8). Second, there is no loss of generality in
assuming the existence of an SRS representation for a given kernel P on S. In fact, every kernel on S can be
shown to have such a representation. See Bhattacharya and Majumdar (2007, §3.8) for details.

5Another path to the same conclusion is by considering Xt+1 = h(Xt) + Wt+1 where Wt = 0 with
probability one and then appealing to (9.8).
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Figure 9.1 Correlated shocks, α = −0.9, ρ = −0.9, Wt ≡ 0

Example 9.2.6 Consider the linear model with correlated shocks given by

Yt+1 = αYt + ξt+1

ξt+1 = ρξt + Wt+1

where all variables take values in R and (Wt)t≥1 is IID according to ϕ ∈ P(R).
Although (Yt)t≥0 is not itself a Markov chain, the bivariate process given by Xt :=
(Yt, ξt) is Markov on R2. It is a special case of the canonical SRS defined in (9.7), with
S = R2, Z = R and

F(x, z) = F[(y, ξ), z] =
(

αy + ρξ + z
ρξ + z

)
If max{|α|, |ρ|} < 1, then the model has certain stability properties elaborated on
below.

Figures 9.1–9.3 give some idea of the dynamics for (Yt)t≥0 that can arise in the
linear correlated shock model. In figure 9.1 the shocks Wt are identically zero and the
parameters α and ρ are negative, causing oscillation. In figures 9.2 and 9.3 the shock is
N(0, 0.25) and the parameters α and ρ are nonnegative. In figure 9.2 the coefficient ρ
is relatively large, leading to strong autocorrelation, while in 9.3 we set ρ = 0. In this
case the shocks are IID, (Yt)t≥0 is Markovian, and the autocorrelation is weaker.
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Figure 9.2 Correlated shocks, α = 0.9, ρ = 0.9, Wt ∼ N(0, 0.25)
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Figure 9.3 Correlated shocks, α = 0.9, ρ = 0.0, Wt ∼ N(0, 0.25)
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Example 9.2.7 This next example is the so-called AR(p) model. It demonstrates that
Markov models are more general than they first appear. Suppose that the state vari-
able X takes values in R, that (Wt) is an independent and identically distributed se-
quence inR, and that

Xt+1 = a0Xt + a1Xt−1 + · · ·+ ap−1Xt−p+1 + Wt+1 (9.10)

Define Yt := (Xt, Xt−1, . . . , Xt−p+1), and consider the system

Yt+1 =


a0 a1 . . . ap−2 ap−1
1 0 . . . 0 0
...
0 0 . . . 1 0

Yt +


1
0
...
0

Wt+1 (9.11)

The process (9.11) is an SRS with a well-defined stochastic kernel. At the same time,
the first element of Yt follows the process in (9.10).

9.2.2 The Fundamental Recursion, Again

On page 71 we showed that for a finite state Markov chain (Xt)t≥0 with Markov oper-
ator M, the sequence of marginal distributions (ψt)t≥0 satisfies ψt+1 = ψtM. An anal-
ogous recursion was obtained for the density case by defining the density Markov
operator ψM(y) =

∫
p(x, y)ψ(x)dx. Since a measure kernel P generalizes the finite

and density kernels, perhaps we can identify the general rule.
To begin, let S be a Borel subset of Rn, let P be a stochastic kernel on S, and let

(Xt)t≥0 be Markov-(P, ψ) for some ψ ∈ P(S). Writing ψt ∈ P(S) for the distribution
of Xt, we claim that the sequence (ψt)t≥0 ⊂ P(S) satisfies

ψt+1(B) =
∫

P(x, B)ψt(dx) (B ∈ B(S)) (9.12)

The intuition is the same as for the finite case: The probability that Xt+1 ∈ B is the
probability that Xt goes from x into B, summed across all x ∈ S, weighted by the
probability ψt(dx) that Xt takes the value x.

In verifying (9.12), let us assume that P is defined by the canonical SRS (9.7). Pick-
ing any h ∈ bB(S), independence of Xt and Wt+1 plus theorem 9.1.7 (page 213) give

E h(Xt+1) = E h[F(Xt, Wt+1)] =
∫ ∫

h[F(x, z)]ϕ(dz)ψt(dx)

Specializing to the case h = 1B ∈ bB(S) gives

E1B(Xt+1) =
∫ ∫

1B[F(x, z)]ϕ(dz)ψt(dx) =
∫

P(x, B)ψt(dx)
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where the second inequality is due to (9.8). But E1B(Xt+1) = P{Xt+1 ∈ B} =
ψt+1(B), confirming (9.12).

When we studied finite and density Markov chains, we made extensive use of the
Markov operator. In both cases this operator was defined in terms of the stochas-
tic kernel and satisfied ψt+1 = ψtM for all t. Now let’s consider the general mea-
sure setting: Given stochastic kernel P, define the Markov operator M by as the map
P(S) 3 ϕ 7→ ϕM ∈ P(S), where

ϕM(B) :=
∫

P(x, B)ϕ(dx) (B ∈ B(S)) (9.13)

The next lemma verifies that ϕM is a probability measure, and shows how to com-
pute integrals of the form (ϕM)(h).

Lemma 9.2.8 If Q is any stochastic kernel on S and µ ∈ P(S), then the set function ν
defined by

ν(B) =
∫

Q(x, B)µ(dx) (B ∈ B(S))

is an element of P(S), and for any h ∈ bB(S), we have

ν(h) :=:
∫

hdν =
∫ [∫

h(y)Q(x, dy)
]

µ(dx) (9.14)

Proof. Clearly, ν(S) = 1. Countable additivity of ν can be checked using either the
dominated or the monotone convergence theorem. The proof of (9.14) can be obtained
along the same lines as that of theorem 9.1.11 (page 215) and is left as an exercise.

As before, M acts on distributions to the left rather than the right. Using the
Markov operator, we can write the recursion (9.12) as ψt+1 = ψtM, which exactly
parallels our expression for the finite case (see (4.15) on page 78) and the density case
(see (8.14) on page 193). An inductive argument now confirms that if X0 ∼ ψ, then
Xt ∼ ψMt.

Example 9.2.9 In the case of the deterministic dynamical system Xt+1 = h(Xt), recall
that P(x, B) = 1B(h(x)). Now suppose that X0 = x̄ (i.e., X0 ∼ δx̄). Our intuition tells
us that the distribution of X1 must then be δh(x̄), and indeed

δx̄M(B) =
∫
1B(h(x))δx̄(dx) = 1B(h(x̄)) = δh(x̄)(B)

∴ δx̄M = δh(x̄)

Iterating forward, we find that Xt ∼ δx̄Mt = δht(x̄), as expected.
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Given a kernel P, the higher order kernels (Pt)t≥1 are defined by

P1 := P, Pt(x, B) :=
∫

P(z, B)Pt−1(x, dz) (x ∈ S, B ∈ B(S))

These kernels are defined so that Pt(x, B) gives the probability of moving from x into
B in t steps, and Pt(x, dy) is the distribution of Xt given X0 = x. To see this, observe
that the distribution of Xt given X0 = x is precisely δxMt, so we are claiming that

δxMt(B) = Pt(x, B) (x ∈ S, B ∈ B(S), t ∈ N)

This claim is a special case of the more general statement

ϕMt(B) =
∫

Pt(x, B)ϕ(dx) (ϕ ∈ P(S), B ∈ B(S), t ∈ N)

which says that Mt, the t-th iterate of M, is the Markov operator corresponding to the
t-th-order kernel Pt.6 For the proof we refer to theorem 9.2.10 below.

9.2.3 Expectations

As before, let bB(S) be all the bounded measurable functions on S. We now introduce
a second operator, also called the Markov operator and also denoted by M, which
sends h ∈ bB(S) into Mh ∈ bB(S), where

Mh(x) :=
∫

h(y)P(x, dy) (x ∈ S) (9.15)

Intuitively, Mh(x) represents the expectation of h(Xt+1) given Xt = x. This is the
same interpretation as the finite case, where we defined Mh(x) = ∑y∈S h(y)p(x, y).

We now have M acting on measures to the left and functions to the right. This is
analogous to the finite state notation, where ψM is the row vector ψ postmultiplied
by M, and Mh is the column vector h premultiplied by M. Stochastic kernels and the
operators ψ 7→ ψM and h 7→ Mh are in one-to-one correspondence via the identity

P(x, B) = δxM(B) = M1B(x) (x ∈ S, B ∈ B(S)) (9.16)

In (9.15), h is restricted to be bounded so that the integral and hence Mh are well
defined. On occasion it will be convenient to use the same operator notation when h is
unbounded. For example, if h is nonnegative and measurable, then the integral is well
defined (although possibly infinite) and the notation Mh is useful. In the remainder
of this section, however, M always acts on functions in bB(S).

The next few exercises show that the operator (9.15) has certain well-defined prop-
erties. Knowing these properties makes manipulating expectations of functions of
(Xt)t≥0 straightforward.

6This (unsurprising) result is the measure analogue of the density case stated in lemma 8.1.8 (page 194).
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Exercise 9.12 Verify that if h : S → R is bounded (resp., nonnegative), then so is Mh.

Exercise 9.13 Show that M1S = 1S pointwise on S (i.e., that 1S is a fixed point of M).

Exercise 9.14 Show that M is monotone, in the sense that if h, g ∈ bB(S) and h ≤ g,
then Mh ≤ Mg

Exercise 9.15 Show that M is linear, in the sense that if h, g ∈ bB(S) and α, β ∈ R,
then M(αh + βg) = αMh + βMg.

Often we will be dealing with the kernel P(x, B) =
∫
1B[F(x, z)]ϕ(dz) generated

by the canonical SRS defined in (9.7) on page 217. In this case Mh takes the form

Mh(x) :=
∫

h(y)P(x, dy) =
∫

h[F(x, z)]ϕ(dz) (9.17)

This expression is intuitive because Mh(x) represents the expectation of h(Xt+1) given
Xt = x, and h(Xt+1) = h[F(Xt, Wt+1)]. Hence

Mh(x) = Eh[F(x, Wt+1)] =
∫

h[F(x, z)]ϕ(dz) (9.18)

Here’s another way to get the same answer:

Exercise 9.16 Verify (9.17) using theorem 7.3.9 on page 179.

The t-th iterate Mth of h under M can be represented in terms of Pt:

Mth(x) =
∫

h(y)Pt(x, dy) (x ∈ S) (9.19)

We state a more general result immediately below (theorem 9.2.10). Before doing so,
note that since Pt(x, dy) is the distribution of Xt given X0 = x, it follows from (9.19)
that Mth can be interpreted as the conditional expectation

Mth(x) = E[h(Xt) | X0 = x] (9.20)

Theorem 9.2.10 Let P be a stochastic kernel on S. If M is the corresponding Markov operator,
then for every ϕ ∈ P(S), h ∈ bB(S) and t ∈ N, we have

(ϕMt)(h) = ϕ(Mth) =
∫ [∫

h(y)Pt(x, dy)
]

ϕ(dx)

We are using the linear functional notation for the first two integrals. In traditional
notation,

(ϕMt)(h) =
∫

h(y)(ϕMt)(dy) and ϕ(Mth) =
∫
(Mth)(x)ϕ(dx)
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Theorem 9.2.10 connects the iterates of ϕ 7→ ϕM and those of h 7→ Mh.7

Proof of theorem 9.2.10. Consider the case t = 1. We have

ϕ(Mh) =
∫

Mh(x)ϕ(dx) =
∫ [∫

h(y)P(x, dy)
]

ϕ(dx) = ϕM(h)

where the final equality is due to (9.14). It is an exercise for the reader to extend this
to general t using induction.

9.3 Commentary

The first monograph to exposit the measure-theoretic foundations of probability is
Kolmogorov (1956)—originally published in 1933—which provides excellent histori-
cal perspective, and is still well worth reading. For general references on measure-
theoretic probability, see Williams (1991), Breiman (1992), Shiryaev (1996), Durrett
(1996), Taylor (1997), Pollard (2002), Dudley (2002), Schilling (2005), and Cinlar (2011).

For further background on general state Markov chains see Breiman (1992, ch. 7),
Durrett (1996, ch. 5), Taylor (1997, ch. 3), and Meyn and Tweedie (2009). For a reference
with economic applications see Stokey and Lucas (1989, ch. 8). Stability of general
state Markov chains is discussed in chapter 11, and the commentary at the end of the
chapter contains more pointers to the literature.

7There is an obvious parallel with the finite case. See (4.19) on page 81.





Chapter 10

Stochastic Dynamic
Programming

In this chapter we continue our study of intertemporal decision problems begun in
§5.1 and §6.2, working our way through a rigorous treatment of stochastic dynamic
programming. Intertemporal problems are challenging because they involve opti-
mization in high dimensions; in fact the objective function is often defined over a
space of infinite dimension.1 We will see that studying the theory behind dynamic
programming is valuable not only for the understanding it provides, but also for de-
veloping numerical solution methods. Value iteration and policy iteration are the
most common techniques, and convergence of the algorithms is covered in some de-
tail.

10.1 Theory

Our first step is to give a careful definition of the problem. Once the definition is in
place we will go on to state and prove the basic principle of optimality for (infinite
horizon, stationary) stochastic dynamic programs.

10.1.1 Statement of the Problem

For an infinite horizon stochastic dynamic program (SDP), the scenario is one where
actions taken by an agent affect the future path of a state variable. Actions are spec-

1We have not defined infinite-dimensional space, which is an algebraic concept, but spaces of sequences
and spaces of functions typically have this property.

227



228 Preface

state

generatoragent

x
x′ = F(x, u, U)

state-action pair

(x, u)

u ∈ Γ(x) U

r(x, u)

Figure 10.1 Stochastic dynamic programming

ified in terms of a policy function, which maps the current state of the system into a
given action. Each policy induces a Markov process on the state space, and different
processes give different levels of expected reward.

Each SDP has a “state” space S ∈ B(Rn), an “action” space A ∈ B(Rm) and a
nonempty correspondence Γ mapping x ∈ S into B(A). The set Γ(x) will be inter-
preted as the collection of all feasible actions for the agent when the state is x. We
set

gr Γ := {(x, u) ∈ S × A : u ∈ Γ(x)}

Below gr Γ (“graph” of Γ) is called the set of feasible state/action pairs.
Next we introduce a measurable “reward” function r : gr Γ → R and a discount

factor ρ ∈ (0, 1). Finally, let Z ∈ B(Rk) be a shock space, let (Wt)t≥1 be a sequence of
IID shocks with distribution ϕ ∈ P(Z), and let

F : gr Γ × Z 3 (x, u, z) 7→ F(x, u, z) ∈ S

be a measurable “transition function,“ which captures the dynamics. At the start of
time t the agent observes the state Xt ∈ S and responds with action Ut ∈ Γ(Xt) ⊂ A.
After choosing Ut, the agent receives a reward r(Xt, Ut), and the state is updated
according to Xt+1 = F(Xt, Ut, Wt+1). The whole process then repeats, with the agent
choosing Ut+1, receiving reward r(Xt+1, Ut+1) and so on. A visualization is provided
in figure 10.1.

If our agent cared only about present rewards, the best action would be to choose
Ut = argmaxu∈Γ(Xt)

r(Xt, u) at each date t. However, the agent cares about the future
too, and must therefore trade-off maximizing current rewards against positioning the
state optimally in order to reap good rewards in future periods. The optimal decision
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depends on how much he or she cares about the future, which is in turn parameterized
by the discount factor ρ. The role of ρ is clarified below.

Example 10.1.1 Consider again the accumulation problem treated in §6.2. At the start
of time t, an agent has assets at, which is divided between consumption ct and savings
st. From consumption c the agent receives utility U(c), where U : R+ → R. After the
time t investment decision is made, shock ξt+1 is observed. Production then takes
place, yielding

at+1 = f (st, ξt+1), (ξt)t≥1
IID∼ ϕ ∈ P(Z), Z ∈ B(R) (10.1)

This fits our SDP framework, with a ∈ S := R+ the state variable and s ∈ A := R+

the control. Γ is the map S 3 a 7→ [0, a] ⊂ A that defines feasible savings given
assets a. The reward function r(a, s) on gr Γ is U(a − s). The transition function is
F(a, s, z) = f (s, z). For the present model it is independent of the state.

Clearly, some states in S are more attractive than others. High wealth positions
us well in terms of future consumption. Hence a trade-off exists between consuming
now, which gives current reward, and saving, which places us at a more attractive
point in the state space tomorrow.

Example 10.1.2 Now consider the same model but with correlated shocks. That is,
at+1 = f (st, ηt+1), where ηt+1 = g(ηt, ξt+1), g : R+×R+ → R+. This also fits the SDP
framework, with the only modification being that the state space has two elements
(a, η) ∈ S := R+ ×R+, and the transition function F is

F : (a, η, s, z) 7→
(

f (s, g(η, z))
g(η, z)

)
The feasible correspondence Γ is the map sending (a, η) into [0, a].

Returning to the general case, at minimum we need some regularity assumptions
on the primitives that will ensure that at least one solution to the SDP exists:

Assumption 10.1.3 The map r : gr Γ → R is continuous and bounded.

Assumption 10.1.4 Γ : S → B(A) is continuous and compact valued.2

Assumption 10.1.5 gr Γ 3 (x, u) 7→ F(x, u, z) ∈ S is continuous, ∀z ∈ Z.

These continuity and compactness assumptions are all about guaranteeing exis-
tence of maximizers. For us the important implication of assumption 10.1.5 is that for
any w ∈ bcS, the function

gr Γ 3 (x, u) 7→
∫

w[F(x, u, z)]ϕ(dz) ∈ R

2For the definition of continuity for correspondences and a simple sufficient condition see page 339.
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is continuous. To see this, take any (xn, un) ⊂ gr Γ converging to some arbitrary
(x, u) ∈ gr Γ, and any w ∈ bcS. We need to show that∫

w[F(xn, un, z)]ϕ(dz) →
∫

w[F(x, u, z)]ϕ(dz) (n → ∞)

You can verify this using the dominated convergence theorem (page 178).

10.1.2 Optimality

In order to construct a sensible optimization problem, we will restrict the agent to
policies in the set of stationary Markov policies.3 For such a policy, the agent makes ex-
actly the same decision after observing Xt = x as after observing Xt′ = x at some later
date t′. This is intuitive because when looking toward the infinite future, the agent
faces exactly the same trade-off (i.e., maximizing current rewards versus positioning
the state attractively next period), independent of whether the time is t or t′.

Under a stationary Markov policy, the agent’s behavior is described by a Borel
measurable function σ mapping each possible x ∈ S into a feasible action u ∈ Γ(x).
The interpretation is that if the current state is x ∈ S, then the agent responds with
action σ(x) ∈ Γ(x). We let Σ denote the set of all Borel measurable σ : S → A with
σ(x) ∈ Γ(x) for all x ∈ S. In what follows we refer to Σ simply as the set of feasible
policies.

For each σ ∈ Σ, we obtain a stochastic recursive sequence

Xt+1 = F(Xt, σ(Xt), Wt+1), (Wt)t≥1
IID∼ ϕ (10.2)

for the state (Xt)t≥0, and hence a stochastic kernel Pσ(x, dy) on S given by

Pσ(x, B) :=
∫
1B[F(x, σ(x), z)]ϕ(dz) (x ∈ S, B ∈ B(S))

We denote by Mσ the corresponding Markov operator. It is also convenient to define
the function

rσ : S 3 x 7→ r(x, σ(x)) ∈ R

so that rσ(x) is the reward at x when the agent follows policy σ. Using operator
notation, expected rewards next period under policy σ can be expressed as

Mσrσ(x) =
∫

rσ(y)Pσ(x, dy) =
∫

rσ[F(x, σ(x), z)]ϕ(dz) (x ∈ S)

where the last equality follows from (9.17) on page 224.

3In fact, it can be shown that every reasonable optimal policy is of this type.
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The shocks (Wt)t≥1 are defined on a fixed probability space (Ω, F ,P). Each ω ∈ Ω
picks out a sequence (Wt(ω))t≥1. Combining this sequence with an initial condition
X0 = x ∈ S and a policy σ yields a path (Xt(ω))t≥0 for the state:

Xt+1(ω) = F(Xt(ω), σ(Xt(ω)), Wt+1(ω)), X0(ω) = x

The reward corresponding to this path is random variable Yσ : Ω → R,

Yσ(ω) :=
∞

∑
t=0

ρtrσ(Xt(ω)) (ω ∈ Ω)

Exercise 10.1 Using boundedness of r, prove that this random variable is well defined,
in the sense that the sum converges for each ω ∈ Ω.

The optimization problem for the agent is maxσ∈ΣEYσ. More precisely, if we set

vσ(x) := EYσ :=: E

[
∞

∑
t=0

ρtrσ(Xt)

]
:=:

∫ [ ∞

∑
t=0

ρtrσ(Xt(ω))

]
P(dω)

and define the value function v∗ : S → R as

v∗(x) = sup
σ∈Σ

vσ(x) (x ∈ S) (10.3)

then a policy σ∗ ∈ Σ is called optimal if it attains the supremum in (10.3) for every
x ∈ S. In other words, σ∗ ∈ Σ is optimal if and only if vσ∗ = v∗.

Exercise 10.2 Using the dominated convergence theorem, show that we can exchange
limit and integral to obtain

vσ(x) := E

[
∞

∑
t=0

ρtrσ(Xt)

]
=

∞

∑
t=0

ρtErσ(Xt)

Now if h ∈ bB(S), then we can express Eh(Xt) as Mt
σh(x), where Mt

σ is the t-th
iterate of the Markov operator Mσ and X0 = x (see (9.20) on page 224). As a result vσ

can be written as

vσ(x) =
∞

∑
t=0

ρtMt
σrσ(x) (x ∈ S) (10.4)

As an aside, note that by theorem 9.2.10 (page 224), we have

Mt
σrσ(x) = (δxMt

σ)(rσ) =
∫

rσ(y)Pt
σ(x, dy) (x ∈ S) (10.5)
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Thus each policy σ ∈ Σ creates a Markov chain (Xt)t≥0 starting at x, with correspond-
ing marginal distributions (δxMt

σ)t≥0. By integrating each distribution with rσ, the
reward corresponding to σ, and computing the discounted sum, we obtain a value for
the policy. This is our objective function, to be maximized over σ ∈ Σ.

Exercise 10.3 Show that the sup in (10.3) is well-defined for each x ∈ S.

Definition 10.1.6 Given w ∈ bB(S), we define σ ∈ Σ to be w-greedy if

σ(x) ∈ argmax
u∈Γ(x)

{
r(x, u) + ρ

∫
w[F(x, u, z)]ϕ(dz)

}
(x ∈ S) (10.6)

Lemma 10.1.7 Let assumptions 10.1.3–10.1.5 hold. If w ∈ bcS, then the objective function
on the right-hand side of (10.6) is continuous in u for each x ∈ S, and Σ contains at least one
w-greedy policy.

The proof of this lemma is harder than it looks. On one hand, because w ∈ bcS,
assumptions 10.1.3 and 10.1.5 imply that the objective function on the right-hand side
of (10.6) is continuous with respect to u for each x. Since the constraint set Γ(x) is
compact, a solution to the maximization problem exists. Thus for every x we can find
at least one u∗

x that attains the maximum, and the map x 7→ u∗
x certainly defines a

function σ from S → A satisfying (10.6). On the other hand, for this “policy” to be in
Σ it must be Borel measurable. Measurability is not immediately clear.

Fortunately there are “measurable selection” theorems stating that under the cur-
rent assumptions we can find at least one such x 7→ u∗

x that is measurable. We omit
the details, referring interested readers to Aliprantis and Border (1999, §17.3).4

We are now ready to state our main result on dynamic programming:

Theorem 10.1.8 Under assumptions 10.1.3–10.1.5, the value function v∗ is bounded and
continuous. It is the unique function in bcS that satisfies

v∗(x) = max
u∈Γ(x)

{
r(x, u) + ρ

∫
v∗[F(x, u, z)]ϕ(dz)

}
(x ∈ S) (10.7)

A feasible policy is optimal if and only if it is v∗-greedy. At least one such policy exists.

Before turning to the proof let’s make some brief comments and discuss an easy
application. As a preliminary observation, note that in view of (10.7), a policy σ ∈ Σ
is v∗-greedy if and only if

v∗(x) = r(x, σ(x)) + ρ
∫

v∗[F(x, σ(x), z)]ϕ(dz) (x ∈ S) (10.8)

4In many of the applications considered here, solutions of the form x 7→ u∗
x described above are easily

seen to be measurable (being either continuous or monotone).
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In operator notation, this translates to v∗ = rσ + ρMσv∗.
Next let’s discuss how theorem 10.1.8 can be applied. One use is as a sufficient

condition: We will see below that v∗ can be computed using value iteration. With
v∗ in hand, one can then compute a v∗-greedy policy. Assuming Borel measurability,
we have found an optimal policy. The second way that we can use the theorem is as a
necessary condition for optimality. For example, suppose that we want to know about
the properties of optimal policies. We know that if σ∗ is optimal, then it satisfies (10.8).
We can (and do) use this to deduce facts about σ∗.

As an application of theorem 10.1.8, consider again the optimal savings example
discussed on page 229. Recall that the state variable is assets a ∈ S := R+, the control
is savings s ∈ A := R+, the feasible correspondence is Γ(a) = [0, a], the reward
function is r(a, s) = U(a − s), and the transition function is F(a, s, z) = f (s, z). The
shocks (ξt)t≥1 are independent and take values in Z ⊂ R according to ϕ ∈ P(Z).

Assumption 10.1.9 The map U : R+ → R+ is bounded and continuous. The function
f is measurable and mapsR+ × Z intoR+. For each fixed z ∈ Z, the map s 7→ f (s, z)
is continuous.

A feasible savings policy σ ∈ Σ is a Borel function from S to itself such that σ(a) ∈
[0, a] for all a. Every σ ∈ Σ defines a process for income via

at+1 = f (σ(at), ξt+1) (10.9)

The corresponding stochastic kernel Pσ on S is given by

Pσ(a, B) =
∫
1B[ f (σ(a), z)]ϕ(dz) (a ∈ S, B ∈ B(S))

Proposition 10.1.10 Under assumption 10.1.9, the value function v∗ is bounded and contin-
uous. It is the unique function in bcS that satisfies

v∗(a) = max
0≤s≤a

{
U(a − s) + ρ

∫
v∗[ f (s, z)]ϕ(dz)

}
(a ∈ S)

At least one optimal policy exists. Moreover a policy σ∗ is optimal if and only if

v∗(a) = U(a − σ∗(a)) + ρ
∫

v∗[ f (σ∗(a), z)]ϕ(dz) (a ∈ S)

Exercise 10.4 Verify proposition 10.1.10 using assumption 10.1.9. In particular, show
that assumptions 10.1.3–10.1.5 on page 229 all hold.
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10.1.3 Proofs

Let’s turn to the proof of theorem 10.1.8. As a preliminary step, we introduce two
important operators and investigate their properties. Many proofs in dynamic pro-
gramming can be reduced to simple manipulations of these maps.

Definition 10.1.11 The operator Tσ : bB(S) → bB(S) is defined for all σ ∈ Σ by

Tσw(x) = r(x, σ(x)) + ρ
∫

w[F(x, σ(x), z)]ϕ(dz) (x ∈ S)

The Bellman operator T : bcS → bcS is defined by

Tw(x) = max
u∈Γ(x)

{
r(x, u) + ρ

∫
w[F(x, u, z)]ϕ(dz)

}
(x ∈ S)

Using the Bellman operator, we can restate the first part of theorem 10.1.8 as: v∗ is
the unique fixed point of T in bcS.

Exercise 10.5 Confirm that T does in fact send bcS into itself. Regarding continuity,
refer to assumptions 10.1.3–10.1.5 and Berge’s theorem on page 340.

Recalling the definition vσ := ∑∞
t=0 ρtMt

σrσ, our first result is as follows:

Lemma 10.1.12 For every σ ∈ Σ, the operator Tσ is uniformly contracting on (bB(S), d∞),
with

‖Tσw − Tσw′‖∞ ≤ ρ‖w − w′‖∞ ∀w, w′ ∈ bB(S) (10.10)

and the unique fixed point of Tσ in bB(S) is vσ. In addition Tσ is monotone on bB(S), in the
sense that if w, w′ ∈ bB(S) and w ≤ w′, then Tσw ≤ Tσw′.

Here inequalities such as w ≤ w′ are pointwise inequalities on S.

Proof. The proof that Tσ is monotone is not difficult, and is left to the reader (you
might want to use monotonicity of Mσ, as in exercise 9.14, page 224). Regarding the
claim that Tσvσ = vσ, pointwise on S we have

vσ =
∞

∑
t=0

ρtMt
σrσ = rσ +

∞

∑
t=1

ρtMt
σrσ = rσ + ρMσ

∞

∑
t=0

ρtMt
σrσ = rσ + ρMσvσ = Tσvσ

The only tricky part of this argument is passing Mσ through the limit in the infinite
sum. Justifying this is a good exercise for the reader who wants to improve his or her
familiarity with the dominated convergence theorem.
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The proof that Tσ is uniformly contracting is easy. Pick any w, w′ ∈ bB(S). Making
use of the linearity and monotonicity of Mσ, we have

|Tσw − Tσw′| = |ρMσw − ρMσw′| = ρ|Mσ(w − w′)|
≤ ρMσ|w − w′| ≤ ρMσ‖w − w′‖∞1S = ρ‖w − w′‖∞

pointwise on S. The inequality (10.10) now follows.

Next we turn to the Bellman operator.

Lemma 10.1.13 The operator T is uniformly contracting on (bcS, d∞), with

‖Tw − Tw′‖∞ ≤ ρ‖w − w′‖∞ ∀w, w′ ∈ bcS (10.11)

In addition T is monotone on bcS, in the sense that if w, w′ ∈ bcS and w ≤ w′, then Tw ≤
Tw′.

Proof. The proof of the second claim (monotonicity) is easy and is left to the reader.
Before starting the proof of (10.11), we make the following observation: If w and w′

are bounded functions on some arbitrary set, then

| sup w − sup w′| ≤ sup |w − w′| =: ‖w − w′‖∞ (10.12)

To see this, pick any such w, w′. We have

sup w = sup(w − w′ + w′) ≤ sup(w − w′) + sup w′ ≤ sup |w − w′|+ sup w′

∴ sup w − sup w′ ≤ sup |w − w′|
The same argument reversing the roles of w and w′ finishes the job.

Now consider (10.11). For any w, w′ ∈ bcS and any x ∈ S, the deviation |Tw(x)−
Tw′(x)| is equal to∣∣∣∣sup

u

{
r(x, u) + ρ

∫
w[F(x, u, z)]ϕ(dz)

}
− sup

u

{
r(x, u) + ρ

∫
w′[F(x, u, z)]ϕ(dz)

}∣∣∣∣
Using (10.12), we obtain

|Tw(x)− Tw′(x)| ≤ ρ sup
u

∣∣∣∣∫ {w[F(x, u, z)]− w′[F(x, u, z)]}ϕ(dz)
∣∣∣∣

≤ ρ sup
u

∫
|w[F(x, u, z)]− w′[F(x, u, z)]|ϕ(dz)

≤ ρ sup
u

∫
‖w − w′‖∞ϕ(dz) = ρ‖w − w′‖∞

Taking the supremum over x ∈ S gives the desired inequality.5

5This proof is due to Hernández-Lerma and Lasserre (1996, lmm. 2.5).
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Exercise 10.6 Give an alternative proof that T is a uniform contraction of modulus ρ
by applying theorem 6.3.5 (page 143).

Now we turn to the first claim in theorem 10.1.8. In operator notation, this trans-
lates to the following assertion:

Lemma 10.1.14 The value function v∗ is the unique fixed point of T in bcS.

Proof. Since T is uniformly contracting on the complete space (bcS, d∞), it follows
from Banach’s fixed point theorem (theorem 3.2.16) that T has one and only one fixed
point w∗ in this set.6 It remains to show that w∗ = v∗.

To begin, note that by lemma 10.1.7 there exists a policy σ ∈ Σ satisfying Tw∗ =
Tσw∗. (Why?) For this policy σ we have w∗ = Tw∗ = Tσw∗. But vσ is the only fixed
point of Tσ, so w∗ = vσ. In which case w∗ ≤ v∗, since, by definition, vσ ≤ v∗ for any
σ ∈ Σ.

To check the reverse inequality, pick an arbitrary σ ∈ Σ, and note that w∗ = Tw∗ ≥
Tσw∗. Iterating on this inequality and using the monotonicity of Tσ, we obtain w∗ ≥
Tk

σw∗ for all k ∈ N. Taking limits and using the fact that Tk
σw∗ → vσ uniformly and

hence pointwise, we have w∗ ≥ vσ. Since σ is arbitrary it follows that w∗ ≥ v∗. (Why?)
Therefore w∗ = v∗.

Our next task is to verify the claim that policies are optimal if and only if they are
v∗-greedy.

Lemma 10.1.15 A policy σ ∈ Σ is optimal if and only if it is v∗-greedy.

Proof. Recall that σ is v∗-greedy if and only if it satisfies (10.8), which in operator
notation becomes v∗ = Tσv∗. This is equivalent to the statement vσ = v∗, since vσ is
the unique fixed point of Tσ. But vσ = v∗ says precisely that σ is optimal.

The last claim in theorem 10.1.8 is that at least one optimal policy exists. This now
follows from lemma 10.1.7.

10.2 Numerical Methods

Numerical solution of dynamic programming problems is challenging and, at the
same time, of great practical significance. In earlier chapters we considered tech-
niques for solving SDPs numerically, such as value iteration and policy iteration. In
this section we look more deeply at the theory behind these iterative methods. The
algorithms are shown to converge globally to optimal solutions.

6Completeness of (bcS, d∞) is proved in theorem 3.2.7, page 50.
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10.2.1 Value Iteration

Consider the SDP defined in §10.1. The fact that the Bellman operator is a uniform
contraction on bcS for which v∗ is the fixed point gives us a natural way to approx-
imate v∗: Pick any v0 ∈ bcS and iterate the Bellman operator until Tnv0 is close to
v∗. This suggests the algorithm for computing (approximately) optimal policies pre-
sented in algorithm 10.1.

Algorithm 10.1: Value iteration algorithm

read in initial v0 ∈ bcS and set n = 0
repeat

set n = n + 1
set vn = Tvn−1, where T is the Bellman operator

until a stopping rule is satisfied
solve for a vn-greedy policy σ (cf., definition 10.1.6)
return σ

Algorithm 10.1 is essentially the same as the earlier value iteration algorithms pre-
sented on page 104, although we have added the index n in order to keep track of
the iterates. Since vn = Tnv0 converges to v∗, after sufficiently many iterations the
resulting policy σ should have relatively good properties, in the sense that vσ

∼= v∗.7

Two obvious questions arise: First, what stopping rule should be used in the loop?
We know that vn → v∗, but v∗ is not observable. How can we measure the distance
between v∗ and vn for given n? Second, for given vn, how close to being optimal is the
vn-greedy policy σ that the algorithm produces? These questions are answered in the
next theorem.

Theorem 10.2.1 Let v0 ∈ bcS. Fix n ∈ N, and let vn := Tnv0, where T is the Bellman
operator. If σ ∈ Σ is vn-greedy, then

‖v∗ − vσ‖∞ ≤ 2ρ

1 − ρ
‖vn − vn−1‖∞ (10.14)

The next corollary follows directly (the proof is an exercise).

Corollary 10.2.2 Let (vn)n≥0 be as in theorem 10.2.1. If (σn)n≥0 is a sequence in Σ such
that σn is vn-greedy for each n ≥ 0, then ‖v∗ − vσn‖∞ → 0 as n → ∞.

The proof of theorem 10.2.1 is given at the end of this section. Before turning to it,
let us make some comments on the theorem.

7Of course if vn is exactly equal to v∗, then σ is optimal, and vσ = v∗.
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First, theorem 10.2.1 bounds the deviation between the vn-greedy policy σ and the
optimal policy σ∗ in terms of their value. The value of σ∗ is given by vσ∗ , which by
definition is equal to v∗. As a result we can say that given any initial condition x,

vσ∗(x)− vσ(x) = |vσ∗(x)− vσ(x)| ≤ ‖v∗ − vσ‖∞ ≤ 2ρ

1 − ρ
‖vn − vn−1‖∞

Of course one can also seek to bound some kind of geometric deviation between σ
and σ∗, but in applications this is usually less important than bounding the difference
between their values.

Second, the usefulness of this theorem comes from the fact that ‖vn − vn−1‖∞ is
observable. In particular, it can be measured at each iteration of the algorithm. This
provides a natural stopping rule: Iterate until ‖vn − vn−1‖∞ is less than some tolerance
ϵ, and then compute a vn-greedy policy σ. The policy satisfies ‖v∗ − vσ‖∞ ≤ 2ρϵ/(1−
ρ).

Third, the bound (10.14) is often quite conservative. From this perspective, the-
orem 10.2.1 might best be viewed as a guarantee that the output of the algorithm
converges to the true solution—such a guarantee is indispensable for numerical algo-
rithms in scientific work.

Finally, on a related point, if you wish to supply bounds for a particular solution
you have computed, then relative optimality bounds are easier to interpret. A relative
bound establishes that an approximate optimal policy earns at least some fraction
(say, 95%) of maximum value. Here is an example: Suppose that the reward function
is nonnegative, so vσ and v∗ are nonnegative on S.8 Suppose further that we choose
v0 to satisfy 0 ≤ v0 ≤ v∗, in which case 0 ≤ vn ≤ v∗ for all n ∈ N by monotonicity of
T. By (10.14) and the fact that vn ≤ v∗, we have

‖vn − vn−1‖∞ ≤ η =⇒ v∗(x)− vσ(x)
v∗(x)

≤ 2ρ

1 − ρ
· η

vn(x)
=: αn(η, x) (10.15)

In other words, if one terminates the value iteration at ‖vn − vn−1‖∞ ≤ η, then the
resulting policy σ obtains at least (1 − αn(η, x)) × 100% of the total value available
when the initial condition is x.

Let’s finish with the proof of theorem 10.2.1:

Proof of theorem 10.2.1. Note that

‖v∗ − vσ‖∞ ≤ ‖v∗ − vn‖∞ + ‖vn − vσ‖∞ (10.16)

8Since r is already assumed to be bounded, there is no loss of generality in taking r as nonnegative, in
the sense that adding a constant to r produces a monotone transformation of the objective function vσ(x),
and hence does not alter the optimization problem.
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First let’s bound the first term on the right-hand side of (10.16). Using the fact that v∗

is a fixed point of T, we get

‖v∗ − vn‖∞ ≤ ‖v∗ − Tvn‖∞ + ‖Tvn − vn‖∞ ≤ ρ‖v∗ − vn‖∞ + ρ‖vn − vn−1‖∞

∴ ‖v∗ − vn‖∞ ≤ ρ

1 − ρ
‖vn − vn−1‖∞ (10.17)

Now consider the second term on the right-hand side of (10.16). Since σ is vn-greedy,
we have Tvn = Tσvn, and

‖vn − vσ‖∞ ≤ ‖vn − Tvn‖∞ + ‖Tvn − vσ‖∞ ≤ ‖Tvn−1 − Tvn‖∞ + ‖Tσvn − Tσvσ‖∞

∴ ‖vn − vσ‖∞ ≤ ρ‖vn−1 − vn‖∞ + ρ‖vn − vσ‖∞

∴ ‖vn − vσ‖∞ ≤ ρ

1 − ρ
‖vn − vn−1‖∞ (10.18)

Together, (10.16), (10.17), and (10.18) give us (10.14).

10.2.2 Policy Iteration

Aside from value function iteration, there is another iterative procedure called policy
iteration, which we first met in §5.1.3. In this section we describe policy iteration, and
some of its convergence properties. The basic algorithm is presented in algorithm 10.2.

Algorithm 10.2: Policy iteration algorithm

read in an initial policy σ0 ∈ Σ
set n = 0
repeat

evaluate vσn := ∑∞
t=0 ρtMt

σn
rσn

compute a vσn -greedy policy σn+1 ∈ Σ
set n = n + 1

until a stopping rule is satisfied
return σn

It turns out that the sequence of functions vσn produced by algorithm 10.2 con-
verges to v∗, and, with a sensible stopping rule, the resulting policy is approximately
optimal. Let’s clarify these ideas, starting with the following observation:

Lemma 10.2.3 If (σn)n≥0 is a sequence in Σ generated by the policy iteration algorithm, then
vσn ≤ vσn+1 holds pointwise on S for all n.
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Proof. Pick any x ∈ S and n ∈ N. By definition,

σn+1(x) ∈ argmax
u∈Γ(x)

{
r(x, u) + ρ

∫
vσn [F(x, u, z)]ϕ(dz)

}
From this and the fact that vσ = Tσvσ for all σ ∈ Σ, we have

vσn(x) = r(x, σn(x)) + ρ
∫

vσn [F(x, σn(x), z)]ϕ(dz)

≤ r(x, σn+1(x)) + ρ
∫

vσn [F(x, σn+1(x), z)]ϕ(dz)

Rewriting in operator notation, this inequality becomes vσn ≤ Tσn+1 vσn . Since Tσn+1

is monotone (lemma 10.1.12), iteration with Tσn+1 yields vσn ≤ Tk
σn+1

vσn for all k ∈ N.
Taking limits, and using the fact that Tk

σn+1
vσn → vσn+1 uniformly and hence pointwise

on S, we obtain the conclusion of the lemma.

It turns out that just as the value iteration algorithm is globally convergent, so too
is the policy iteration algorithm.

Theorem 10.2.4 If (σn)n≥0 ⊂ Σ is a sequence generated by the policy iteration algorithm,
then ‖vσn − v∗‖∞ → 0 as n → ∞.

Proof. Let wn := Tnvσ0 , where T is the Bellman operator, and, as usual, T0 is the
identity map. Since vσn ≤ v∗ for all n ≥ 0 (why?), it is sufficient to prove that wn ≤ vσn

for all n ≥ 0. (Why?) The claim is true for n = 0 by definition. Suppose that it is true
for arbitrary n. Then it is true for n + 1, since

wn+1 = Twn ≤ Tvσn = Tσn+1 vσn ≤ Tσn+1 vσn+1 = vσn+1

You should not have too much trouble verifying these statements.

The rest of this section focuses mainly on policy iteration in the finite case, which
we treated previously in §5.1.3. It is proved that when S and A are finite, the exact
optimal policy is obtained in finite time.

Lemma 10.2.3 tells us that the value of the sequence (σn) is nondecreasing. In fact,
if σn+1 cannot be chosen as equal to σn, then the value increase is strict. On the other
hand, if σn+1 can be chosen as equal to σn, then we have found an optimal policy. The
next lemma makes these statements precise.

Lemma 10.2.5 Let (σn) be a sequence of policies generated by the policy iteration algorithm.
If σn+1 cannot be chosen as equal to σn, in the sense that there exists an x ∈ S such that

σn(x) /∈ argmax
u∈Γ(x)

{
r(x, u) + ρ

∫
vσn [F(x, u, z)]ϕ(dz)

}
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then vσn+1(x) > vσn(x). Conversely, if σn+1 can be chosen as equal to σn, in the sense that

σn(x) ∈ argmax
u∈Γ(x)

{
r(x, u) + ρ

∫
vσn [F(x, u, z)]ϕ(dz)

}
∀ x ∈ S

then vσn = v∗ and σn is an optimal policy.

Proof. Regarding the first assertion, let x be a point in S with

r(x, σn+1(x)) + ρ
∫

vσn [F(x, σn+1(x), z)]ϕ(dz)

> r(x, σn(x)) + ρ
∫

vσn [F(x, σn(x), z)]ϕ(dz)

Writing this in operator notation, we have Tσn+1 vσn(x) > Tσn vσn(x) = vσn(x). But
lemma 10.2.3 and the monotonicity of Tσn+1 now yield

vσn+1(x) = Tσn+1 vσn+1(x) ≥ Tσn+1 vσn(x) > vσn(x)

Regarding the second assertion, suppose that

σn(x) ∈ argmax
u∈Γ(x)

{
r(x, u) + ρ

∫
vσn [F(x, u, z)]ϕ(dz)

}
∀ x ∈ S

It follows that

vσn(x) = r(x, σn(x)) + ρ
∫

vσn [F(x, σn(x), z)]ϕ(dz)

= max
u∈Γ(x)

{
r(x, u) + ρ

∫
vσn [F(x, u, z)]ϕ(dz)

}
for every x ∈ S. In other words, vσn is the fixed point of the Bellman operator. In
which case vσn = v∗, and the proof is done.

Algorithm 10.3 adds a stopping rule to algorithm 10.2, which is suitable for the
finite case. The algorithm works well in the finite state/action case because it always
terminates in finite time at an optimal policy. This is the content of our next theorem.

Theorem 10.2.6 If S and A are finite, then the policy iteration algorithm always terminates
after a finite number of iterations, and the resulting policy is optimal.

Proof. First note that if the algorithm terminates at n with σn+1 = σn, then this pol-
icy is optimal by the second part of lemma 10.2.5. Next suppose that the algorithm
never terminates, generating an infinite sequence of policies (σn). At each stage n the
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Algorithm 10.3: Policy iteration, finite case

read in initial σ0 ∈ Σ
set n = 0
repeat

set n = n + 1
evaluate vσn−1 = ∑∞

t=0 ρtMt
σn−1

rσn−1

taking σn = σn−1 if possible, compute a vσn−1 -greedy policy σn

until σn = σn−1
return σn

stopping rule implies that σn+1 cannot be chosen as equal to σn, and the first part of
lemma 10.2.5 applies. Thus vσn < vσn+1 for all n (i.e., vσn ≤ vσn+1 and vσn 6= vσn+1 ).
But the set of maps from S to A is clearly finite, and hence so is the set of functions
{vσ : σ ∈ Σ}. As a result such an infinite sequence is impossible, and the algorithm
always terminates.

10.2.3 Fitted Value Iteration

In §6.2.2 we began our discussion of fitted value iteration and presented the main
algorithm. Recall that to approximate the image Tv of a function v we evaluated
Tv at finite set of grid points (xi)

k
i=1 and then used these samples to construct an

approximation to Tv. In doing so, we decomposed T̂ into the two operators L and T:
First T is applied to v at each of the grid points, and then an approximation operator
L sends the result into a function w = T̂v = L(Tv). Thus T̂ := L ◦ T :=: LT. We saw
that LT is uniformly contracting whenever L is nonexpansive with respect to d∞.

In general, we will consider a map L : bB(S) → F ⊂ bB(S) where, for each
v ∈ bB(S), the approximation Lv ∈ F is constructed based on a sample (v(xi))

k
i=1 on

grid points (xi)
k
i=1. In addition, L is chosen to be nonexpansive:

‖Lv − Lw‖∞ ≤ ‖v − w‖∞ ∀ v, w ∈ bB(S) (10.19)

Example 10.2.7 (Piecewise constant approximation) Let (Pi)
k
i=1 be a partition of S, in

that Pm ∩ Pn = ∅ when m 6= n and S = ∪k
i=1Pi. Each Pi contains a single grid point xi.

For any v : S → R we define v 7→ Mv by

Mv(x) =
k

∑
i=1

v(xi)1Pi (x) (x ∈ S)
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Exercise 10.7 Show that for any w, v ∈ bB(S) and any x ∈ S we have

|Mw(x)− Mv(x)| ≤ sup
1≤i≤k

|w(xi)− v(xi)|

Using this result, show that the operator M is nonexpansive on (bB(S), d∞).

Example 10.2.8 (Continuous piecewise linear interpolation) Let’s focus on the one-
dimensional case. Let S = [a, b], and let the grid points be increasing:

x1 < . . . < xk, x1 = a and xk = b

Let N be the operator that maps w : S → R into its continuous piecewise affine inter-
polant defined by the grid. That is to say, if x ∈ [xi, xi+1] then

Nw(x) = λ(x)w(xi) + (1 − λ(x))w(xi+1) where λ :=
xi+1 − x
xi+1 − xi

Exercise 10.8 Show that for any w, v ∈ bB(S) and any x ∈ S we have

|Nw(x)− Nv(x)| ≤ sup
1≤i≤k

|w(xi)− v(xi)|

Using this result, show that N is nonexpansive.

Algorithm 10.4: FVI algorithm

read in initial v0 ∈ bB(S) and set n = 0
repeat

set n = n + 1
sample Tvn−1 at a finite set of grid points
compute T̂vn−1 = LTvn−1 from the samples
set vn = T̂vn−1

until the deviation ‖vn − vn−1‖∞ falls below some tolerance
solve for a vn-greedy policy σ

Our algorithm for fitted value iteration is given in algorithm 10.4. It terminates
in finite time for any strictly positive tolerance, since T̂ is a uniform contraction. The
policy it produces is approximately optimal, with the deviation given by the following
theorem. (The proof is given in the appendix to this chapter.)
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Theorem 10.2.9 Let v0 ∈ F and let vn := T̂nv0, where T̂ := LT and L : bB(S) → F is
nonexpansive. If σ ∈ Σ is vn-greedy, then

‖v∗ − vσ‖∞ ≤ 2
(1 − ρ)2 × (ρ‖vn − vn−1‖∞ + ‖Lv∗ − v∗‖∞)

Most of the comments given after theorem 10.2.1 (page 237) apply to theorem
10.2.9. In particular, the bound is conservative, but it shows that the value of σ
can be made as close to that of σ∗ as desired, provided that L can be chosen so that
‖Lv∗ − v∗‖∞ is arbitrarily small. In the case of continuous piecewise linear interpola-
tion on S = [a, b] this is certainly possible.9

10.3 Commentary

A first-rate theoretical treatment of stochastic dynamic programming can be found
in the two monographs of Hernández-Lerma and Lasserre (1996, 1999). Also recom-
mended are Bertsekas (1995), Puterman (1994), Kochenderfer (2015) and Bertsekas
(2019). From the economics and finance literature see, for example, Stokey and Lu-
cas (1989), Bauerle and Rieder (2011), or Hinderer et al. (2016). All of these sources
contain references to further applications.

Additional discussion of fitted value iteration with nonexpansive approximators
can be found in Gordon (1995) and Stachurski (2008). For alternative discussions of
value iteration, see, for example, Santos and Vigo-Aguiar (1998) or Grüne and Semm-
ler (2004).

Value iteration and policy iteration are two of many algorithms proposed in the
literature. Other popular techniques include projection methods, Taylor series ap-
proximation (e.g., linearization), and parameterized expectations. See, for example,
Marcet (1988), Tauchen and Hussey (1991), Judd (1992), Den Haan and Marcet (1994),
Rust (1996), Judd (1998), Christiano and Fisher (2000), McGrattan (2001), Uhlig (2001),
Maliar and Maliar (2005), or Canova (2007). Marimon and Scott (2001) is a useful
survey, while Santos (1999) and Aruoba et al. (2006) provide numerical comparisons.

Dynamic programming has many interesting applications in economics that we
have little chance to discuss. One omission is industrial organization (e.g., Green and
Porter 1984, Hopenhayn 1992, Ericson and Pakes 1995, or Pakes and McGuire 2001)
and search theory (see McCall 1970 for an early contribution and Rogerson et al. 2005

9This is due to continuity of v∗, which always holds under our assumptions. When v∗ is continuous on
[a, b] it is also uniformly continuous, which is to say that for any ϵ > 0 there is a δ > 0 such that |v∗(x)−
v∗(y)| < ϵ whenever |x − y| < δ. From this property it is not too difficult to show that given any ϵ > 0,
a sufficiently fine grid will yield a continuous piecewise affine interpolant Lv∗ such that ‖v∗ − Lv∗‖∞ < ϵ.
See, for example, Bartle and Sherbet (2011).
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for a recent survey). For some earlier classics the macroeconomics literature, try Lucas
and Prescott (1971), Hall (1978), Lucas (1978), or Brock (1982). Dechert and O’Donnell
(2006) provide a nice application of dynamic programming to environmental eco-
nomics. Pavoni et al. (2018) provide an innovative analysis of dynamic contracting
problems. Kikuchi et al. (2021) study production problems on networks using dy-
namic programming.

We have not touched on the important topic of recursive preferences. For a sample
of the literature, see Rincon-Zapatero and Rodriguez-Palmero (2007), Marinacci and
Montrucchio (2010), Martins-da-Rocha and Vailakis (2013), Bauerle and Jaskiewicz
(2018), Bloise and Vailakis (2018), Marinacci and Montrucchio (2019), Borovicka and
Stachurski (2020), and Guo and He (2021).





Chapter 11

Stochastic Dynamics

It’s now time to give a treatment of stability for general Markov chains on uncountably
infinite state spaces. Although the stability theory we used to study the finite case
(chapter 4) and the density case (chapter 8) does not survive the transition without
some modification, the underlying ideas are similar, and connections are drawn at
every opportunity. Throughout this chapter we take S to be a Borel subset ofRn.

11.1 Notions of Convergence

Before considering the dynamics of general state Markov chains, we need to develop
notions of convergence that apply to the measure (as opposed to finite probability or
density) setting. Along the way we will cover some fundamental results in asymptotic
probability, including the weak and strong laws of large numbers for IID sequences.

11.1.1 Convergence of Sample Paths

Let S be a Gδ subset of Rn. Recall that an S-valued stochastic process is a tuple
(Ω, F ,P, (Xt)t∈T) where (Ω, F ) is a measurable space, P is a probability on (Ω, F ),
T is an index set such as N or Z, and (Xt)t∈T is a family of S-valued random vari-
ables on (Ω, F ). Various notions of convergence exist for stochastic processes. We
begin with almost sure convergence.

Definition 11.1.1 Let (Ω, F ,P, (Xt)t≥1) be an S-valued stochastic process and let X
be an S-valued random variable on (Ω, F ,P). We say that (Xt)t≥1 converges almost
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surely (alternatively, with probability one) to X if

P

{
lim
t→∞

Xt = X
}

:= P
{

ω ∈ Ω : lim
t→∞

Xt(ω) = X(ω)

}
= 1

In the language of §7.3.2, almost sure convergence is just convergence P-almost ev-
erywhere.

Almost sure convergence plays a vital role in probability theory, although you may
wonder why we don’t just require that convergence occurs for every ω ∈ Ω, instead
of just those ω in a set of probability one. The reason is that convergence for every
path is too strict: In almost all random systems, aberrations can happen that cause
such convergence to fail. Neglecting probability zero events allows us to obtain much
more powerful conclusions.

Exercise 11.1 Expectations are sometimes misleading when considering stochastic
process dynamics. For example, consider a stochastic process with probability space
((0, 1), B(0, 1), λ) and random variables Xn := n21(0,1/n). Show that Xn → 0 almost
surely, while EXn ↑ ∞.

Here is another important notion of convergence of random variables:

Definition 11.1.2 Let (Ω, F ,P, (Xt)t≥1) be an S-valued stochastic process and let X be
an S-valued random variable on (Ω, F ,P). We say that (Xt)t≥1 converges in probability
to X if, for all ϵ > 0,

lim
t→∞

P{‖Xt − X‖ ≥ ϵ} := lim
t→∞

P{ω ∈ Ω : ‖Xt(ω)− X(ω)‖ ≥ ϵ} = 0

Convergence in probability is weaker than almost sure convergence:

Lemma 11.1.3 If Xt → X almost surely, then Xt → X in probability.

Proof. Fix ϵ > 0. Since Xt → X almost surely, 1{‖Xt − X‖ ≥ ϵ} → 0 P-almost
everywhere on Ω. (Why?) An application of the dominated convergence theorem
(page 178) now gives the desired result.

The converse is not true. It is an optional (and nontrivial) exercise for you to con-
struct a stochastic process that converges to some limit in probability, and yet fails to
converge to that same limit almost surely.

Exercise 11.2 The sets in definition 11.1.2 are measurable. Show, for example, that if
S = R and ϵ > 0, then {|Xn − X| ≥ ϵ} ∈ F .

Let’s discuss some applications of almost sure convergence and convergence in
probability. Let (Xt)t≥1 be a real-valued stochastic process on (Ω, F ,P) with common
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expectation m. Define X̄n := n−1 ∑n
t=1 Xt. The (weak) law of large numbers (WLLN)

states that under suitable assumptions the sample mean X̄n converges in probability
to m as n → ∞. We begin with the case m = 0.

We will make use of the following standard identity.

(a1, . . . , an) ∈ Rn =⇒
(

n

∑
i=1

ai

)2

= ∑
1≤i,j≤n

aiaj =
n

∑
j=1

n

∑
i=1

aiaj (11.1)

Exercise 11.3 Suppose the real, zero-mean sequence (Xt)t≥1 satisfies

1. Cov(Xi, Xj) = 0 for all i 6= j, and

2. Cov(Xi, Xi) = Var(Xi) = EX2
i ≤ M for all i ∈ N.

Show that Var(X̄n) ≤ M/n for all n ∈ N. (Regarding the first property, we usually
say that the sequence is pairwise uncorrelated.)

Exercise 11.4 Now prove that the WLLN holds for this sequence, by showing that X̄n
converges to zero in probability as n → ∞.

This result can be extended to the case m 6= 0 by considering the zero-mean se-
quence Yt := Xt − m. Doing so gives us

Theorem 11.1.4 Let (Ω, F ,P, (Xt)t≥1) be a real-valued stochastic process with common
mean m. If (Xt)t≥1 is pairwise uncorrelated and Var(Xt) ≤ M for all t, then X̄n → m in
probability. In particular,

P{|X̄n − m| ≥ ϵ} ≤ M
nϵ2 (ϵ > 0, n ∈ N) (11.2)

When the sequence is independent a stronger result holds:

Theorem 11.1.5 Let (Ω, F ,P, (Xt)t≥1) be a real-valued stochastic process. If (Xt)t≥1 is IID

and E|X1| < ∞, then X̄n → m almost surely.

Theorem 11.1.5 is called the strong law of large numbers (SLLN). A version of this
theorem was stated previously on page 95. For a proof, see Dudley (2002, thm. 8.3.5).

How about stochastic processes that are correlated, rather than IID? We have al-
ready presented some generalizations of the SLLN that apply to Markov chains (the-
orem 4.3.8 on page 95 and theorem 8.2.11 on page 204). Although the proofs of these
strong LLNs are beyond the scope of this book, let’s take a look at the proof of a weak
LLN for correlated processes. (Readers keen to progress can skip to the next section
without loss of continuity.) We will see that the correlations Cov(Xi, Xi+k) must con-
verge to zero in k sufficiently quickly. The following lemma will be useful:
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Lemma 11.1.6 Let (βk)k≥1 be a sequence inR+, and let (Ω, F ,P, (Xt)t≥1) be a real-valued
stochastic process such that Cov(Xi, Xi+k) ≤ βk for all i ≥ 1. If (βk)k≥0 satisfies ∑k≥1 βk <
∞, then Var(X̄n) → 0 as n → ∞.

Proof. We have

Var

(
1
n

n

∑
i=1

Xi

)
=

1
n2 ∑

1≤i,j≤n
Cov(Xi, Xj)

=
1
n2

n

∑
i=1

Cov(Xi, Xi) +
2
n2 ∑

1≤i<j≤n
Cov(Xi, Xj)

≤ 2
n2 ∑

1≤i≤j≤n
Cov(Xi, Xj) =

2
n2

n−1

∑
k=0

n−k

∑
i=1

Cov(Xi, Xi+k)

∴ Var

(
1
n

n

∑
i=1

Xi

)
≤ 2

n2

n−1

∑
k=0

(n − k)βk ≤
2
n

n−1

∑
k=0

βk ≤
2
n

∞

∑
k=0

βk → 0

Now we can give a weak LLN for correlated, non-identically distributed random
variables:

Theorem 11.1.7 Let (Ω, F ,P, (Xt)t≥1) be a real-valued stochastic process. If

1. Cov(Xi, Xi+k) ≤ βk for all i ≥ 1 where ∑k≥0 βk < ∞, and

2. EXn → m ∈ R as n → ∞,

then X̄n → m in probability as n → ∞.

Proof. Note that EXn → m implies EX̄n → m. Now fix ϵ > 0 and choose N ∈ N such
that |EX̄n − m| ≤ ϵ/2 whenever n ≥ N. If n ≥ N, then

{|X̄n − m| ≥ ϵ} ⊂ {|X̄n −EX̄n|+ |EX̄n − m| ≥ ϵ} ⊂ {|X̄n −EX̄n| ≥ ϵ/2}

∴ P{|X̄n − m| ≥ ϵ} ≤ P{|X̄n −EX̄n| ≥ ϵ/2} (n ≥ N)

This is sufficient because |X̄n −EX̄n| → 0 in probability when n → ∞ as a result of
the Chebychev inequality

P{|X̄n −EX̄n| ≥ ϵ} ≤ Var(X̄n)

ϵ2

and the fact that Var(X̄n) → 0 by lemma 11.1.6.
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Theorem 11.1.7 can be used to prove a weak version of the SLLN stated in theo-
rem 4.3.8 (page 95). Let S be a finite set, let p be a stochastic kernel on S such that the
Dobrushin coefficient α(p) is strictly positive, let ψ∗ be the unique stationary distribu-
tion for p, and let h : S → R be any function.

Exercise 11.5 Show that there exist two constants M < ∞ and γ ∈ [0, 1) satisfying

∑
y∈S

|pk(x, y)− ψ∗(y)| ≤ Mγk for any k ∈ N and any x ∈ S

Exercise 11.6 Let m := ∑y∈S h(y)ψ∗(y) be the mean of h with respect to ψ∗. Using
exercise 11.5, show that there are constants K < ∞ and γ ∈ [0, 1) such that∣∣∣∣∣∑y∈S

h(y)pk(x, y)− m

∣∣∣∣∣ ≤ Kγk for any k ∈ N and any x ∈ S

Now consider a Markov-(p, ψ∗) chain (Xt)t≥0, where the initial condition has been
set to the stationary distribution in order to simplify the proof. In particular, we have
Eh(Xt) = m for all t. Regarding the covariances,

Cov(h(Xi), h(Xi+k)) = ∑
x∈S

∑
y∈S

[h(x)− m][h(y)− m]P{Xi+k = y, Xi = x}

= ∑
x∈S

∑
y∈S

[h(x)− m][h(y)− m]pk(x, y)ψ∗(x)

= ∑
x∈S

[h(x)− m]ψ∗(x) ∑
y∈S

[h(y)− m]pk(x, y)

where the second equality is due to

P{Xi+k = y, Xi = x} = P{Xi+k = y | Xi = x}P{Xi = x}

Exercise 11.7 Using these calculations and the result in exercise 11.6, show that there
are constants J < ∞ and γ ∈ [0, 1) such that

|Cov(h(Xi), h(Xi+k))| ≤ Jγk for any i, k ≥ 0

Exercise 11.8 Show that the process (h(Xt))t≥0 satisfies the conditions of theorem 11.1.7.
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11.1.2 Strong Convergence of Measures

Now let’s turn to another kind of convergence: convergence of the distribution of Xn
to the distribution of X. Since distributions are measures, what we are seeking here
is a metric (and hence a concept of convergence) defined on spaces of measures. In
this section we discuss so-called strong convergence (or total variation convergence)
of measures. The next section discusses weak convergence.

When defining strong convergence, it is useful to consider not only standard non-
negative measures but also signed measures, which are countably additive set func-
tions taking both positive and negative values.

Definition 11.1.8 Let S be a Borel measurable subset of Rn. A (Borel) signed measure
µ on a S is a countably additive set function from B(S) to R: Given any pairwise
disjoint sequence (Bn) ⊂ B(S), we have µ(∪nBn) = ∑n µ(Bn). The set of all signed
measures on S will be denoted by bM (S).1

Exercise 11.9 Show that for any µ ∈ bM (S) we have µ(∅) = 0.

Addition and scalar multiplication of signed measures is defined setwise, so (αµ+
βν)(B) = αµ(B) + βν(B) for µ, ν ∈ bM (S) and scalars α, β. Notice that the difference
µ − ν of any two finite (nonnegative) measures is a signed measure. It turns out that
every signed measure can be represented in this way:

Theorem 11.1.9 (Hahn–Jordan) For each µ ∈ bM (S) there exists sets S− and S+ in B(S)
with S− ∩ S+ = ∅, S− ∪ S+ = S,

• µ(B) ≥ 0 whenever B ∈ B(S) and B ⊂ S+, and

• µ(B) ≤ 0 whenever B ∈ B(S) and B ⊂ S−.

As a result, µ can be expressed as the difference µ+ − µ− of two finite nonnegative measures
µ+ and µ−, where

• µ+(B) := µ(B ∩ S+) for all B ∈ B(S), and

• µ−(B) := −µ(B ∩ S−) for all B ∈ B(S).

The set S+ is called a positive set for µ and S− is called a negative set. They are unique
in the sense that if A and B are both positive (negative) for µ, then the set of points in A
or B but not both has zero µ-measure. The first part of the theorem (decomposition of
S) is called the Hahn decomposition, while the second (decomposition of µ) is called
the Jordan decomposition. The proof of the Hahn decomposition is not overly difficult

1Notice that our signed measures are required to take values in R. For this reason some authors call
bM (S) the set of finite (or bounded) signed measures.
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and can be found in almost every text on measure theory. The Jordan decomposition
follows from the Hahn decomposition in a straightforward way:

Exercise 11.10 Show that µ = µ+ − µ− holds setwise on B(S).

This is immediate from the definition: Given B ∈ B(S),

µ(B) = µ(B ∩ S+) + µ(B ∩ S−) = µ+(B)− µ−(B)

Exercise 11.11 Verify that µ+ and µ− are finite measures on (S, B(S)). Show that the
equalities µ(S+) = maxB∈B(S) µ(B) and µ(S−) = minB∈B(S) µ(B) both hold.

Exercise 11.12 Let f ∈ mB(S) with λ(| f |) < ∞. Let µ(B) := λ(1B f ). Show that µ ∈
bM (S). Show that if S+ := {x ∈ S : f (x) ≥ 0} and S− := {x ∈ S : f (x) < 0}, then S+

and S− form a Hahn decomposition of S with respect to µ; and that µ+(B) = λ(1B f+)
and µ−(B) = λ(1B f−). Show that the L1 norm of f is equal to µ+(S) + µ−(S).

The final result of the last exercise suggests the following generalization of L1 dis-
tance from functions to measures:

Definition 11.1.10 The total variation norm of µ ∈ bM (S) is defined as

‖µ‖TV := µ+(S) + µ−(S) = µ(S+)− µ(S−)

where S+ and S− are as in theorem 11.1.9. The function

dTV(µ, ν) := ‖µ − ν‖TV (µ, ν in bM (S))

is a metric on bM (S), and (bM (S), dTV) is a metric space.

Exercise 11.13 Prove that for µ ∈ bM (S), the norm ‖µ‖TV = maxπ∈Π ∑A∈π |µ(A)|,
where Π is the set of finite measurable partitions of S.

Exercise 11.14 Verify that dTV is a metric on bM (S).

One of the nice things about the Jordan decomposition is that we can define inte-
grals with respect to signed measures with no extra effort:

Definition 11.1.11 Let h ∈ mB(S), let µ ∈ bM (S), and let µ+, µ− be the Jordan
decomposition of µ. We set µ(h) := µ+(h) − µ−(h) whenever at least one term is
finite.

For given stochastic kernel P, we can define the Markov operator as a map over
the space of signed measures in the obvious way:

µM(B) =
∫

P(x, B)µ(dx) =
∫

P(x, B)µ+(dx)−
∫

P(x, B)µ−(dx)
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where µ ∈ bM (S) and B ∈ B(S). The next lemma can be used to show that M is
nonexpansive on (bM (S), dTV).

Lemma 11.1.12 We have ‖µM‖TV ≤ ‖µ‖TV for any µ ∈ bM (S).

Proof. If S+ and S− are the positive and negative sets for µM, then

‖µM‖TV = µM(S+)− µM(S−) =
∫

P(x, S+)µ(dx)−
∫

P(x, S−)µ(dx)

By the definition of the integral with respect to µ, this becomes∫
P(x, S+)µ+(dx)−

∫
P(x, S+)µ−(dx)−

∫
P(x, S−)µ+(dx) +

∫
P(x, S−)µ−(dx)

∴ ‖µM‖TV ≤
∫

P(x, S+)µ+(dx) +
∫

P(x, S−)µ−(dx)

The last term is dominated by µ+(S) + µ−(S) =: ‖µ‖TV .

Total variation distance seems rather abstract, but for probabilities it has a very
concrete alternative expression.

Lemma 11.1.13 If ϕ and ψ are probability measures, then

dTV(ϕ, ψ) := ‖ϕ − ψ‖TV = 2 sup
B∈B(S)

|ϕ(B)− ψ(B)|

This equivalence makes the total variation distance particularly suitable for quan-
titative work. The proof is in the appendix to this chapter.

Theorem 11.1.14 The metric spaces (bM (S), dTV) and (P(S), dTV) are both complete.

Proof. See, for example, Stokey and Lucas (1989, lem. 11.8).

11.1.3 Weak Convergence of Measures

Although total variation distance is pleasingly quantitative and important for the
analysis of Markov chains, it does not cover all bases. For this reason, we will also
consider another type of convergence, known to probabilists as weak convergence.
Throughout this section, unless otherwise stated, S is a Gδ subset ofRn.

The next exercise starts the ball rolling.

Exercise 11.15 Let S = R, let ϕn = δ1/n and let ϕ = δ0. Show that for each n ∈ N
we have supB∈B(S) |ϕn(B)− ϕ(B)| = 1. Conclude that dTV(ϕn, ϕ) → 0 fails for this
example.
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This negative result is somewhat unfortunate in that, intuitively, δ1/n seems to be
converging to δ0. In other words, total variation distance does not always respect the
existing topology on the point space.

To make the definition of convergence more accommodating, we can abandon uni-
formity, and simply require that ϕn(B) → ϕ(B) for all B ∈ B(S). This is usually
known as setwise convergence. However, a little thought will convince you that the
sequence treated in exercise 11.15 still fails to converge setwise.

Thus we need to weaken the definition further by requiring that ϕn(B) → ϕ(B)
holds only for a certain restricted class of sets B ∈ B(S): We say that ϕn → ϕ weakly
if ϕn(B) → ϕ(B) for all sets B ∈ B(S) such that ϕ(cl B \ int B) = 0. In fact, this is
equivalent to the following—more convenient—definition.

Definition 11.1.15 The sequence (ϕn) ⊂ P(S) is said to converge to ϕ ∈ P(S) weakly
if ϕn(h) → ϕ(h) for every h ∈ bcS, the bounded continuous functions on S. If (Xn) is
a sequence of random variables on S, then Xn → X weakly (or, in distribution; or, in
law) means that the distribution of Xn converges weakly to that of X.

Weak convergence is more in tune with the topology of S than setwise conver-
gence. The next exercise illustrates.

Exercise 11.16 Show that δ1/n → δ0 holds for weak convergence.

Exercise 11.17 Convergence in probability implies convergence in distribution.2 Show
that the converse is not true.

Readers may be concerned that limits under weak convergence are not unique,
in the sense that there may exist a sequence (ϕn) ⊂ P(S) with ϕn → ϕ and ϕn → ϕ′

weakly, where ϕ 6= ϕ′. In fact, this is not possible, as can be shown using the following
result:

Theorem 11.1.16 Let ϕ, ψ ∈ P(S). The following statements are equivalent:

1. ϕ = ψ

2. ϕ(h) = ψ(h) for all h ∈ bcS

3. ϕ(h) = ψ(h) for all h ∈ ibcS

In the last point, we use the notation

ibcS := the increasing functions in bcS

If it can be shown that the third statement implies the first, then the rest of the
theorem is easy. A proof that such an implication holds can be found in Torres (1990,
thms. 3.7 and 5.3) or lemma A.6 of Kamihigashi and Stachurski (2014).

2The proof is not trivial. See, for example, Dudley (2002, prop. 9.3.5).
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Exercise 11.18 Show that if (ϕn) ⊂ P(S) is a sequence with ϕn → ϕ and ϕn → ϕ′

weakly, then ϕ = ϕ′.

When S = R, weak convergence is equivalent to convergence of distribution func-
tions in the following sense:

Theorem 11.1.17 (Helly–Bray) If (ϕn) and ϕ are elements of P(R) and (Fn) and F are
their respective distribution functions, then ϕn → ϕ weakly if and only if Fn(x) → F(x) in
R for every x ∈ R such that F is continuous at x.

One reason weak convergence is so important in probability theory is the magnif-
icent central limit theorem, which concerns the asymptotic distribution of the sample
mean X̄n := n−1 ∑n

t=1 Xt.3

Theorem 11.1.18 Let (Xt)t≥1 be an IID sequence of real-valued random variables. If µ :=
EX1 and σ2 := Var X1 are both finite, then n1/2(X̄n − µ) converges weakly to N(0, σ2).

While not obvious from the definition, it turns out that weak convergence on P(S)
can be metrized, in the sense that there exists a metric ρ on P(S) with the property
that ϕn → ϕ weakly if and only if ρ(ϕn, ϕ) → 0. Actually there are several, and all are
at least a little bit complicated. We will now describe one such metric, known as the
Fortet–Mourier distance.

Recall that a function h : S → R is called Lipschitz if there exists a K ∈ R such
that |h(x)− h(y)| ≤ Kd2(x, y) for all x, y ∈ S. Let bℓS be the collection of bounded
Lipschitz functions on S, and set

‖h‖bℓ := sup
x∈S

|h(x)|+ sup
x 6=y

|h(x)− h(y)|
d2(x, y)

(11.3)

The Fortet–Mourier distance between ϕ and ψ in P(S) is defined as

dFM(ϕ, ψ) := sup{|ϕ(h)− ψ(h)| : h ∈ bℓS, ‖h‖bℓ ≤ 1} (11.4)

It can be shown that dFM so constructed is indeed a metric, and does metrize weak
convergence as claimed.4

There is a large and elegant theory of weak convergence, most of which would take
us too far afield. We will content ourselves with stating Prohorov’s theorem. It turns
out that P(S) is dFM-compact if and only if S is compact. Prohorov’s theorem can be
used to prove this result, and also provides a useful condition for (pre)compactness of
subsets of P(S) when S is not compact.

3For a proof see, for example, Taylor (1997, thm. 6.7.4.).
4See, for example, Dudley (2002, thm. 11.3.3).
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Definition 11.1.19 A subset M of P(S) is called tight if, for each ϵ > 0, there is a
compact K ⊂ S such that ϕ(S \ K) ≤ ϵ for all ϕ ∈ M .5

Theorem 11.1.20 (Prohorov) The following statements are equivalent:

1. M ⊂ P(S) is tight.

2. M is a precompact subset of the metric space (P(S), dFM).

For a proof, see Pollard (2002, page 185) or Dudley (2002, ch. 11).

11.2 Stability: Analytical Methods

We are now ready to tackle some stability results for general state Markov chains. In
this section we will focus on analytical techniques related to the metric space theory
of chapter 3. In §11.3 we turn to more probabilistic methods.

11.2.1 Stationary Distributions

When we discussed distribution dynamics for a stochastic kernel p on a finite state
space, we regarded the Markov operator M corresponding to p (see page 78) as pro-
viding a dynamical system of the form (P(S), M), where P(S) was the set of distri-
butions on S. The interpretation was that if (Xt)t≥0 is Markov-(p, ψ), then ψMt is the
distribution of Xt. A fixed point of M was called a stationary distribution.

A similar treatment was given for the density case (chapter 8), where we con-
sidered the dynamical system (D(S), M). Trajectories correspond to sequences of
marginal densities, and a fixed point of M in D(S) is called a stationary density.

For the general (i.e., measure) case, where S is a Borel subset ofRn, P is an arbitrary
stochastic kernel and M is the corresponding Markov operator (see page 222), we
consider the dynamical system (P(S), M), with P(S) denoting the Borel probability
measures on S. The metric imposed on P(S) is either dTV or dFM (see §11.1.2 and
§11.1.3 respectively). A distribution ψ∗ ∈ P(S) is called stationary if ψ∗M = ψ∗;
equivalently ∫

P(x, B)ψ∗(dx) = ψ∗(B) (B ∈ B(S))

Exercise 11.19 Consider the deterministic model Xt+1 = Xt. Show that for this model
every ψ ∈ P(S) is stationary.

In this section we focus on existence of stationary distributions using continuity
and compactness conditions. Regarding continuity,

5This is a generalization of the definition given for densities on page 201.
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Definition 11.2.1 Let P be a stochastic kernel on S, and let M be the corresponding
Markov operator. We say that P has the Feller property if Mh ∈ bcS whenever h ∈ bcS.

The Feller property is usually easy to check in applications. To illustrate, recall our
canonical SRS defined in (9.7) on page 217.

Lemma 11.2.2 If x 7→ F(x, z) is continuous on S for all z ∈ Z, then P is Feller.

Proof. Recall from (9.17) on page 224 that for any h ∈ bB(S), and in particular for
h ∈ bcS, we have

Mh(x) =
∫

h[F(x, z)]ϕ(dz) (x ∈ S)

So fix any h ∈ bcS. We wish to show that Mh is a continuous bounded function.
Verifying boundedness is left to the reader. Regarding continuity, fix x0 ∈ S and take
some xn → x0. For each z ∈ Z, continuity of x 7→ F(x, z) and h gives us h[F(xn, z)] →
h[F(x0, z)] as n → ∞. Since h is bounded the conditions of the dominated convergence
theorem (page 178) are all satisfied. Therefore

Mh(xn) :=
∫

h[F(xn, z)]ϕ(dz) →
∫

h[F(x0, z)]ϕ(dz) =: Mh(x0)

As x0 was arbitrary, Mh is continuous on all of S.

The Feller property is equivalent to continuity of ψ 7→ ψM in (P(S), dFM):

Lemma 11.2.3 A stochastic kernel P with Markov operator M is Feller if and only if ψ 7→
ψM is weakly continuous as a map from P(S) to P(S).

Proof. Suppose first that M is Feller. Take any (ψn) ⊂ P(S) with ψn → ψ ∈ P(S)
weakly. We must show that ψnM(h) → ψM(h) for every h ∈ bcS. Pick any such h.
Since Mh ∈ bcS, theorem 9.2.10 (page 224) gives

ψnM(h) = ψn(Mh) → ψ(Mh) = ψM(h) (n → ∞)

The reverse implication is left as an exercise.6

We can now state the well-known Krylov–Bogolubov existence theorem, the proof
of which is given in the appendix to this chapter.

Theorem 11.2.4 (Krylov–Bogolubov) Let P be a stochastic kernel on S, and let M be the
corresponding Markov operator. If P has the Feller property and (ψMt)t≥0 is tight for some
ψ ∈ P(S), then P has at least one stationary distribution.7

6Hint: Try another application of theorem 9.2.10.
7That is, M has at least one fixed point in P(S).
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Remark 11.2.5 If S is compact, then every subset of P(S) is tight (why?), and hence
every kernel with the Feller property on S has at least one stationary distribution. This
is theorem 12.10 in Stokey and Lucas (1989).

There are many applications of theorem 11.2.4 in economic theory, particularly
for the case where the state space is compact. In fact, it is common in economics
to assume that the shocks perturbing a given model are bounded above and below,
precisely because the authors wish to obtain a compact state space. (Actually such
strict restrictions on the shocks are usually unnecessary: we can deal with unbounded
shocks using drift conditions as discussed below.)

Example 11.2.6 Consider again the commodity pricing model, which was shown to
be stable when the shock is lognormal in §8.2.4. The law of motion for the model is
Xt+1 = αI(Xt) + Wt+1 with shock distribution ϕ ∈ P(Z). The Feller property holds
because I is continuous (see the definition on page 141). Suppose now that Z := [a, b]
for positive constants a ≤ b.8 Define S := [a, b/(1− α)]. It is an exercise to show that if
x ∈ S and z ∈ Z, then αI(x) + z ∈ S. Hence the compact set S can be chosen as a state
space for the model, and, by the Krylov–Bogolubov theorem, at least one stationary
distribution ψ∗ exists. It satisfies

ψ∗(B) =
∫ [∫

1B[αI(x) + z]ϕ(dz)
]

ψ∗(dx) (B ∈ B(S)) (11.5)

If S is not compact, then to establish existence via the Krylov–Bogolubov theorem,
we need to show that at least one trajectory of M is tight. Fortunately we already know
quite a bit about finding tight trajectories, at least in the density case. For example, un-
der geometric drift to the center every trajectory is tight (proposition 8.2.8, page 202).
In the general (i.e., measure rather than density) case a similar result applies:

Lemma 11.2.7 Let M be a subset of P(S). If there exists a norm-like function9 w on S such
that supψ∈M ψ(w) < ∞, then M is tight.10

Proof. Let M := supψ∈M ψ(w), and fix ϵ > 0. Pick any ψ ∈ M . We have

ψ{x ∈ S : w(x) > k} ≤ ψ(w)

k
≤ M

k
∀ k ∈ N

where the first inequality follows from w ≥ k1{x ∈ S : w(x) > k}. Since ψ is arbitrary,

sup
ψ∈M

ψ{x ∈ S : w(x) > k} ≤ M
k

∀ k ∈ N

8Since Z is compact, one often says that ϕ has compact support.
9Recall that a function w : S → R+ is called norm-like when all sublevel sets are precompact. See

definition 8.2.5 on page 202.
10Actually the converse is also true. See Meyn and Tweedie (2009, lem. D.5.3).
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For sufficiently large k the left-hand side is less than ϵ. Defining C := w−1([0, k]),
we can write this as supψ∈M ψ(Cc) < ϵ. Since w is norm-like, we know that C is
precompact. By exercise 3.35 on page 52, there is a compact set K with C ⊂ K, or
Kc ⊂ Cc. But then ψ(Kc) ≤ ψ(Cc) ≤ ϵ for all ψ ∈ M .

The easiest way to apply lemma 11.2.7 is via a drift condition:

Lemma 11.2.8 Let P be a stochastic kernel on S with Markov operator M, and let ψ ∈ P(S).
If there exists a norm-like function w on S and constants α ∈ [0, 1) and β ∈ R+ with

Mw(x) ≤ αw(x) + β (x ∈ S) (11.6)

then there exists a ψ ∈ P(S) such that the trajectory (ψt) := (ψMt) is tight.

The intuition is similar to that for proposition 8.2.8 (page 202).

Proof. Let ψ := δx for some x ∈ S. Using theorem 9.2.10 (page 224) and then mono-
tonicity property M4 of the integral, we have

ψt(w) = (ψt−1M)(w) = ψt−1(Mw) ≤ ψt−1(αw + β) = αψt−1(w) + β

From this bound one can verify (use induction) that

ψt(w) ≤ αtψ(w) +
β

1 − α
= αtw(x) +

β

1 − α
∀ t ∈ N

Tightness of (ψt) now follows from lemma 11.2.7.

11.2.2 Testing for Existence

Let’s investigate how one might use lemma 11.2.8 in applications. First we can repack-
age the results of the previous section as a corollary that applies to the canonical SRS
given in (9.7) on page 217. The proof is an exercise.

Corollary 11.2.9 If x 7→ F(x, z) is continuous on S for each z ∈ Z, and there exists a
norm-like function w on S and constants α ∈ [0, 1) and β ∈ R+ with∫

w[F(x, z)]ϕ(dz) ≤ αw(x) + β (x ∈ S) (11.7)

then at least one stationary distribution exists.

Example 11.2.10 Let S = Z = Rn, and let F(x, z) = Ax + b + z, where A is an n × n
matrix and b is an n × 1 vector. Let ϕ ∈ P(Z). Suppose that for some norm ‖ · ‖ on
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S we have λ := sup{‖Ax‖ : ‖x‖ = 1} < 1, and in addition
∫
‖z‖ϕ(dz) < ∞. Using

exercise 4.12 (page 64), we have∫
‖Ax + b + z‖ϕ(dz) ≤ ‖Ax‖+ ‖b‖+

∫
‖z‖ϕ(dz) ≤ λ‖x‖+ ‖b‖+

∫
‖z‖ϕ(dz)

Setting α := λ and β := ‖b‖+
∫
‖z‖ϕ(dz) gives the drift condition (11.7). It is left as

an exercise to show that the Feller property holds. Since ‖ · ‖ is norm-like on S (see
example 8.2.6), a stationary distribution exists.

Example 11.2.11 Let S = Z = Rn, and let F(x, z) = G(x) + z, where G : Rn → Rn is a
continuous function with the property that for some M < ∞ and some α < 1 we have
‖G(x)‖ ≤ α‖x‖ whenever ‖x‖ > M. In other words, when x is sufficiently far from
the origin, G(x) is closer to the origin than x. Also note that L := sup‖x‖≤M ‖G(x)‖ is
finite because continuous functions map compact sets into compact sets. By consider-
ing the two different cases ‖x‖ ≤ M and ‖x‖ > M, you should be able to show that
‖G(x)‖ ≤ α‖x‖+ L for every x ∈ Rn. As a result∫

‖G(x) + z‖ϕ(dz) ≤ ‖G(x)‖+
∫

‖z‖ϕ(dz) ≤ α‖x‖+ L +
∫

‖z‖ϕ(dz)

If
∫
‖z‖ϕ(dz) < ∞, then the drift condition (11.7) holds. As the Feller property clearly

holds a stationary distribution must exist.

Exercise 11.20 Show that example 11.2.10 is a special case of example 11.2.11.

Exercise 11.21 Consider the log-linear Solow–Swan model kt+1 = skα
t Wt+1. Set S =

Z = (0, ∞), and assume α < 1 and E| ln Wt| < ∞. One way to show existence
of a stationary distribution is by way of taking logs and converting our log-linear
system into a linear one. Example 11.2.10 then applies. However, this still leaves the
task of showing that existence of a stationary distribution for the linear model implies
existence of a stationary distribution for the original model. Instead of log-linearizing,
prove the existence of a stationary distribution directly, by applying corollary 11.2.9.
(The tricky part is choosing a suitable norm-like function.)

Finally, let’s treat the problem of existence in a more involved application. The
application requires an extension of lemma 11.2.8 on page 260. A proof can be found
in Meyn and Tweedie (2009, thm. 12.1.3).

Lemma 11.2.12 Let P be a stochastic kernel on S with Markov operator M, and let ψ ∈
P(S). If P has the Feller property, and in addition there exists a norm-like function w on S
and constants α ∈ [0, 1) and β ∈ R+ with

Mtw(x) ≤ αw(x) + β (x ∈ S) (11.8)

for some t ∈ N, then P has at least one stationary distribution.
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As an application, consider the SRS with correlated shocks defined by

Xt+1 = g(Xt) + ξt+1 and ξt+1 = Aξt + Wt+1 (11.9)

Here Xt and ξt both take values in Rk, and (Wt)t≥1 is an Rk valued IID sequence
with distribution ϕ ∈ P(Rk). The matrix A is k × k, while g : Rk → Rk is Borel
measurable. Although (Xt)t≥0 is not generally Markovian, the joint process (Xt, ξt)t≥0
is Markovian in S := Rk ×Rk. The associated stochastic kernel is

P((x, ξ), B) =
∫
1B[g(x) + Aξ + z, Aξ + z]ϕ(dz) ((x, ξ) ∈ S, B ∈ B(S))

If g is a continuous function, then in view of lemma 11.2.12 a stationary distribution
will exist for P whenever the drift condition (11.8) holds. That this drift condition does
hold under some restrictions is the content of the next proposition.

Proposition 11.2.13 Let ‖ · ‖ be any norm on Rk. Let ρ be a constant such that A satisfies
‖Ax‖ ≤ ρ‖x‖ for all x ∈ Rk, and let w be the norm-like function w(x, ξ) = ‖x‖+ ‖ξ‖. Set
µ := E‖W1‖. If µ < ∞, ρ < 1, and there exists constants λ ∈ [0, 1) and L ∈ R+ such that

‖g(x)‖ ≤ λ‖x‖+ L (x ∈ Rk)

then there exists constants t ∈ N, α ∈ [0, 1) and β ∈ R+ such that (11.8) holds.

Proof. Consider the joint process (Xt, ξt)t≥0 from constant initial condition (x0, ξ0) ∈
S. From the definition of the SRS and the growth condition on g, we have

E‖Xt+1‖ ≤ λE‖Xt‖+ L +E‖ξt+1‖ and E‖ξt+1‖ ≤ ρE‖ξt‖+ µ

From these bounds one can see (use induction) that for any t ≥ 0,

E‖Xt‖ ≤ λt‖x0‖+
L

1 − λ
+

t−1

∑
i=0

λiE‖ξt−i‖ (11.10)

and
E‖ξt‖ ≤ ρt‖ξ0‖+

µ

1 − ρ
(11.11)

Substituting (11.11) into (11.10) and rearranging gives

E‖Xt‖ ≤ λt‖x0‖+
L

1 − λ
+

µ

(1 − λ)(1 − ρ)
+

t−1

∑
i=0

λiρt−i‖ξ0‖ (11.12)

Adding (11.11) and (11.12), we obtain

E‖Xt‖+E‖ξt‖ ≤ λt‖x0‖+ ρt‖ξ0‖+
t−1

∑
i=0

λiρt−i‖ξ0‖+ β
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where β is a constant. Since limt→∞ ∑t−1
i=0 λiρt−i = 0, we can choose a t ∈ N such that

ρt +
t−1

∑
i=0

λiρt−i < 1

Letting α be the maximum of this term and λt, we obtain

E‖Xt‖+E‖ξt‖ ≤ α‖x0‖+ α‖ξ0‖+ β

This inequality is equivalent to the claim in the proposition.

11.2.3 The Dobrushin Coefficient, Measure Case

Now let’s turn to the problem of uniqueness and stability of stationary distributions.
As a first step we discuss a contraction mapping approach based on the Dobrushin co-
efficient. As we saw in §8.2.2, for unbounded state spaces this approach is not always
successful. Nevertheless, it provides a useful departure point, and the basic ideas will
later be extended to handle more general models.

Let S be a Gδ subset of Rn. For stochastic kernel P with a density representation
p (i.e., P(x, dy) = p(x, y)dy for all x ∈ S), the Dobrushin coefficient was defined in
§8.2.2 as

α(p) := inf
{∫

p(x, y) ∧ p(x′, y)dy : (x, x′) ∈ S × S
}

(11.13)

The corresponding Markov operator is a uniform contraction of modulus 1 − α(p) on
(D(S), d1) whenever α(p) > 0.

The concept of the Dobrushin coefficient can be extended to kernels without den-
sity representation. To do so we need a notion equivalent to the affinity measure∫

f ∧ g between densities f and g used in (11.13). Since f ∧ g is the largest function
less than both f and g, it is natural to extend this idea by considering the largest mea-
sure less than two given measures µ and ν.11 Such a measure is called the infimum of
µ and ν, and denoted by µ ∧ ν.

Things are not quite as simple as the density case. In particular, it is not correct
to define µ ∧ ν as the set function m : B 7→ µ(B) ∧ ν(B). The reason is that m is not
always additive, and hence fails to be a measure (example?) However, the infimum of
two measures does always exists:

Lemma 11.2.14 If µ ∈ bM (S) and ν ∈ bM (S), then there exists a unique element of
bM (S), denoted here by µ ∧ ν, such that

1. both µ ∧ ν ≤ µ and µ ∧ ν ≤ ν, and

11The ordering is setwise: µ ≤ ν if µ(B) ≤ ν(B) for all B ∈ B(S).
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2. if κ ∈ bM (S) and both κ ≤ µ and κ ≤ ν, then κ ≤ µ ∧ ν.

Proof. Let S+ be a positive set for µ − ν, and let S− be a negative set (for definitions,
see page 252). It follows that if B ∈ B(S) and B ⊂ S+, then µ(B) ≥ ν(B), while if
B ⊂ S−, then ν(B) ≥ µ(B). Now set

(µ ∧ ν)(B) := µ(B ∩ S−) + ν(B ∩ S+)

Evidently µ ∧ ν is countably additive. That µ ∧ ν ≤ µ is immediate:

µ(B) = µ(B ∩ S−) + µ(B ∩ S+) ≥ µ(B ∩ S−) + ν(B ∩ S+)

The proof that µ ∧ ν ≤ ν is similar. To check the second claim, let κ ∈ bM (S) with
κ ≤ µ and κ ≤ ν. Then

κ(B) = κ(B ∩ S−) + κ(B ∩ S+) ≤ µ(B ∩ S−) + ν(B ∩ S+)

Hence κ ≤ µ ∧ ν, as was to be shown.

Exercise 11.22 Show that if µ is a probability with density f , and ν has density g, then
µ ∧ ν has density f ∧ g.

Given a pair µ, ν in P(S), we define

aff(µ, ν) := (µ ∧ ν)(S)

This value is sometimes called the affinity between µ and ν. As the next exercise helps
to illustrate, affinity is a measure of similarity.

Exercise 11.23 Show that

aff(µ, ν) = min
π∈Π

∑
A∈π

µ(A) ∧ ν(A)

for any µ and ν in P(S), where Π is all finite measurable partitions of S. (Here µ(A)∧
ν(A) is a simple infimum inR, rather than an infimum in bM (S).) Show also that the
affinity between µ and ν has a maximum value of 1, which is attained if and only if
µ = ν.

We can now define the Dobrushin coefficient for general kernel P.

Definition 11.2.15 Let P be a stochastic kernel on S. Writing Px for P(x, dy) and Px′

for P(x′, dy), the Dobrushin coefficient of P is defined as

α(P) := inf { aff(Px, Px′) : (x, x′) ∈ S × S }
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When P(x, dy) = p(x, y)dy, this reduces to (11.13) above, while if S is finite and P
is defined by a finite kernel p (i.e., P(x, B) = ∑y∈B p(x, y) for all x ∈ S and B ⊂ S),
then it reduces to the definition given on page 90.

As for the finite and density cases, the Dobrushin coefficient is closely connected
to stability. In fact, the following theorem holds:

Theorem 11.2.16 Let P be a stochastic kernel on S with Markov operator M. For every pair
ϕ, ψ in P(S) we have

‖ϕM − ψM‖TV ≤ (1 − α(P))‖ϕ − ψ‖TV

Moreover this bound is the best available, in the sense that if λ < 1 − α(P), then there exists
a pair ϕ, ψ in P(S) such that ‖ϕM − ψM‖TV > λ‖ϕ − ψ‖TV .

This result closely parallels the result in theorem 4.3.4, page 90. The proof is similar
to the finite case (i.e., the proof of theorem 4.3.4) and as such is left to the enthusiastic
reader as an exercise. The intuition behind the theorem is also similar to the finite
case: The affinity aff(Px, Px′) is a measure of the similarity of the kernels P(x, dy) and
P(x′, dy). If all the kernels are identical then α(P) = 1 and M is a constant map—the
ultimate in global stability. More generally, high values of α(P) correspond to greater
similarity across the kernels, and hence more stability.

The first half of theorem 11.2.16 says that if α(P) > 0, then M is a uniform contrac-
tion with modulus 1 − α(P) on P(S). Since (P(S), dTV) is a complete metric space
(theorem 11.1.14), it follows that (P(S), M) is globally stable whenever α(Pt) > 0 for
some t ∈ N.12 Let us record these findings as a corollary.

Corollary 11.2.17 Let P be a stochastic kernel on S, and let M be the associated Markov oper-
ator. If α(Pt) > 0 for some t ∈ N, then (P(S), M) is globally stable with unique stationary
distribution ψ∗. Moreover if h : S → R is a measurable function satisfying ψ∗|h| < ∞ and
ψ ∈ P(S), then any Markov-(P, ψ) chain (Xt)t≥0 satisfies

1
n

n

∑
t=1

h(Xt) → ψ∗(h) with probability one as n → ∞ (11.14)

The second part of the corollary, which is a law of large numbers for Markov
chains, follows from global stability. The proof is omitted, but interested readers can
consult Meyn and Tweedie (2009, ch. 17).

Example 11.2.18 Consider the well-known “uniform ergodicity” condition

∃m ∈ N, ν ∈ P(S), ϵ > 0 such that Pm(x, dy) ≥ ϵν ∀ x ∈ S (11.15)

12This follows from Banach’s fixed point theorem, nonexpansiveness of M with respect to dTV (see
lemma 11.1.12 on page 254) and lemma 4.1.5 on page 65.
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Here Pm(x, dy) ≥ ϵν means that Pm(x, B) ≥ ϵν(B) for all B ∈ B(S). If this condition
holds, then α(Pm) > 0 and (P(S), M) is globally stable, as the next exercise asks you
to confirm.

Exercise 11.24 Show that if (11.15) holds, then α(Pm) ≥ ϵ.

The condition (11.15) is particularly easy to verify when Pm(x, dy) puts uniformly
positive probability mass on a point z ∈ S, in the sense that

∃ z ∈ S, γ > 0 such that Pm(x, {z}) ≥ γ ∀ x ∈ S (11.16)

It turns out that if (11.16) holds, then (11.15) holds with ν := δz and ϵ := γ. To see this,
pick any x ∈ S and any B ∈ B(S). If z ∈ B, then

Pm(x, B) ≥ Pm(x, {z}) ≥ γ = ϵν(B)

On the other hand, if z /∈ B, then Pm(x, B) ≥ 0 = ϵν(B). Thus Pm(x, B) ≥ ϵν(B) for
all x ∈ S and B ∈ B(S) as claimed.

Example 11.2.19 Stokey and Lucas (1989, page 348) use the following condition for
stability, which they refer to as condition M: There exists a m ∈ N and an ϵ > 0 such
that for any A ∈ B(S), either Pm(x, A) ≥ ϵ for all x ∈ S or Pm(x, Ac) ≥ ϵ for all x ∈ S.
This condition is stricter than α(Pm) > 0, as the next exercise asks you to confirm.

Exercise 11.25 Show that if condition M holds, then α(Pm) ≥ ϵ.

We saw in §8.2.2 that when the state space is unbounded, existence of a t ∈ N such
that α(Pt) > 0 often fails (recall the discussion of the AR(1) model in that section). In
that case the method for establishing global stability discussed in this section cannot
be applied. However, as we will see, the basic ideas can be extended to a wide variety
of problems—including those on unbounded spaces.

11.2.4 Application: Credit-Constrained Growth

In this section we apply the stability condition in corollary 11.2.17 to a model of eco-
nomic growth under credit constraints due to Matsuyama (2004), which tries to recon-
cile classical and structuralist views on the effects of global financial market integra-
tion. The classical view is that such integration fosters growth of developing countries
by giving them access to scarce capital. Structuralists argue that poorer economies
would not be able to compete with richer countries in global financial markets, and
that the gap between rich and poor may even be magnified.

We will not delve into the many economic ideas that are treated in the paper. In-
stead our focus will be on technical issues, in particular, on analyzing the dynamics of
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a small open economy model constructed by Matsuyama. The model has been slightly
modified to better suit our purposes.

To begin, consider a small open economy populated by agents who live for two pe-
riods. Agents supply one unit of labor when young and consume only when old. Each
successive generation has unit mass. At the start of time t a shock ξt is realized and
production takes place, combining the current aggregate stock of capital kt supplied
by the old with the unit quantity of labor supplied by the young.13 The resulting out-
put is yt = f (kt)ξt, where the production function f : R+ → R+ is increasing, strictly
concave, differentiable, and f ′(x) ↑ ∞ as x ↓ 0. The shocks (ξt)t≥0 are IID on R+. For
convenience we set Eξt = 1.14

Factor markets are competitive, paying young workers the wage wt := w(kt)ξt,
where

w(k) := f (k)− k f ′(k) (k ∈ R+)

and a gross return on capital given by f ′(kt)ξt. Since the old supply kt units of capital
to production, the sum of factor payments exhausts aggregate income.15

After production and the distribution of factor payments, the old consume and
disappear from the model, while the young take their wage earnings and invest them.
In doing so, the young have two choices:

1. a loan to international investors at the risk-free gross world interest rate R, or

2. an indivisible project, which takes one unit of the consumption good and returns
in the next period Q units of the capital good.

The gross rate of return on the second option, measured in units of the consumption
good, is Q f ′(kt+1)ξt+1. In this expression, kt+1 is the outcome of investment in the
project by the young. Factors of production are not internationally mobile, and FDI is
ruled out.

Agents are assumed to be risk-neutral, and as a result they invest in the project
until the expected rate of return Q f ′(kt+1) is equal to the risk-free rate. Thus kt+1 is
determined by the equation

R = Q f ′(kt+1) (11.17)

We assume that Q f ′(Q) ≤ R so that if every young agent starts a project, then the
return to projects is driven below that of the risk-free rate.

We have already constructed a dynamic model, with (kt)t≥0 converging immedi-
ately to the (constant) solution to (11.17). To make matters more interesting, however,

13Capital depreciates fully between periods, so capital stock is equal to investment.
14If the mean differs from one then this constant can be absorbed into the production function. Thus

Eξt = 1 is essentially a finite first-moment assumption.
15That is, kt f ′(kt)ξt + w(kt)ξt = yt.
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Figure 11.1 The function θ(w)

let’s investigate how the model changes when capital markets are imperfect. The im-
perfection we consider is a constraint on borrowing, where lending is dependent on
the provision of collateral.

When wt < 1, young agents who start projects must borrow 1 − wt at the risk
free rate R. As a result their obligation at t + 1 is given by R(1 − wt). Against this
obligation, borrowers can only credibly pledge a fraction λ ∈ [0, 1] of their expected
earnings Q f ′(kt+1). This results in the borrowing constraint

R(1 − wt) ≤ λQ f ′(kt+1)

This constraint is binding only if 1 − wt > λ, or, as a restriction on wt, if wt < 1 −
λ; otherwise, agents are able to choose the unconstrained equilibrium value of kt+1
defined in (11.17). If the constraint is in fact binding, then it holds with equality

R =
λ

1 − wt
Q f ′(kt+1)

Combining this with (11.17), we can write the equation that determines kt+1 as

R = θ(wt)Q f ′(kt+1), θ(w) :=

{
λ/(1 − w) if w < 1 − λ

1 otherwise
(11.18)

The function w 7→ θ(w) is shown in figure 11.1. It is monotone increasing and
takes values in the interval [λ, 1]. The determination of next period’s capital stock
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Figure 11.2 Determination of kt+1

kt+1 is depicted in figure 11.2 as the value of k at which the curve k 7→ θ(wt)Q f ′(k)
intersects the horizontal line R. This value is the solution to (11.18).

Let g := ( f ′)−1 be the inverse function of f ′. The constants a and b in the figure
are defined by

a := g
(

R
λQ

)
and b := g

(
R
Q

)
The lower bound a is the quantity of domestic capital at t + 1 when wt = 0. In this
case the entire cost of the project must be financed by borrowing, and kt+1 solves
R = λQ f ′(kt+1). The upper bound b is the unconstrained solution (11.17). As is clear
from these two figures, higher wages increases θ, which increases kt+1.

Using g, we can write the stochastic law of motion for (kt)t≥0 as the SRS

kt+1 = g
(

R
θ(w(kt)ξt)Q

)
(11.19)

A suitable state space for this SRS is provided by the interval S = [a, b]. It is easy to
confirm that kt ∈ S and ξt ∈ R+ implies kt+1 ∈ S.

The corresponding stochastic kernel P on S is defined by

P(x, B) =
∫
1B

[
g
(

R
θ(w(x)z)Q

)]
ϕ(dz) (x ∈ S, B ∈ B(S))

where ϕ is the common distribution of the shocks (ξt)t≥0.
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Global stability holds whenever α(P) > 0 (corollary 11.2.17). To show that α(P) >
0, we can use the condition

∃ z ∈ S, γ > 0 such that P(x, {z}) ≥ γ ∀ x ∈ S

presented in (11.16) on page 266. For the z in this expression we use b, the upper
bound of S = [a, b]. For γ we set

γ := P{w(a)ξt ≥ 1 − λ} = ϕ

{
z ∈ R+ : z ≥ 1 − λ

f (a)− a f ′(a)

}
We assume ϕ is such that γ > 0. It remains to be shown that P(x, {b}) ≥ γ for all x ∈
S. To see that this is the case, note that by monotonicity we have P(x, {b}) ≥ P(a, {b})
for all x ∈ S. The latter quantity P(a, {b}) is the probability of jumping from the
lowest state a to the highest in state b (the unconstrained equilibrium) in one period.
This occurs whenever θ(w(a)ξt) = 1, which in turn holds when w(a)ξt ≥ 1 − λ. The
probability of this event is precisely γ, and P(x, {b}) ≥ γ for all x is now verified.

Although global stability holds, this general result masks important differences in
the dynamics that occur when the parameters are varied. To gain some understanding
of these differences let us compute the stationary distribution ψ∗ and see how it is
affected by variation in parameters.

The stationary distribution is not a density (it puts positive mass on b) and hence
one cannot use the look-ahead estimator (6.14) introduced on page 129. Instead we
use the empirical cumulative distribution function

F∗
n (x) :=

1
n

n

∑
t=1
1{kt ≤ x} =

1
n

n

∑
t=1
1[0,x](kt) (x ∈ S)

where (kt)t≥0 is a time series generated from (11.19). From the LLN result (11.14) on
page 265, we have

lim
n→∞

F∗
n (x) =

∫
1[0,x](y)ψ

∗(dy) = ψ∗{y : y ≤ x} =: F∗(x)

with probability one, where the far right-hand side function F∗ is defined to be the
cumulative distribution corresponding to the probability measure ψ∗. Thus the esti-
mator F∗

n of F∗ converges at each point in the state space with probability one.
Figure 11.3 shows three observations of F∗

n , each generated with individual time
series of length 5,000. The observations correspond to different values of the credit
constraint parameter λ, as shown in the figure.16 Notice that the stationary distribu-
tions are very sensitive to λ, with probability mass rapidly shifting toward the uncon-
strained equilibrium state b as λ increases.

16The model is otherwise defined by f (k) = kα, α = 0.6, R = 1, Q = 2 and ln ξt ∼ N(µ, σ2), where
σ = 0.1 and µ = −σ2/2 (which gives Eξt = 1).
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Figure 11.3 Estimates of F∗ for different λ

Exercise 11.26 Use the LLN to estimate ψ∗({b}) for different values of λ. Graph these
values against λ as λ varies over [0.4, 0.6].17

11.3 Stability: Probabilistic Methods

So far our techniques for treating stability of Markov chains have been mainly ana-
lytical. Now it’s time to treat probabilistic methods, which are perhaps even more
fundamental to modern Markov chain theory. As you will see, the flavor of the proofs
is quite different. This unusual taste has limited the diffusion of probabilistic methods
into economics. However, a bit of study will illustrate how powerful—and beautiful—
these ideas can be.

Underlying most probabilistic methods is the notion of coupling. Coupling is used
to make assertions about a collection of distributions by constructing random vari-
ables on a common probability space that (1) have these distributions, and (2) also
have certain properties useful for establishing the assertion one wishes to prove. In
the case of Markov chains the distributions in question are usually the stationary dis-

17In view of the LLN, ψ∗({b}) can be interpreted as the fraction of time that (kt)t≥0 spends at the uncon-
strained equilibrium b over the long run.
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tribution ψ∗ and the marginal distribution ψMt, and the assertion one seeks to prove
is that ‖ψMt − ψ∗‖ → 0 as t → ∞.

At this stage you might like to review the material in §5.2.2, which uses coupling
to prove the stability of finite state Markov chains. However, the next section can be
read independently of §5.2.2, and despite the infinite state space, is perhaps a little
easier to follow.

11.3.1 Coupling with Regeneration

Let us begin by reconsidering stability of the commodity pricing model. This model
has a regenerative structure making it particularly well suited to illustrating the fun-
damentals of coupling. The commodity pricing model was shown to be globally stable
in §8.2.4 when the harvest (i.e., shock) process is lognormally distributed. Let us now
prove that global stability holds when the harvest is distributed according to a general
Borel probability measure ϕ (as opposed to a density).

In §6.3.1 we assumed that the shock is bounded away from zero in order to set up
a contraction mapping argument in a space of bounded functions. Now we assume
that Wt has compact support [0, b]. The contraction mapping arguments of §6.3.1 can
be maintained if P(0) < ∞, where P is the inverse demand function. Assume this to
be the case.

The law of motion for the commodity pricing model is of the form

Xt+1 = αI(Xt) + Wt+1, (Wt)t≥1
IID∼ ϕ, X0 ∼ ψ

where I is the equilibrium investment function in (6.30), page 141. As usual, we as-
sume that X0 is independent of (Wt)t≥1. The shocks (Wt)t≥1 and the initial condition
X0 are random variables on some probability space (Ω, F ,P). The stochastic kernel
P is given by

P(x, B) :=
∫
1B[αI(x) + z]ϕ(dz) (x ∈ S, B ∈ B(S))

and the Markov operator M is defined in the usual way. In example 11.2.6 (page 259)
we saw that S := [0, s̄] is a valid state space for this model when s̄ := b/(1 − α), and
that a stationary distribution ψ∗ ∈ P(S) always exists. When discussing stability, we
will use the metric

‖µ − ν‖ := sup
B∈B(S)

|µ(B)− ν(B)| (11.20)

on P(S), which is proportional to total variation distance (see page 254).

Theorem 11.3.1 If ϕ(z0) > 0 whenever z0 > 0, then (P(S), M) is globally stable. In fact,
there exists a k ∈ N and a δ < 1 such that

‖ψMt×k+1 − ψ∗‖ ≤ δt for all ψ ∈ P(S), t ∈ N (11.21)
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It is an exercise to show that (11.21) implies global stability of (P(S), M).18 The
proof of (11.21) is based on the following inequality, a version of which was previously
discussed in lemma 5.2.1 (page 112):

Lemma 11.3.2 If X and Y are two random variables on (Ω, F ,P) with X ∼ ψX ∈ P(S)
and Y ∼ ψY ∈ P(S), then

‖ψX − ψY‖ ≤ P{X 6= Y} (11.22)

Intuitively, if the probability that X and Y differ is small, then so is the distance
between their distributions. The beauty of lemma 11.3.2 is that it holds for any X and
Y with the appropriate distributions, and careful choice of these random variables can
yield a tight bound.

Proof. Pick any B ∈ B(S). We have

P{X ∈ B} = P{X ∈ B} ∩ {X = Y}+P{X ∈ B} ∩ {X 6= Y}, and

P{Y ∈ B} = P{Y ∈ B} ∩ {X = Y}+P{Y ∈ B} ∩ {X 6= Y}

Since {X ∈ B} ∩ {X = Y} = {Y ∈ B} ∩ {X = Y}, we have

P{X ∈ B} −P{Y ∈ B} = P{X ∈ B} ∩ {X 6= Y} −P{Y ∈ B} ∩ {X 6= Y}

∴ P{X ∈ B} −P{Y ∈ B} ≤ P{X ∈ B} ∩ {X 6= Y} ≤ P{X 6= Y}

Reversing the roles of X and Y gives

|P{X ∈ B} −P{Y ∈ B}| ≤ P{X 6= Y}

Since B is arbitrary, we have established (11.22).

Our strategy for proving theorem 11.3.1 is as follows: Given the harvest process
(Wt)t≥1, let (Xt)t≥0 and (X∗

t )t≥0 be defined by

Xt+1 = αI(Xt) + Wt+1, X0 ∼ ψ and X∗
t+1 = αI(X∗

t ) + Wt+1, X∗
0 ∼ ψ∗

Notice that X∗
t ∼ ψ∗ for all t. Hence, by (11.22), we have

‖ψMt − ψ∗‖ ≤ P{Xt 6= X∗
t } (t ∈ N) (11.23)

Thus to bound ‖ψMt − ψ∗‖, it is sufficient to bound P{Xt 6= X∗
t }. In other words,

we need to show that the probability Xt and X∗
t remain distinct converges to zero in

t—or, conversely, that Xt and X∗
t are eventually equal with high probability.

18Hint: Use nonexpansiveness. See lemma 11.1.12 on page 254.
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time

Figure 11.4 Coupling of (Xt)t≥0 and (X∗
t )t≥0 at t = 5

Critical to the proof are two facts. One is that (Xt)t≥0 and (X∗
t )t≥0 are driven by

the same sequence of harvests (Wt)t≥1. As a result, if the two processes meet, then they
remain equal: if Xj = X∗

j for some j, then Xt = X∗
t for all t ≥ j. Second, there exists an

xb > 0 such that I(x) = 0 for all x ≤ xb (see lemma 11.3.3 below). As a result, if both
Xj ≤ xb and X∗

j ≤ xb, then I(Xj) = I(X∗
j ) = 0, in which case Xj+1 = X∗

j+1 = Wj+1.
As a consequence of these two properties, for Xt = X∗

t to hold, it is sufficient that
both Xj ≤ xb and X∗

j ≤ xb for some j < t. Moreover this will occur whenever there
is a sufficiently long sequence of sufficiently small harvests. We will show that the
probability such a sequence has occurred at least once prior to t converges to one as
t → ∞; and hence P{Xt 6= X∗

t } → 0.
An illustration of the coupling of (Xt)t≥0 and (X∗

t )t≥0 is given in figure 11.4, which
shows simulated paths for these two time series.19 At t = 4 both Xt and X∗

t are below
the threshold xb at which investment becomes zero. As a result Xt = X∗

t for all t ≥ 5.
The two processes are said to couple at t = 5, and that date is referred as the coupling
time.

Now let’s turn to details, beginning with the following lemma. (To maintain con-
tinuity, the proof is given in the appendix to this chapter.)

Lemma 11.3.3 There exists an xb > 0 such that x ≤ xb implies I(x) = 0.

19In the simulation, the primitives are α = 0.9, ξ ∼ cU where c = 4 and U is Beta(5,5), and P(x) = s̄e−x .
As above, s̄ = b(1 − α)−1. Since U ≤ 1, we have b = 4, and s̄ = 40.
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The processes (Xt)t≥0 and (X∗
t )t≥0 couple at j+ 1 if {Xj ≤ xb}∩ {X∗

j ≤ xb} occurs.
To check for occurrence of this event, it is convenient to define a third process that acts
as an upper bound for (Xt)t≥0 and (X∗

t )t≥0:

X′
t+1 = αX′

t + Wt+1, X′
0 = s̄

Using induction, it is easy to confirm that the inequalities Xj ≤ X′
j and X∗

j ≤ X′
j

hold pointwise on Ω for all j. As a consequence,

{X′
j ≤ xb} ⊂ {Xj ≤ xb} ∩ {X∗

j ≤ xb}

for all j ≥ 0.
Given that if (Xt)t≥0 and (X∗

t )t≥0 meet they remain equal, and given that X′
j ≤ xb

implies Xj+1 = X∗
j+1, we have

X′
j ≤ xb for some j ≤ t =⇒ Xt+1 = X∗

t+1

In terms of subsets of Ω, this can be stated as

∪j≤t{X′
j ≤ xb} ⊂ {Xt+1 = X∗

t+1}

∴ P∪j≤t {X′
j ≤ xb} ≤ P{Xt+1 = X∗

t+1}

∴ P{Xt+1 6= X∗
t+1} ≤ P∩j≤t {X′

j > xb}

The probability of the event ∩j≤t{X′
j > xb} can be bounded relatively easily. Indeed,

suppose that harvests Wn+1 to Wn+k are all below z0, where k and z0 are chosen to
satisfy

αk s̄ + z0
1 − αk

1 − α
≤ xb (11.24)

Since the harvests are all below z0, we have

X′
j ≤ αX′

j−1 + z0 j = n + 1, . . . , n + k

Combining these k inequalities gives

X′
n+k ≤ αkX′

n + z0
1 − αk

1 − α
≤ αk s̄ + z0

1 − αk

1 − α
≤ xb

where the last inequality follows from (11.24). Thus a sequence of k harvests below z0
forces (X′

t)t≥0 below xb by the end of the sequence. For dates of the form t × k there
are t nonoverlapping sequences of k consecutive harvests prior to t × k. Let Ei be the
event that the i-th of these t sequences has all harvests below z0:

Ei = ∩i×k
j=k×(i−1)+1{Wj ≤ z0} i = 1, . . . , t
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If X′
j never falls below xb in the period up to t × k, then none of the events Ei has

occurred.
∴ ∩j≤t×k{X′

j > xb} ⊂ ∩t
i=1Ec

i

∴ P{Xt×k+1 6= X∗
t×k+1} ≤ P∩j≤t×k {X′

j > xb} ≤ P∩t
i=1 Ec

i

Since the sequences of harvests that make up each Ei are nonoverlapping, these events
are independent, and P∩t

i=1 Ec
i = ∏t

i=1(1 −P(Ei)).

∴ P{Xt×k+1 6= X∗
t×k+1} ≤

t

∏
i=1

(1 −P(Ei)) = (1 − ϕ(z0)
k)t

We have now established (11.21) and hence theorem 11.3.1.

11.3.2 Coupling and the Dobrushin Coefficient

Let S ∈ B(Rn), and let P be an arbitrary stochastic kernel on S. In the previous
section S was a subset of R, and P had the attractive property that for any x, x′ in
[0, xb] ⊂ S, P(x, dy) = P(x′, dy). Such a set is called an atom of P. Existence of an atom
to which the state returns regularly makes coupling particularly simple: Whenever
the two chains (Xt)t≥0 and (X∗

t )t≥0 in §11.3.1 enter the atom simultaneously they can
be coupled.

Unfortunately, most Markov chains studied in economic applications fail to have
this structure. However, it turns out that with a little bit of trickery one can construct
couplings for many chains without using atoms. In this section we discuss the case
where P has a positive Dobrushin coefficient. As we show, positivity of the Dobrushin
coefficient is very closely connected with the possibility of successful coupling.

Understanding the connection between coupling and the Dobrushin coefficient
is satisfying because the latter plays such an important role in analytical proofs of
stability. Coupling will shine a light on the role of the Dobrushin coefficient from a
new angle. More importantly, the basic idea behind the coupling proof we use here
can be generalized to a large number of different models.

As in §11.3.1, we will endow P(S) with the metric defined by (11.20), which is
proportional to total variation distance. Our main result is as follows:

Proposition 11.3.4 Let ψ, ψ′ ∈ P(S). If α(P) is the Dobrushin coefficient for P and M is
the corresponding Markov operator, then

‖ψMt − ψ′Mt‖ ≤ (1 − α(P))t (t ∈ N)

If α(P) = 0, then this inequality is trivial. On the other hand, if α(P) > 0, then
for any initial conditions ψ and ψ′, we have ‖ψMt − ψ′Mt‖ → 0 at a geometric rate.
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In particular, if ψ′ = ψ∗ is stationary, then ‖ψMt − ψ∗‖ → 0. Note also that we are
proving nothing new here. Theorem 11.2.16 yields the same result. What is new is the
proof—which is radically different.

Since the proposition is trivial when α(P) = 0, we assume in all of what follows
that α(P) is strictly positive. To make the proof, we will build two processes (Xt)t≥0
and (X′

t)t≥0 such that the distribution ψt of Xt is ψMt and the distribution ψ′
t of X′

t is
ψ′Mt. In view of lemma 11.3.2 (page 273), we then have

‖ψMt − ψ′Mt‖ ≤ P{Xt 6= X′
t} (11.25)

Given (11.25) it is sufficient to show that P{Xt 6= X′
t} ≤ (1 − α(P))t. The trick to

the proof is constructing (Xt)t≥0 and (X′
t)t≥0 in a rather special way. In particular,

we build these processes so that there is an independent α(P) probability of meeting
at every step, and, moreover, once the processes meet (i.e., Xj = X′

j for some j) they
remain coupled (i.e., Xt = X′

t for all t ≥ j). It then follows that if Xt 6= X′
t, then the

two processes have never met, and the probability of this is less than (1 − α(P))t.
While (Xt)t≥0 and (X′

t)t≥0 are constructed in a special way, care must be taken that
ψt = ψMt and ψ′

t = ψ′Mt remains valid. This requires that X0 ∼ ψ, X′
0 ∼ ψ′, and,

recursively, Xt+1 ∼ P(Xt, dy) and X′
t+1 ∼ P(X′

t, dy). That such is the case does not
appear obvious from the construction, but at the end of our proof we will verify that
it is.

In order to construct the processes (Xt)t≥0 and (X′
t)t≥0, it is convenient to intro-

duce some additional notation. First, let

γ(x, x′) := (Px ∧ Px′)(S) ((x, x′) ∈ S × S)

be the affinity between P(x, dy) and P(x′, dy), so α(P) = infx,x′ γ(x, x′). Evidently
γ(x, x′) ≥ α(P) > 0 for every x and x′.

Next let us define three new functions from S × S ×B(S) to [0, 1] by

ν(x, x′, B) :=
(Px ∧ Px′)(B)

γ(x, x′)

µ(x, x′, B) :=
P(x, B)− (Px ∧ Px′)(B)

1 − γ(x, x′)

µ′(x, x′, B) :=
P(x′, B)− (Px ∧ Px′)(B)

1 − γ(x, x′)

Crucially, ν(x, x′, dy), µ(x, x′, dy) and µ′(x, x′, dy) are all probability measures on S. In
particular, ν(x, x′, B), µ(x, x′, B) and µ′(x, x′, B) are nonnegative for all B ∈ B(S); and
ν(x, x′, S) = µ(x, x′, S) = µ′(x, x′, S) = 1. The next exercise asks you to show that this
is the case.
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Exercise 11.27 Prove that ν(x, x′, dy), µ(x, x′, dy), and µ′(x, x′, dy) are probability mea-
sures on S for every (x, x′) ∈ S × S such that γ(x, x′) < 1.20

Algorithm 11.1: Coupling algorithm

draw X0 ∼ ψ and X′
0 ∼ ψ∗

set t = 0
while True do

if Xt = X′
t then

draw Z ∼ P(Xt, dy) and set Xt+1 = X′
t+1 = Z

else
draw Ut+1 independently from Uniform(0, 1)
if Ut+1 ≤ γ(Xt, X′

t) then // with probability γ(Xt, X′
t)

draw Z ∼ ν(Xt, X′
t, dy) and set Xt+1 = X′

t+1 = Z
else // with probability 1 − γ(Xt, X′

t)
draw Xt+1 ∼ µ(Xt, X′

t, dy)
draw X′

t+1 ∼ µ′(Xt, X′
t, dy)

end
end
set t = t + 1

end

We are now ready to build the processes (Xt)t≥0 and (X′
t)t≥0. This is done in

algorithm 11.1. The while loop in the algorithm is an infinite loop. If at time t we have
Xt 6= X′

t, then a uniform random variable Ut+1 is drawn to determine the next action.
The probability that Ut+1 ≤ γ(Xt, X′

t) is γ(Xt, X′
t), and if this occurs, then both Xt+1

and X′
t+1 are set equal to a single draw from ν(Xt, X′

t, dy). Otherwise, they are drawn
from µ(Xt, X′

t, dy) and µ′(Xt, X′
t, dy) respectively. All random variables are assumed

to live on probability space (Ω, F ,P).
Our first claim is that for the processes (Xt)t≥0 and (X′

t)t≥0 we have

P{Xt 6= X′
t} ≤ (1 − α(P))t (t ∈ N) (11.26)

The proof is not difficult: Fix any t ∈ N. Observe that if Uj ≤ γ(Xj−1, X′
j−1) for just

one j ≤ t, then the two processes couple and Xt = X′
t. So, if Xt 6= X′

t, then we must
have Uj > γ(Xj−1, X′

j−1) for all j ≤ t. Since γ(Xj−1, X′
j−1) ≥ α(P), and since (Ut)t≥1

is IID and uniformly distributed on (0, 1), the probability of this event is no more than
(1 − α(P))t. As t is arbitrary, the proof of (11.26) is now done.

20Note that γ(x, x′) > 0 by assumption.
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In view of (11.26), proposition 11.3.4 will be established if we can verify (11.25); in
other words, we need to show that

‖ψMt − ψ′Mt‖ ≤ P{Xt 6= X′
t}

As discussed above, this is implied by lemma 11.3.2 (page 273), provided that the
distributions of Xt and X′

t are ψMt and ψ′Mt respectively. Since X0 ∼ ψ and X′
0 ∼ ψ′

certainly hold, we need only show that Xt+1 ∼ P(Xt, dy) and X′
t+1 ∼ P(X′

t, dy) at
each step.

To see that this is the case, suppose that at time t we have (Xt, X′
t) = (x, x′). We

claim that after the next iteration of algorithm 11.1, the probability that Xt+1 ∈ B is
P(x, B), while the probability that X′

t+1 ∈ B is P(x′, B). Let’s focus for now on the
claim that the probability that Xt+1 ∈ B is P(x, B).

Suppose first that x 6= x′. If γ(x, x′) = 1, then Xt+1 is drawn from ν(x, x′, dy)
with probability one. But γ(x, x′) = 1 implies that P(x, dy) = P(x′, dy), and hence
ν(x, x′, dy) = P(x, dy) = P(x′, dy). In particular, the probability that Xt+1 ∈ B is
P(x, B). On the other hand, if γ(x, x′) < 1, then Xt+1 is drawn from ν(x, x′, dy) with
probability γ(x, x′), and from µ(x, x′, dy) with probability 1 − γ(x, x′). As a result the
probability that Xt+1 ∈ B is

γ(x, x′)ν(x, x′, B) + (1 − γ(x, x′))µ(x, x′, B)

A look at the definitions of ν and µ confirms that this is precisely P(x, B).
The argument that X′

t+1 ∈ B with probability P(x′, B) is almost identical.
Finally, suppose that x = x′. Then Xt+1 ∼ P(x, dy), so clearly Xt+1 ∈ B with

probability P(x, B). Also X′
t+1 = Xt+1, so X′

t+1 ∈ B with probability P(x, B). But since
x′ = x, we have P(x′, B) = P(x, B). Hence the probability that X′

t+1 ∈ B is P(x′, B).
The proof is done.

11.3.3 Stability via Monotonicity

Economic models often possess a degree of monotonicity in the laws of motion. If
a nice property such as monotonicity holds, then we would like to exploit it when
considering stability. The question of when monotone stochastic systems are stable is
the topic of this section.

Consider again our canonical SRS introduced on page 217. To reiterate, the state
space S is a Gδ subset of Rn and the shock space Z is a Gδ subset of Rk . The SRS is
described by a Borel measurable function F : S × Z → S and a distribution ϕ ∈ P(Z),
where

Xt+1 = F(Xt, Wt+1), (Wt)t≥1
IID∼ ϕ, X0 ∼ ψ ∈ P(S) (11.27)
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The sequence of shocks (Wt)t≥1 and the initial condition X0 live on a common proba-
bility space (Ω, F ,P) and are mutually independent. The stochastic kernel for (11.27)
is given by

P(x, B) =
∫
1B[F(x, z)]ϕ(dz) (x ∈ S, B ∈ B(S)) (11.28)

Let M be the corresponding Markov operator, so ψ∗ is stationary for (11.27) if and
only if ψ∗M = ψ∗.

In what follows, our order on Rn is the usual one: we write (xi)
n
i=1 ≤ (yi)

n
i=1 if

xi ≤ yi for all i with 1 ≤ i ≤ n.

Definition 11.3.5 The SRS (11.27) is said to be monotone increasing if, for all z ∈ Z,

F(x, z) ≤ F(x′, z) whenever x ≤ x′ (11.29)

Example 11.3.6 Consider the one-dimensional linear system

Xt+1 = αX + Wt+1, (Wt)t≥1
IID∼ ϕ ∈ P(R) (11.30)

where S = Z = R and F(x, z) = αx + z. This SRS is monotone increasing if and only
if α ≥ 0.

Let ibS denote the increasing bounded Borel measurable functions h : S → R.

Exercise 11.28 Suppose that the SRS (11.27) is monotone increasing, and h : S → R.
Show that if h ∈ ibS, then Mh ∈ ibS.

Exercise 11.29 A set B ⊂ S is called an increasing set if x ∈ B and x′ ∈ S with x ≤ x′

implies x′ ∈ B. Show that B ∈ B(S) is an increasing set if and only if 1B ∈ ibS.

Since P(x, B) = M1B(x), it follows that x 7→ P(x, B) is increasing whenever B is
an increasing set and the SRS is monotone increasing..

Exercise 11.30 Let the SRS be monotone increasing and let B ∈ B(S) be increasing.
Prove that x 7→ Pm(x, B) is increasing for all m ∈ N.

Returning to the general SRS (11.27), let’s assume that at least one stationary dis-
tribution ψ∗ exists, and see what conditions we might need to obtain uniqueness and
stability of ψ∗ under the hypothesis of monotonicity. In this section stability of ψ∗ will
have the slightly nonstandard definition

∀ψ ∈ P(S), (ψMt)(h) → ψ∗(h) as t → ∞ for all h ∈ ibS (11.31)

In many setting, the convergence of distributions in (11.31) is stronger that weak con-
vergence. Lemma A.6 of Kamihigashi and Stachurski (2014) gives more details. Im-
portantly, (11.31) implies uniqueness of ψ∗, as follows from the next exercise.
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Exercise 11.31 Show that if ψ∗∗ ∈ P(S) satisfies ψ∗∗M = ψ∗∗ and (11.31) holds, then
ψ∗∗ and ψ∗ must be equal.

Now let (Wt)t≥1 and (W ′
t )t≥1 be jointly independent IID processes on Z, both dis-

tributed according to ϕ and defined on the common probability space (Ω, F ,P). Us-
ing these two independent shock processes, we can introduce a condition that is suf-
ficient for stability of monotone systems.

Definition 11.3.7 The SRS (11.27) is called order mixing if, given any two independent
initial conditions X0 and X′

0, the processes (Xt)t≥0 and (X′
t)t≥0 defined by Xt+1 =

F(Xt, Wt+1) and X′
t+1 = F(X′

t, W ′
t+1) satisfy

P∪t≥0 {Xt ≤ X′
t} = P∪t≥0 {X′

t ≤ Xt} = 1 (11.32)

Exercise 11.32 Prove that for the sequences (Xt)t≥0 and (X′
t)t≥0 defined in defini-

tion 11.3.7, we have

P∪t≥0 {Xt ≤ X′
t} = 1 ⇐⇒ lim

j→∞
P∩t≤j {Xt ≰ X′

t} = 0.

Paired with monotonicity, order mixing is sufficient for stability. In particular, we
have the following result:

Theorem 11.3.8 Suppose that (11.27) has at least one stationary distribution ψ∗ ∈ P(S).
If it is monotone increasing and order mixing, then ψ∗ is the only stationary distribution, and
moreover ψ∗ is globally stable in the sense of (11.31).

The proof is given at the end of §11.3.4. For now let us consider how to apply this
result. To do so, it is necessary to develop sufficient conditions for order mixing that
are easy to check in applications. One set of conditions that implies order mixing is
that introduced by Razin and Yahav (1979), and extended and popularized by Stokey
and Lucas (1989) and Hopenhayn and Prescott (1992). Following Stokey and Lucas
(1989, assumption 12.1), suppose that S = [a, b] := {x ∈ Rn : a ≤ x ≤ b} for fixed
a, b ∈ Rn, and that

∃ m ∈ N, c ∈ S, ϵ > 0 such that Pm(a, [c, b]) ≥ ϵ and Pm(b, [a, c]) ≥ ϵ (11.33)

Let’s consider this condition in our setting, where P is the kernel (11.28) and (11.27) is
monotone increasing.

Exercise 11.33 Show that under (11.33) the kernel P satisfies Pm(x, [c, b]) ≥ ϵ and
Pm(x, [a, c]) ≥ ϵ for all x ∈ S.

If (11.27) satisfies (11.33), then it is order mixing. To get a feel for the proof, suppose
that (11.33) holds with m = 1, and consider the probability that there exists a t ≥ 0
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with Xt ≤ X′
t. In light of exercise 11.32, to show this probability is one, it is sufficient

to show that limT→∞P(ET) = 0, where ET := ∩t≤T{Xt ≰ X′
t}. The probability of

Xt ≤ X′
t given (Xt−1, X′

t−1) = (x, x′) is

P{F(x, Wt) ≤ F(x′, W ′
t )} ≥ P{F(x, Wt) ≤ c} ∩ {F(x′, W ′

t ) ≥ c}
= P{F(x, Wt) ≤ c}P{F(x′, W ′

t ) ≥ c}
= P(x, [a, c])P(x′, [c, b]) ≥ ϵ2

Hence for each t the probability of Xt ≤ X′
t occurring is at least ϵ2, independent of the

lagged value of the state. One can then show that the probability P(ET) of this event
never occurring prior to T is ≤ (1 − ϵ2)T → 0.21 From exercise 11.32 we then have
P ∪t≥0 {Xt ≤ X′

t} = 1. A similar argument establishes P ∪t≥0 {Xt ≥ X′
t} = 1, and

hence order mixing.
Condition (11.33) can be restrictive, as the state space must be of the form {x ∈

Rn : a ≤ x ≤ b}. To devise a weaker set of sufficient conditions, we introduce the
concept of order inducing sets and order norm-like functions.

Definition 11.3.9 A C ∈ B(S) is called order inducing for kernel P if there exists a
c ∈ S and an m ∈ N such that

inf
x∈C

Pm(x, {z : z ≤ c}) > 0 and inf
x∈C

Pm(x, {z : z ≥ c}) > 0

A measurable function v : S → R+ is called order norm-like for P if every sublevel set
of v is order inducing for P.22

Example 11.3.10 Continuing with the model (11.30) in example 11.3.6, suppose that
P{Wt ≤ d} > 0 and P{Wt ≥ d} > 0 for all d ∈ S = R. Then every set of the form
[−b, b] is order inducing with m = 1 and c = 0. To see this, pick any b ≥ 0. For
x ∈ [−b, b] we have

P(x, {z : z ≤ 0}) = P{αx + W ≤ 0} = P{W ≤ −αx} ≥ P{W ≤ −αb}

which is positive. The proof that infx∈C P(x, {z : z ≥ 0}) > 0 is similar.
Since all sets of the form [−b, b] are order inducing, it follows that v(x) = |x| is

order norm-like for this model. (Why?)

Exercise 11.34 Show that all measurable subsets of order inducing sets are order in-
ducing. Show that v : S → R+ is order norm-like if and only if there exists a K ∈ R+

such that {x ∈ S : v(x) ≤ a} is order inducing for all a ≥ K.

We can now state the following sufficient condition for order mixing:
21A complete proof can be made along the lines of of proposition 5.2.2, or using conditional expectations.

See also Kamihigashi and Stachurski (2008).
22Recall that the sublevel sets of v are sets of the form {x ∈ S : v(x) ≤ a} for a ∈ R+.
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Theorem 11.3.11 If there exists an order norm-like function v for (11.27) and constants
α ∈ [0, 1) and β ∈ R+ such that∫

v[F(x, z)]ϕ(dz) ≤ αv(x) + β (x ∈ S) (11.34)

then (11.27) is order mixing.

The intuition is that under (11.34) there is drift back to (sufficiently large) sub-
level sets of v, which are order inducing. When two independent chains (Xt)t≥0 and
(X′

t)t≥0 enter such an order inducing set, there is a positive probability of the orderings
Xt ≤ X′

t and Xt ≥ X′
t occurring within m periods. Repeated over an infinite horizon,

these orderings eventually occur with probability one. For a proof, see Kamihigashi
and Stachurski (2008).

Example 11.3.12 Continuing with example 11.3.10, we saw that v(x) = |x| is order
norm-like for this model. If E|Wt| < ∞ and |α| < 1, then the model is order mixing,
since for any x ∈ S,∫

v[F(x, z)]ϕ(dz) =
∫

|αx + z|ϕ(dz) ≤ |α|v(x) +
∫

|z|ϕ(dz)

11.3.4 More on Monotonicity

Let’s now turn to a less trivial example of how monotonicity and order mixing can
be used to establish stability.23 Recall the stochastic Solow–Swan growth model dis-
cussed in example 9.2.4, page 218, with law of motion

kt+1 = s f (kt)Wt+1 + (1 − δ)kt (11.35)

and increasing production function f : R+ → R+ with f (k) > 0 for all k > 0. The pro-
ductivity shock Wt and the capital stock kt take values in Z := S := (0, ∞), while the
parameters satisfy s ∈ (0, 1) and δ ∈ (0, 1]. The model (11.35) is monotone increasing
in the sense of definition 11.3.5.

Let’s look for conditions under which (11.35) is order mixing. For simplicity we as-
sume that δ = 1.24 We suppose further that limk→0 f (k)/k = ∞, and limk→∞ f (k)/k =
0. (More traditional Inada conditions can be used if f is assumed to be differentiable.)
Regarding the distribution ϕ, we assume that both EWt and E(1/Wt) are finite, and
that P{Wt ≤ x} and P{Wt ≥ x} are strictly positive for every x ∈ S.25

23See also §12.1.3, which treats the optimal growth model using monotonicity.
24The case δ < 1 can be accommodated at the cost of a longer proof.
25We require a lot of mixing for global stability because f is not assumed to be concave. In fact f can be

rather arbitrary, and the deterministic model (i.e., Wt ≡ 1 for all t) can have many fixed points.
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First let’s show that all closed intervals [a, b] ⊂ S are order inducing for this model.
To do so, pick any a ≤ b. Fix any c ∈ S. It suffices to show that infa≤x≤b P(x, [c, ∞)) >
0 and likewise for (0, c]. Given our assumptions on ϕ, for any x ∈ [a, b] we have

P(x, [c, ∞)) = P{s f (x)Wt+1 ≥ c}
= P{Wt+1 ≥ c/(s f (x))} ≥ P{Wt+1 ≥ c/(s f (a))} > 0

A similar argument gives infa≤x≤b P(x, (0, c]) > 0.

Exercise 11.35 Show that, for this model, the function v(x) := 1/x + x is order norm-
like on S = (0, ∞).

To complete the proof of stability, we must show that the drift condition (11.34)
holds for v. That is, we need to establish the existence of an α ∈ [0, 1) and a β ∈ R+

such that
Mv ≤ αv + β when v(x) = x +

1
x

(11.36)

where M is the Markov operator defined by Mh(x) =
∫

h[s f (x)z]ϕ(dz). To this end,
suppose that we can establish the existence of α1, α2 ∈ [0, 1) and β1, β2 ∈ R+ with

Mv1 ≤ α1v1 + β1 and Mv2 ≤ α2v2 + β2 (11.37)

where v1(x) = x and v2(x) = 1/x. Then since v = v1 + v2, adding across the two
inequalities in (11.37) gives the desired inequality (11.36) because

Mv = M(v1 + v2) = Mv1 + Mv2 ≤ α1v1 + β1 + α2v2 + β2 ≤ αv + β

when α := max{α1, α2} and β := β1 + β2. In other words, to establish the drift
condition (11.36) and hence order mixing, it is sufficient to establish separately the two
drift conditions in (11.37). Intuitively, the drift condition on v1 prevents divergence to
+∞, while the condition on v2 prevents divergence to zero.

Let’s attempt to establish the two inequalities in (11.37), starting with the left-hand
side (i.e., the inequality Mv1 ≤ α1v1 + β1).

Exercise 11.36 Prove the existence of an α1 ∈ (0, 1) and β1 < ∞ such that Mv1(x) ≤
α1v1(x) + β1 for all x ∈ S

The last exercise establishes the first of the two inequalities in (11.37). The next
exercise establishes the second inequality.

Exercise 11.37 Prove the existence of an α2 ∈ (0, 1) and β2 < ∞ such that Mv2(x) ≤
α2v2(x) + β2 for all x ∈ S.

Thus the second inequality in (11.37) also holds, and theorem 11.3.11 implies that
under our assumptions the stochastic Solow–Swan growth model is order mixing.
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Figure 11.5 The process (XL
t )t≥0

Since it is also monotone increasing, theorem 11.3.8 implies that should any station-
ary distribution ψ∗ ∈ P(S) exist, that stationary distribution would be unique and
globally stable in the sense of (11.31). If f is continuous, then since v is also norm-like
(as well as order norm-like, see lemma 8.2.12 on page 207), existence of ψ∗ follows
immediately from corollary 11.2.9.

To complete this section, let’s give the proof of theorem 11.3.8. Using the two inde-
pendent series (Wt)t≥1 and (W ′

t )t≥1 in the definition of order mixing, algorithm 11.2
defines four processes, denoted by (Xt)t≥0, (X′

t)t≥0, (XL
t )t≥0 and (XU

t )t≥0.26 The pro-
cess (Xt)t≥0 is the original SRS in (11.27), with initial condition ψ. The process (X′

t)t≥0
has the same law of motion, is driven by independent shocks (W ′

t )t≥1, and starts at the
stationary distribution ψ∗. Clearly, X′

t ∼ ψ∗ for all t ≥ 0. The process (XL
t )t≥0 starts

off equal to X0, and updates with shock W ′
t+1 if XL

t ≤ X′
t and with Wt+1 otherwise.

The process (XU
t )t≥0 also starts off equal to X0, and updates with W ′

t+1 if XU
t ≥ X′

t
and with Wt+1 otherwise. An illustration of the process (XL

t )t≥0 is given in figure 11.5.
To help clarify the algorithm, we introduce two random variables:

TL := min{t ≥ 0 : Xt ≤ X′
t} and TU := min{t ≥ 0 : Xt ≥ X′

t}

with the usual convention that min ∅ = ∞. Three properties of (XL
t )t≥0 and (XU

t )t≥0
are pertinent. The first is that (XL

t )t≥0 and (XU
t )t≥0 are identical to (Xt)t≥0 until TL

and TU respectively. This just follows from the logic of the algorithm. Second, for
t ≥ TL we have XL

t ≤ X′
t; and XU

t ≥ X′
t for t ≥ TU . To see this, consider the case of

26Formally, ω ∈ Ω is drawn at the start of time according toP, thereby determining the initial conditions
X0(ω) and X′

0(ω), and the shock realizations (Wt(ω))t≥1 and (W ′
t (ω))t≥1. These in turn determine the

realizations of all other random variables.
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Algorithm 11.2: Four (F, ϕ) processes

generate independent draws X0 ∼ ψ and X′
0 ∼ ψ∗

set XL
0 = XU

0 = X0
for t ≥ 0 do

draw Wt+1 ∼ ϕ and W ′
t+1 ∼ ϕ independently

set Xt+1 = F(Xt, Wt+1) and X′
t+1 = F(X′

t, W ′
t+1)

if XL
t ≤ X′

t then
set XL

t+1 = F(XL
t , W ′

t+1)

else
set XL

t+1 = F(XL
t , Wt+1)

end
if XU

t ≥ X′
t then

set XU
t+1 = F(XU

t , W ′
t+1)

else
set XU

t+1 = F(XU
t , Wt+1)

end
end

(XL
t )t≥0. Note that XL

TL = XTL ≤ X′
TL by the definition of TL, and then

XL
TL+1 = F(XL

TL , W ′
TL+1) ≤ F(X′

TL , W ′
TL+1) = X′

TL+1

by monotonicity. Continuing in this way, we have XL
t ≤ X′

t for all t ≥ TL. The
argument for (XU

t )t≥0 is similar. A third property is that both XL
t and XU

t have the
same distribution ψMt as Xt for all t. The reason is that XL

0 and XU
0 are drawn from ψ,

and both processes are then updated by the same SRS as the original process (Xt)t≥0,
even though the source of shocks switches from (Wt)t≥1 to (W ′

t )t≥1 at TL and TU

respectively.27

Now to the proof. Pick any h ∈ ibS. We wish to show that (ψMt)(h) → ψ∗(h)
as t → ∞. Order mixing tells us precisely that P{TL < ∞} = 1, or P{TL ≤ t} → 1
as t → ∞. Note that TL ≤ t implies XL

t ≤ X′
t, and since h is increasing, this implies

h(XL
t ) ≤ h(X′

t). Therefore

h(XL
t )1{TL ≤ t} ≤ h(X′

t)1{TL ≤ t}

∴ Eh(XL
t )1{TL ≤ t} ≤ Eh(X′

t)1{TL ≤ t} (11.38)

27A more formal argument can be made via the so-called strong Markov property. See also Kamihigashi
and Stachurski (2008).
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Using P{TL ≤ t} → 1 and taking the limit superior now gives

lim sup
t→∞

Eh(XL
t ) ≤ lim sup

t→∞
Eh(X′

t) (11.39)

where the precise derivation of (11.39) is left until the end of the proof. To continue,
since X′

t ∼ ψ∗ for all t, the right-hand side is just ψ∗(h). And since XL
t ∼ ψMt for all t,

we have proved that
lim sup

t→∞
(ψMt)(h) ≤ ψ∗(h)

By a similar argument applied to XU
t instead of XL

t , we obtain

ψ∗(h) ≤ lim inf
t→∞

(ψMt)(h)

It now follows that limt→∞(ψMt)(h) = ψ∗(h), and since h is an arbitrary element of
ibS, the claim in (11.31) is established.

To end the section, let’s see how (11.39) is derived. We have

lim sup
t→∞

Eh(XL
t ) ≤ lim sup

t→∞
Eh(XL

t )1{TL ≤ t}+ lim sup
t→∞

Eh(XL
t )1{TL > t}

Since h is bounded the last term is zero, and hence

lim sup
t→∞

Eh(XL
t ) ≤ lim sup

t→∞
Eh(XL

t )1{TL ≤ t} ≤ lim sup
t→∞

Eh(X′
t)1{TL ≤ t} = ψ∗(h)

where the second inequality is due to (11.38), and the final equality holds because

Eh(X′
t)1{TL ≤ t} = Eh(X′

t)−Eh(X′
t)1{TL > t} = ψ∗(h)−Eh(X′

t)1{TL > t}

and boundedness of h gives Eh(X′
t)1{TL > t} → 0 as t → ∞.

11.3.5 Further Stability Theory

In the theory covered so far, we have illustrated how stability problems in unbounded
state spaces can be treated using drift conditions. Drift conditions were used in §8.2.3
for existence, uniqueness, and stability in the density case, in §11.2.1 for existence in
the general (i.e., measure) case, and in §11.3.3 for stability in the general case under
monotonicity. It would be nice to add a stability result suitable for unbounded spaces
(i.e., using drift) that requires neither density assumptions nor monotonicity. Let us
now address this gap, providing a result for the general case that gives existence,
uniqueness, and stability without specifically requiring continuity, monotonicity or
densities. While full proofs are beyond the scope of this text, an intuitive explanation
based on coupling and the Dobrushin coefficient is provided.
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Let P be a stochastic kernel on S ∈ B(Rn). In §11.3.2 we showed how processes
on S can be coupled when the Dobrushin coefficient is strictly positive, and how this
coupling can be used to prove stability. However, we know that on unbounded state
space the Dobrushin coefficient α(P) of P is often zero.28 The problem is that α(P) is
defined as the infimum of the affinities γ(x, x′) := (Px ∧ Px′)(S) over all (x, x′) pairs
in S × S. The affinity is close to one when P(x, dy) and P(x′, dy) put probability mass
in similar areas, and converges to zero as their supports diverge. If S is unbounded,
then as the distance between x and x′ increases without bound, it is likely that the
supports of P(x, dy) and P(x′, dy) also diverge from one another, and γ(x, x′) can be
made arbitrarily small. The end result is α(P) = 0.

If α(P) = 0, then the coupling result in §11.3.2 fails. To see this, recall that the proof
is based on the bound

‖ψMt − ψ′Mt‖ ≤ P{Xt 6= X′
t} (11.40)

where (Xt)t≥0 and (X′
t)t≥0 are processes with X0 ∼ ψ, X′

0 ∼ ψ′, Xt+1 ∼ P(Xt, dy)
and X′

t+1 ∼ P(X′
t, dy). To show that P{Xt 6= X′

t} → 0 as t → ∞, we constructed the
sequences (Xt)t≥0 and (X′

t)t≥0 using algorithm 11.1, where the probability of coupling
at t + 1 is γ(Xt, X′

t) ≥ α(P). This gave the bound P{Xt 6= X′
t} ≤ (1 − α(P))t.

Of course, if α(P) = 0, then this bound has no bite. However, there is a way
to extend our stability result to such cases. The basic idea is as follows: While the
infimum of γ(x, x′) may be zero when taken over all of S× S, it may well be a positive
value ϵ when taken over C × C, where C is some bounded subset of S. If such a C
exists, then we can modify our strategy by attempting to couple the chains only when
both are in C. In this case the probability of coupling at t + 1 is γ(Xt, X′

t) ≥ ϵ.
This idea is illustrated in algorithm 11.3. (Compare with algorithm 11.1.)
The algorithm can be made to work along the following lines: Suppose that the

kernel P and the set C are such that (Xt)t≥0 and (X′
t)t≥0 return to C infinitely often

with probability one. Each time both chains return to C simultaneously, there is an ϵ
probability of coupling. From this it can be shown that P{Xt 6= X′

t} → 0 as t → ∞,
which implies stability via (11.40).

The formal arguments are not trivial, and rather than attempting such a proof
here, we present instead some standard results that can be understood using the same
intuition. In particular, we will be looking for (1) a set C ⊂ S such that the infimum
of γ(x, x′) on C × C is positive, and (2) some kind of drift condition ensuring the
chain returns to C infinitely often. These conditions capture the essence of stability on
unbounded state spaces: mixing at the center of the state sufficient to rule out multiple
local equilibria, and drift back to the center sufficient to rule out divergence.

Before presenting these results, it might be helpful to consider an example in which
there exists a set C ⊂ S such that the infimum of γ(x, x′) on C × C is positive:

28Recall the example shown in figure 8.7 on page 199.
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Algorithm 11.3: Coupling with drift

draw X0 ∼ ψ, X′
0 ∼ ψ∗ and set t = 0

while True do
if Xt = X′

t then
draw Z ∼ P(Xt, dy) and set Xt+1 = X′

t+1 = Z
else

if Xt ∈ C and X′
t ∈ C then

draw Ut+1 from the uniform distribution on (0, 1)
if Ut+1 ≤ γ(Xt, X′

t) then // with probability γ(Xt, X′
t)

draw Z ∼ ν(Xt, X′
t, dy) and set Xt+1 = X′

t+1 = Z
else // with probability 1 − γ(Xt, X′

t)
draw Xt+1 ∼ µ(Xt, X′

t, dy) and X′
t+1 ∼ µ′(Xt, X′

t, dy)
end

else
draw Xt+1 ∼ P(Xt, dy) and X′

t+1 ∼ P(X′
t, dy)

end
end
set t = t + 1

end
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Example 11.3.13 Consider again the STAR model discussed in §8.2.4, where Z = S =
R, and the state evolves according to

Xt+1 = g(Xt) + Wt+1, (Wt)t≥1
IID∼ ϕ ∈ D(S) (11.41)

The kernel P corresponding to this model is of the form P(x, dy) = p(x, y)dy, where
p(x, y) = ϕ(y − g(x)). The affinities are given by

γ(x, x′) =
∫

p(x, y) ∧ p(x′, y)dy =
∫

ϕ(y − g(x)) ∧ ϕ(y − g(x′))dy

Suppose that ϕ and g are both continuous, and that ϕ is strictly positive onR, in which
case

S × S 3 (x, y) 7→ p(x, y) = ϕ(y − g(x)) ∈ R
is continuous and positive on S× S. It follows that for any compact set C, the infimum
of (x, y) 7→ p(x, y) on C × C is greater than some δ > 0. But then

γ(x, x′) =
∫

p(x, y) ∧ p(x′, y)dy ≥
∫

C
p(x, y) ∧ p(x′, y)dy ≥ δλ(C) =: ϵ

for any (x, x′) ∈ C × C. If λ(C) > 0, then inf(x,x′)∈C×C γ(x, x′) ≥ ϵ > 0.

The set C is called a small set. The traditional definition is as follows:

Definition 11.3.14 Let ν ∈ P(S) and let ϵ > 0. A set C ∈ B(S) is called (ν, ϵ)-small
for P if for all x ∈ C we have

P(x, A) ≥ ϵν(A) (A ∈ B(S))

C is called small for P if it is (ν, ϵ)-small for some ν ∈ P(S) and ϵ > 0.

This definition works for us because if C is small, then the infimum of γ on C × C
is strictly positive. In particular, if C is (ν, ϵ)-small, then the infimum is greater than
ϵ. The proof is left as an exercise:

Exercise 11.38 Prove the following fact: if C is (ν, ϵ)-small for P, then

γ(x, x′) := (Px ∧ Px′)(S) ≥ ϵ

for any x, x′ in C.

Exercise 11.39 Show that every measurable subset of a small set is small.

Exercise 11.40 Show that if P(x, dy) = p(x, y)dy for some density kernel p, then C ∈
B(S) is small for P whenever there exists a measurable g : S → R+ with

∫
g(y)dy > 0

and p(x, y) ≥ g(y) for all x ∈ C and y ∈ S.
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Exercise 11.41 Consider the stochastic kernel P(x, dy) = p(x, y)dy = N(ax, 1), which
corresponds to a linear AR(1) process with normal shocks. Show that every measur-
able bounded C ⊂ R is a small set for this process.

Now let’s introduce a suitable drift condition.

Definition 11.3.15 The kernel P satisfies drift to a small set if there exists a small set C,
a measurable function v : S → [1, ∞) and constants λ ∈ [0, 1) and L ∈ R+ such that

Mv(x) ≤ λv(x) + L1C(x) (x ∈ S) (11.42)

Drift to a small set is not dissimilar to our other drift conditions. In this case, if the
current state Xt is at some point x /∈ C, then since λ < 1, the next period expectation
E[v(Xt+1) | Xt = x] of the “Lyapunov function” v is a fraction of the current value
v(x). Since v ≥ 1, this cannot continue indefinitely, and the state tends back toward
C.29

Sometimes the following condition is easier to check than (11.42).

Lemma 11.3.16 Suppose that there exists a measurable function v : S → R+ and constants
α ∈ [0, 1) and β ∈ R+ such that

Mv(x) ≤ αv(x) + β (x ∈ S) (11.43)

If all sublevel sets of v are small, then P satisfies drift to a small set.30

Exercise 11.42 Prove lemma 11.3.16.

Finally, to present the main result, we need two definitions that appear frequently
in classical Markov chain theory. The first is aperiodicity:

Definition 11.3.17 A kernel P is called aperiodic if P has a (ν, ϵ)-small set C with
ν(C) > 0.31

Exercise 11.43 Continuing exercise 11.40, suppose there is a C ∈ B(S) and measur-
able g : S → R+ with

∫
g(y)dy > 0 and p(x, y) ≥ g(y) for all x ∈ C and y ∈ S. Show

that if
∫

C g(x)dx > 0, then P is aperiodic.

Definition 11.3.18 Let µ ∈ P(S). The kernel P is called µ-irreducible if, for all x ∈ S
and B ∈ B(S) with µ(B) > 0, there exists a t ∈ N with Pt(x, B) > 0. P is called
irreducible if it is µ-irreducible for some µ ∈ P(S).

29Condition (11.42) corresponds to (V4) in Meyn and Tweedie (2009, §15.2.2).
30Recall that the sublevel sets of v are sets of the form {x ∈ S : v(x) ≤ K}, K ∈ R+.
31Our definition corresponds to what is usually called strong aperiodicity. See Meyn and Tweedie (2009,

ch. 5).



292 Preface

Let P be a stochastic kernel on S. Let M be the corresponding Markov operator, and
let P(S) be endowed with the total variation metric. We can now state the following
powerful stability result:

Theorem 11.3.19 If P is irreducible, aperiodic and satisfies drift to a small set, then the system
(P(S), M) is globally stable with unique stationary distribution ψ∗ ∈ P(S). Moreover if
v is the function in definition 11.3.15 and h : S → R is any measurable function satisfying
|h| ≤ v, then

1
n

n

∑
t=1

h(Xt) → ψ∗(h) with probability one as n → ∞ (11.44)

Finally, if h2 ≤ v, then there is a σ ∈ R+ with

√
n

(
1
n

n

∑
t=1

h(Xt)− ψ∗(h)

)
→ N(0, σ2) weakly as n → ∞ (11.45)

For a proof of theorem 11.3.19, the reader is referred to Meyn and Tweedie (2009,
thms. 16.0.1 and 17.0.1), or Roberts and Rosenthal (2004, thms. 9 and 28). The proofs
in the second reference are closer to the coupling intuition provided in algorithm 11.3.

Remark 11.3.20 Under the conditions of theorem 11.3.19 it is known that ψ∗(v) < ∞,
so |h| ≤ v implies ψ∗(|h|) < ∞. Actually this last restriction is sufficient for h to satisfy
the LLN (11.44).

Remark 11.3.21 Why is aperiodicity required in theorem 11.3.19? To gain some intu-
ition we can refer back to algorithm 11.3. Under the conditions of theorem 11.3.19 we
have drift back to a small set, which corresponds to C in algorithm 11.3. Each time
the chains both return to C there is an opportunity to couple, and with enough such
opportunities the probability of not coupling prior to t converges to zero in t. At issue
here is that the chains must not only drift back to C, they must also return to C at the
same time. With periodic chains this can be problematic because starting at different
points in the cycle can lead to infinitely many visits to C by both chains that never
coincide.

Let’s try to apply theorem 11.3.19 to the STAR model in (11.41). We assume that
the function g in (11.41) is continuous and satisfies

|g(x)| ≤ α|x|+ c (x ∈ S = R)

for some α < 1 and c ∈ R+, that the density ϕ is continuous and everywhere positive
onR, and that E|W1| =

∫
|z|ϕ(z)dz < ∞.
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Exercise 11.44 Show that the corresponding kernel P is irreducible on S = R.

Next let’s prove that every compact C ⊂ S is small for P. Since measurable subsets
of small sets are themselves small (exercise 11.39), we can assume without loss of
generality that the Lebesgue measure λ(C) of C is strictly positive. (Why?) Now set
δ := min{p(x, y) : (x, y) ∈ C × C}. The quantity δ is strictly positive by continuity
and positivity of p. Finally, let g := δ1C.

Exercise 11.45 Show that C and g satisfy all of the conditions in exercises 11.40 and
11.43.

From exercise 11.45 we conclude that all compact sets are small, and, moreover,
that P is aperiodic. To verify theorem 11.3.19, it remains only to check drift to a small
set holds. In view of lemma 11.3.16, it is sufficient to exhibit a function v : S → R+ and
constants α ∈ [0, 1), β ∈ R+ such that all sublevel sets of v are compact and the drift
in (11.43) holds. The condition (11.43) has already been shown to hold for v(x) :=
|x| in §8.2.4. Moreover the sublevel sets of v are clearly compact. The conditions of
theorem 11.3.19 are now verified.

11.4 Commentary

The outstanding reference for stability of Markov chains in general state spaces is
Meyn and Tweedie (2009). Another good reference on the topic is Hernández-Lerma
and Lasserre (2003). Bhattacharya and Majumdar (2007) give a general treatment of
Markov chains with extensive discussion of stability. For an application of Meyn and
Tweedie’s ideas to time series models, see Kristensen (2007). At the time of writing
(2021), Andreas Eberle has some excellent lecture notes treating Markov stability on
his website, under the title “Markov Processes.”

I learned about the Dobrushin coefficient and its role in stability through read-
ing lecture notes of Eric Moulines, and about coupling via Lindvall (1992), Rosenthal
(2002), and Roberts and Rosenthal (2004). The idea of using coupling to prove stability
of Markov chains is due to the remarkable Wolfgang Doeblin (1938). The link between
the Dobrushin coefficient and coupling in §11.3.2 is my own work, extending similar
studies by the authors listed above. While I was unable to find this line of argument
elsewhere, I certainly doubt that it is new.

The monotonicity-based approach to stability introduced in §11.3.3 is due to Kami-
higashi and Stachurski (2008). These ideas, and many more related to monotone
Markov processes, were published in a series of articles by the same authors and can
be found on my webpage. For other monotonicity-based treatments of stability, see
Razin and Yahav (1979), Bhattacharya and Lee (1988), Hopenhayn and Prescott (1992),
or Zhang (2007).
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In this chapter we gave only a very brief discussion of the central limit theorem for
Markov chains. See Meyn and Tweedie (2009) for standard results, and Jones (2004)
for a survey of recent theory.



Chapter 12

More Stochastic Dynamic
Programming

In this chapter we treat some extensions to the fundamental theory of dynamic pro-
gramming, as given in chapter 10. In §12.1 we investigate how additional structure
can be used to obtain new results concerning the value function and the optimal pol-
icy. In §12.2 we show how to modify our earlier optimality results when the reward
function is not bounded.

12.1 Monotonicity and Concavity

In many economic models we have more structure at our disposal than just continuity
and compactness (assumptions 10.1.3–10.1.5, page 229), permitting sharper character-
izations of optimal actions and more efficient numerical algorithms. Often this addi-
tional structure is in the form of monotonicity or convexity. We begin by discussing
monotonicity.

12.1.1 Monotonicity

As before, given vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) inRn, we write x ≤ y if
xi ≤ yi for 1 ≤ i ≤ n. We write x < y if, in addition, x 6= y. A function w : Rn ⊃ E →
R is called increasing on E if, given x, x′ ∈ E with x ≤ x′, we have w(x) ≤ w(x′); and
strictly increasing if x < x′ implies w(x) < w(x′). A correspondence Γ from E to any
set A is called increasing on E if Γ(x) ⊂ Γ(x′) whenever x ≤ x′. A set B ⊂ E is called
an increasing subset of E if 1B is an increasing function on E; equivalently, if x ∈ B and

295
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x′ ∈ E with x ≤ x′ implies x′ ∈ B. It is called a decreasing subset of E if x′ ∈ B and
x ∈ E with x ≤ x′ implies x ∈ B. For convex E ⊂ Rn, a function w : E → R is called
concave if,

λw(x) + (1 − λ)w(y) ≤ w(λx + (1 − λ)y) ∀ λ ∈ [0, 1] and x, y ∈ E

and strictly concave if the inequality is strict for all x 6= y and all λ ∈ (0, 1).
In all of this section, S is a Gδ subset ofRn and A is a Gδ subset ofRk. Furthermore

the set S is assumed to be convex. We will be working with an arbitrary SDP (r, F, Γ, ϕ, ρ)
that, at least for now, obeys our usual assumptions (page 229). The state space is S,
the action space is A, and the shock space is Z. Finally, ibcS is the increasing bounded
continuous functions on S.

Exercise 12.1 Show that ibcS is a closed subset of (bcS, d∞). The same is not true for
the strictly increasing bounded continuous functions. (Why?)

Our first result gives sufficient conditions for the value function associated with
this SDP to be increasing on S.

Theorem 12.1.1 The value function v∗ is increasing on S whenever Γ is increasing on S and,
for any x, x′ ∈ S with x ≤ x′, we have

1. r(x, u) ≤ r(x′, u) for all u ∈ Γ(x), and

2. F(x, u, z) ≤ F(x′, u, z) for all u ∈ Γ(x), z ∈ Z.

Proof. In the proof of lemma 10.1.14 (page 236) we saw that the Bellman operator T
satisfies T : bcS → bcS. Since ibcS is a closed subset of bcS and since v∗ is the fixed
point of T, we need only show that T : ibcS → ibcS. (Recall exercise 4.15, page 65.)
To do so, take any x and x′ in S with x ≤ x′ and fix w ∈ ibcS. Let σ be w-greedy
(definition 10.1.6, page 232) and let u∗ = σ(x). From w ∈ ibcS and our hypotheses we
obtain

Tw(x) = r(x, u∗) + ρ
∫

w[F(x, u∗, z)]ϕ(dz)

≤ r(x′, u∗) + ρ
∫

w[F(x′, u∗, z)]ϕ(dz)

≤ max
Γ(x′)

{
r(x′, u) + ρ

∫
w[F(x′, u, z)]ϕ(dz)

}
=: Tw(x′)

where the second inequality follows from the assumption that Γ is increasing. (Why?)
We conclude that Tw ∈ ibcS, and hence so is v∗.
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Exercise 12.2 Show that if, in addition to the hypotheses of the theorem, x < x′

implies r(x, u) < r(x′, u), then v∗ is strictly increasing.

Exercise 12.3 Recall the optimal savings model, with S = A = R+, Γ(a) = [0, a] and
gr Γ = all (a, s) with s ∈ [0, a]. Rewards are given on gr Γ by r(a, s) := U(a − s), where
U : R+ → R, while F(a, s, z) = f (s, z). The shocks (Wt)t≥1 are IID and draws from
ϕ ∈ P(Z). Let the conditions of assumption 10.1.9 be satisfied (see page 233). Show
that the value function v∗ is increasing whenever U is, and strictly increasing when U
is. (Notice that monotonicity of the production function plays no role.)

Next let’s consider parametric monotonicity. The question is as follows: Suppose
that an objective function has maximizer u. If one now varies a given parameter in the
objective function and maximizes again, a new maximizer u′ is determined. Does the
maximizer always increase when the parameter increases?

The connection to dynamic programming comes when the state variable is taken
to be the parameter and the corresponding optimal action is the maximizer. We wish
to know when the optimal action is monotone in the state. Monotone policies are of
interest not only for their economic interpretation but also because they can speed up
algorithms for approximating optimal policies.

Definition 12.1.2 Let Γ and gr Γ be as above. A function g : gr Γ → R satisfies increas-
ing differences on gr Γ if, whenever x, x′ ∈ S with x ≤ x′ and u, u′ ∈ Γ(x) ∩ Γ(x′) with
u ≤ u′, we have

g(x, u′)− g(x, u) ≤ g(x′, u′)− g(x′, u) (12.1)

The function is said to satisfy strictly increasing differences on gr Γ if the inequality (12.1)
is strict whenever x < x′ and u < u′.

Intuitively, the impact of increasing the argument from u to u′ has more effect on
g when the parameter x is larger. The requirement u, u′ ∈ Γ(x) ∩ Γ(x′) ensures that g
is properly defined at all the points in (12.1).

Example 12.1.3 Consider the optimal savings model of exercise 12.3. If U is strictly
concave, then r(a, s) = U(a − s) has strictly increasing differences on gr Γ. To see this,
pick any a, a′, s, s′ ∈ R+ with a < a′, s < s′ and s, s′ ∈ Γ(a) ∩ Γ(a′) = [0, a]. We are
claiming that

U(a − s′)− U(a − s) < U(a′ − s′)− U(a′ − s)

or alternatively,

U(a − s′) + U(a′ − s) < U(a′ − s′) + U(a − s) (12.2)
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It is left as an exercise for the reader to show that strict concavity of U implies that for
each λ ∈ (0, 1) and each pair x, x′ with 0 ≤ x < x′ we have

U(x) + U(x′) < U(λx + (1 − λ)x′) + U(λx′ + (1 − λ)x)

This yields (12.2) when

λ :=
s′ − s

a′ − a + s′ − s
, x := a − s′, x′ := a′ − s

Exercise 12.4 Show that if g : gr Γ → R satisfies strictly increasing differences on gr Γ
and h : gr Γ → R satisfies increasing differences on gr Γ, then g + h satisfies strictly
increasing differences on gr Γ.

We now present a parametric monotonicity result in the case where the action
space A is one-dimensional. Although not as general as some other results, it turns
out to be useful, and the conditions in the theorem are relatively easy to check in
applications. In the statement of the theorem we are assuming that A ⊂ R, g : gr Γ →
R, and argmaxu∈Γ(x) g(x, u) is nonempty for each x ∈ S.

Theorem 12.1.4 Suppose that g satisfies strictly increasing differences on gr Γ, that Γ is
increasing on S, and that Γ(x) is a decreasing subset of A for every x ∈ S. Let x, x′ ∈ S with
x ≤ x′. If u is a maximizer of a 7→ g(x, a) on Γ(x) and u′ is a maximizer of a 7→ g(x′, a) on
Γ(x′), then u ≤ u′.

Proof. When x = x′ the result is trivial, so take x < x′. Let u and u′ be as in the
statement of the theorem. Suppose to the contrary that u > u′. Since Γ is increasing,
we have Γ(x) ⊂ Γ(x′), and hence both u and u′ are in Γ(x′). Also, since u′ < u ∈ Γ(x),
and since Γ(x) is a decreasing set, both u and u′ are in Γ(x). It then follows from
strictly increasing differences that

g(x′, u)− g(x′, u′) > g(x, u)− g(x, u′)

However, from u ∈ Γ(x′), u′ ∈ Γ(x) and the definition of maxima,

g(x′, u′)− g(x′, u) ≥ 0 ≥ g(x, u′)− g(x, u)

∴ g(x′, u)− g(x′, u′) ≤ g(x, u)− g(x, u′)

Contradiction.

We can now derive a general parametric monotonicity result for SDPs.
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Corollary 12.1.5 Let (r, F, Γ, ϕ, ρ) define an SDP satisfying the conditions in theorem 12.1.1.
If in addition Γ(x) is a decreasing subset of A for every x ∈ S, r satisfies strictly increasing
differences on gr Γ, and, ∀w ∈ ibcS,

gr Γ 3 (x, u) 7→
∫

w[F(u, x, z)]ϕ(dz) ∈ R

satisfies increasing differences on gr Γ, then every optimal policy is monotone increasing on S.

Proof. Let v∗ be the value function for this SDP, and set

g(x, u) := r(x, u) + ρ
∫

v∗[F(x, u, z)]ϕ(dz)

on gr Γ. If a policy is optimal, then it maximizes a 7→ g(x, a) over Γ(x) for each x ∈ S.
Hence we need only verify the conditions of theorem 12.1.4 for our choice of g and Γ.
The only nontrivial assertion is that g satisfies strictly increasing differences on gr Γ.
This follows from exercise 12.4 and the fact that v∗ ∈ ibcS (see theorem 12.1.1).

From corollary 12.1.5 it can be shown that investment in the optimal savings model
is monotone increasing whenever U is increasing and strictly concave. In particular,
no shape restrictions on f are necessary.

Exercise 12.5 Verify this claim.

12.1.2 Concavity and Differentiability

Next we consider the role of concavity and differentiability in dynamic programs.
This topic leads naturally to the Euler equation, which holds at the optimal policy
whenever the solution is interior and all primitives are sufficiently smooth. Although
we focus on the savings model, many other models in economics have Euler equa-
tions, and they can be derived using steps similar to those shown below. Detailed
proofs are provided, although most have been consigned to the appendix to this chap-
ter.

To begin, let C ibcS denote the set of all concave functions in ibcS, where the latter
is endowed as usual with the supremum norm d∞.

Exercise 12.6 Show that the set C ibcS is a closed subset of (ibcS, d∞).

Our first result gives conditions under which the value function v∗ is concave.
Here v∗ corresponds to our canonical SDP (r, F, Γ, ϕ, ρ) that obeys the standard as-
sumptions (page 229).

Theorem 12.1.6 Let the conditions of theorem 12.1.1 hold. If, in addition,
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1. gr Γ is convex,

2. r is concave on gr Γ, and

3. (x, u) 7→ F(x, u, z) is concave on gr Γ for all z ∈ Z,

then the value function v∗ is concave. In particular, we have v∗ ∈ C ibcS.

Proof. By theorem 12.1.1, T : ibcS → ibcS and v∗ ∈ ibcS. We wish to show additionally
that v∗ ∈ C ibcS. Analogous to the proof of theorem 12.1.1, since C ibcS is a closed
subset of ibcS, it suffices to show that T maps C ibcS into itself. So let w ∈ C ibcS.
Since Tw ∈ ibcS, we need only show that Tw is also concave. Let x, x′ ∈ S, and let
λ ∈ [0, 1]. Set x′′ := λx + (1 − λ)x′. Let σ be a w-greedy policy, let u := σ(x), and let
u′ := σ(x′). Define u′′ := λu + (1 − λ)u′. Condition 1 implies that u′′ ∈ Γ(x′′), and
hence

Tw(x′′) ≥ r(x′′, u′′) + ρ
∫

w[F(x′′, u′′, z)]ϕ(dz)

Consider the two terms on the right-hand side. By condition 2,

r(x′′, u′′) ≥ λr(x, u) + (1 − λ)r(x′, u′)

By condition 3 and w ∈ C ibcS,∫
w[F(x′′, u′′, z)]ϕ(dz) ≥

∫
w[λF(x, u, z) + (1 − λ)F(x′, u′, z)]ϕ(dz)

≥ λ
∫

w[F(x, u, z)]ϕ(dz) + (1 − λ)
∫

w[F(x′, u′, z)]ϕ(dz)

∴ Tw(x′′) ≥ λTw(x) + (1 − λ)Tw(x′)

Hence Tw is concave on S, Tw ∈ C ibcS, and v∗ is concave.

Exercise 12.7 Show that if, in addition to the hypotheses of the theorem, r is strictly
concave on gr Γ, then v∗ is strictly concave.

Exercise 12.8 Consider again the stochastic optimal savings model (see exercise 12.3
on page 297 for notation and assumption 10.1.9 on page 233 for our assumptions on
the primitives). Suppose that the utility function U is strictly increasing and strictly
concave, in which case v∗ is strictly increasing (exercise 12.3) and any optimal in-
vestment policy is increasing (exercise 12.5). Show that if, in addition, s 7→ f (s, z) is
concave onR+ for each fixed z ∈ Z, then v∗ is also strictly concave.

Under the present assumptions one can show that for the optimal savings model
the optimal policy is unique. Uniqueness in turn implies continuity. The details are
left for you:
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Exercise 12.9 Let [a, b] ⊂ R, where a < b, and let g : [a, b] → R. Show that if g
is strictly concave, then g has at most one maximizer on [a, b]. Show that under the
conditions of exercise 12.8, there is one and only one optimal policy for the savings
model. Show that in addition it is continuous everywhere on S.

Now let’s turn to the Euler equation (and also the Euler inequality, depending
on assumptions) in the optimal savings problem. First we need to ensure that our
primitives are smooth.

Assumption 12.1.7 For each z ∈ Z, the function s 7→ f (s, z) is concave, increasing,
and differentiable, while z 7→ f (s, z) is Borel measurable for each k ∈ R+. The utility
function U is bounded, strictly increasing, strictly concave, and differentiable. More-
over

lim
s↓0

f ′(s, z) > 0 ∀ z ∈ Z, and lim
c↓0

U′(c) = ∞

Here and below, f ′(s, z) denotes the partial derivative of f with respect to s. Since
U is bounded we can and do assume that U(0) = 0.1

Under the conditions of assumption 12.1.7, we know that the value function is
strictly concave and strictly increasing, while the optimal policy is unique, increasing,
and continuous. More can be said. A preliminary result is as follows.

Proposition 12.1.8 Let assumption 12.1.7 hold and fix w ∈ C ibcS. If σ is w-greedy, then
σ(a) < a for every a > 0.

The proof can be found in the appendix to this chapter. We are now ready to state
a major differentiability result.

Proposition 12.1.9 Let w ∈ C ibcS and let σ be w-greedy. If assumption 12.1.7 holds, then
Tw is differentiable at every a ∈ (0, ∞), and moreover

(Tw)′(a) = U′(a − σ(a)) (a > 0)

Concavity plays a key role in the proof, which can be found in the appendix to the
chapter.2

Corollary 12.1.10 Let σ be the optimal policy. If assumption 12.1.7 holds, then v∗ is differ-
entiable and (v∗)′(a) = U′(a − σ(a)) for all a > 0.

That corollary 12.1.10 follows from proposition 12.1.9 is left as an exercise.

1Adding a constant to an objective function (in this case the function σ 7→ vσ(a)) affects the maximum
but not the maximizer.

2The argument is one of the class of so-called “envelope theorem” results. There is no one envelope
theorem that covers every case of interest, so it is worth going over the proof to get a feel for how the bits
and pieces fit together.
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Exercise 12.10 Show using corollary 12.1.10 that optimal consumption is strictly in-
creasing in income.

There is another approach to corollary 12.1.10, which uses the following lemma
from convex analysis.

Lemma 12.1.11 If g : R+ → R is concave, and on some neighborhood N of y0 ∈ (0, ∞)
there is a differentiable concave function h : N → R with h(y0) = g(y0) and h ≤ g on N,
then g is differentiable at y0 and g′(y0) = h′(y0).

Exercise 12.11 Prove proposition 12.1.9 using lemma 12.1.11.

We have been working toward a derivation of the Euler (in)equality. In our state-
ment of the result, σ := σ∗ is the optimal policy and c(y) := y − σ(y) is optimal
consumption.

Proposition 12.1.12 Let y > 0. Under assumption 12.1.7, we have

U′ ◦ c(y) ≥ ρ
∫

U′ ◦ c[ f (σ(y), z)] f ′(σ(y), z)ϕ(dz) (y > 0) (12.3)

When is the Euler inequality an equality? Here is one answer:

Proposition 12.1.13 Under the additional assumption f (0, z) = 0 for all z ∈ Z, we have
σ(y) > 0 for all y > 0, and the Euler inequality always holds with equality. On the other
hand, if the inequality is strict at some y > 0, then σ(y) = 0.

The proofs of these propositions are in the appendix to this chapter.

12.1.3 Wealth Dynamics

Next we consider dynamics of assets in the optimal savings model when agents follow
the optimal policy. We would like to know whether the system is globally stable, and,
in addition, whether the resulting stationary distribution is nontrivial in the sense that
it is not concentrated on zero. The problem is not dissimilar to that for the Solow–
Swan model treated in §11.3.4. However, the fact that the savings rate is endogenous
and nonconstant means that we will have to work a little harder. In particular, we
need to extract any necessary information about savings from the Euler equation.

We will treat one particular case in this section, where the conditions of assump-
tion 12.1.7 all hold, and moreover that f (0, z) = 0 for all z ∈ Z. Together, these con-
ditions, proposition 12.1.8, and proposition 12.1.13 give us interiority of the optimal
policy and the Euler equality

U′ ◦ c(y) = ρ
∫

U′ ◦ c[ f (σ(y), z)] f ′(σ(y), z)ϕ(dz) (y > 0)
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We study the process (yt)t≥0 generated by the optimal law of motion

yt+1 = f (σ(yt), Wt+1) (Wt)t≥1
IID∼ ϕ ∈ P(Z) (12.4)

For our state space S we will use (0, ∞) rather than R+. The reason is that when
S = R+ the degenerate measure δ0 ∈ P(S) is stationary for (12.4). Hence any proof
of existence based on a result such as the Krylov–Bogolubov theorem is entirely re-
dundant. Moreover global convergence to a nontrivial stationary distribution is im-
possible because δ0 will never converge to such a distribution. Hence global stability
never holds. Third, if we take S := (0, ∞), then any stationary distribution we can
obtain must automatically be nontrivial.

To permit (0, ∞) to be the state space, we require that f (k, z) > 0 whenever k > 0
and z ∈ Z. (For example, if f (k, z) = kαz and Z = (0, ∞) then this assumption holds.)
Observe that since σ(y) > 0 for all y ∈ S = (0, ∞), we then have f (σ(y), z) ∈ S for
all y ∈ S and z ∈ Z. Hence S is a valid state space for the model. Observe also that if
we permit f (k, z) = 0 independent of k for z in a subset of Z with ϕ-measure ϵ > 0,
then P{yt 6= 0} ≤ (1 − ϵ)t for all t, and yt → 0 in probability. (Why?) Under such
conditions a nontrivial steady state cannot be supported.

To keep our assumptions clear let’s now state them formally.

Assumption 12.1.14 All the conditions of assumption 12.1.7 hold. Moreover for any
z ∈ Z, f (k, z) = 0 if, and only if, k = 0.

Let us begin by considering existence of a (nontrivial) stationary distribution. We
will use the Krylov–Bogolubov theorem; in particular, corollary 11.2.9 on page 260.
The corollary requires that y 7→ f (σ(y), z) is continuous on S for each z ∈ Z, and that
there exists a norm-like function w on S and nonnegative constants α and β with α < 1
and

Mw(y) =
∫

w[ f (σ(y), z)]ϕ(dz) ≤ αw(y) + β ∀ y ∈ S (12.5)

Since σ is continuous on S (see exercise 12.9 on page 301), y 7→ f (σ(y), z) is continuous
on S for each z ∈ Z. Thus it remains only to show that there exists a norm-like function
w on S and nonnegative constants α and β with α < 1 such that (12.5) holds.

In this connection recall from lemma 8.2.12 on page 207 that w : S → R+ is norm-
like on S if and only if limx→0 w(x) = limx→∞ w(x) = ∞. So suppose that we have two
nonnegative real-valued functions w1 and w2 on S with the properties limx→0 w1(x) =
∞ and limx→∞ w2(x) = ∞. Then the sum w := w1 + w2 is norm-like on S. (Why?) If,
in addition,

Mw1 ≤ α1w1 + β1 and Mw2 ≤ α2w2 + β2 pointwise on S (12.6)

for some α1, α2, β1, β2 with αi < 1 and βi < ∞, then w = w1 + w2 satisfies (12.5), as
the next exercise asks you to confirm.
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Exercise 12.12 Assuming (12.6), show that w satisfies (12.5) for α := max{α1, α2} and
β := β1 + β2.

The advantage of decomposing w in this way stems from the fact that we must
confront two rather separate problems. We are trying to show that at least one trajec-
tory of distributions is tight, keeping almost all of its mass on a compact K ⊂ S. A
typical compact subset of S is a closed interval [a, b] with 0 < a < b < ∞. Thus we
require positive a such that almost all probability mass is above a, and finite b such
that almost all mass is less than b. In other words, income must neither collapse to-
ward zero nor drift out to infinity. The existence of a w1 with limx→0 w1(x) = ∞ and
Mw1 ≤ α1w1 + β1 prevents drift to zero, and requires that the agent has sufficient in-
centives to invest at low income levels. The existence of a w2 with limx→∞ w2(x) = ∞
and Mw2 ≤ α2w2 + β2 prevents drift to infinity, and requires sufficiently diminishing
returns.

Let’s start with the first (and hardest) problem, that is, guaranteeing that the agent
has sufficient incentives to invest at low income levels. We need some kind of Inada
condition on marginal returns to investment. In the deterministic case (i.e., f (k, z) =
f (k)) a well-known condition is that limk↓0 ρ f ′(k) > 1, or limk↓0 1/ρ f ′(k) < 1. This
motivates the following assumption:

Assumption 12.1.15 Together, ϕ, ρ, and f jointly satisfy

lim
k↓0

∫ 1
ρ f ′(k, z)

ϕ(dz) < 1

With this assumption we can obtain a function w1 with the desired properties, as
shown in the next lemma. (The proof is straightforward but technical, and can be
found in the appendix of this chapter.)

Lemma 12.1.16 For w1 := (U′ ◦ c)1/2 there exist positive constants α1 < 1 and β1 < ∞
such that Mw1 ≤ α1w1 + β1 pointwise on S.

Now let’s turn to the second problem, which involves bounding probability mass
away from infinity via diminishing returns. We assume that

Assumption 12.1.17 There exists constants a ∈ [0, 1) and b ∈ R+ such that∫
f (k, z)ϕ(dz) ≤ ak + b ∀ k ∈ S (12.7)

This is a slightly nonstandard and relatively weak diminishing returns assump-
tion. Standard assumptions forcing marginal returns to zero at infinity can be shown
to imply assumption 12.1.17.

We now establish the complementary result for a suitable function w2.
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Lemma 12.1.18 For w2(y) := y there exist positive constants α2 < 1 and β2 < ∞ such that
Mw2 ≤ α2w2 + β2 pointwise on S.

We leave it to the reader to prove lemma 12.1.18 using assumption 12.1.17.
Since limx→0 w1(x) = ∞ and limx→∞ w2(x) = ∞, we have proved the following

result:

Proposition 12.1.19 Under assumptions 12.1.14–12.1.17 there exists a norm-like function
w on S and nonnegative constants α and β with α < 1 and β < ∞ such that Mw ≤ αw + β
pointwise on S. As a result the optimal income process (12.4) has at least one nontrivial
stationary distribution ψ∗ ∈ P(S).

Having established existence, let us now consider the issue of global stability. This
property can be obtained quite easily if the shocks are unbounded (for example, mul-
tiplicative, lognormal shocks). If the shocks are bounded the proofs are more fiddly,
and interested readers should consult the commentary at the end of this chapter.3

Assumption 12.1.20 For each k > 0 and each c ∈ S both P{ f (k, W) ≥ c} and
P{ f (k, W) ≤ c} are strictly positive.

Proposition 12.1.21 If, in addition to the conditions of proposition 12.1.19, assumption
12.1.20 holds, then the optimal income process is globally stable.

Proof. We will show that the function w in proposition 12.1.19 is also order norm-like
(see definition 11.3.9 on page 282). Since y 7→ f (σ(y), z) is monotone increasing this is
sufficient for the proof (see theorems 11.3.8 and 11.3.11 in §11.3.3). As a first step, let’s
establish that all intervals [a, b] ⊂ S are order inducing for the savings model. To do
so, pick any a ≤ b. Fix any c ∈ S. In view of assumption 12.1.20,

∀ y ∈ [a, b], P{ f (σ(y), Wt+1) ≥ c} ≥ P{ f (σ(a), Wt+1) ≥ c} > 0

∴ inf
a≤y≤b

P(y, [c, ∞)) > 0

A similar argument shows that infa≤y≤b P(y, (0, c]) > 0. Therefore [a, b] is order in-
ducing. Now since any sublevel set of w is contained in a closed interval [a, b] ⊂ S
(why?), and since subsets of order inducing sets are order inducing, it follows that
every sublevel set of w is order inducing. Hence w is order norm-like, as was to be
shown.

3Don’t be afraid of assuming unbounded shocks—this is just a modeling assumption that approximates
reality. For example, the normal distribution is often used to model human height, but no one is claiming
that a 20 meter giant is going to be born.
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12.2 Unbounded Rewards

One weakness of the dynamic programming theory provided in chapter 10 is that the
reward function must be bounded. This constraint is violated in many applications.
The problem of a potentially unbounded reward function can sometimes be rectified
by compactifying the state space so that the (necessarily continuous) reward function
is automatically bounded on the state (despite perhaps being unbounded on a larger
domain). In other situations such tricks do not work, or are ultimately unsatisfying in
terms of the model they imply.

Unfortunately, there is no really general theory of dynamic programming with
unbounded rewards. Different models are tackled in different ways, which is time-
consuming and intellectually unrewarding. Below we treat perhaps the most general
method available, for programs with reward and value functions that are bounded
when “weighted” by some function κ. We travel to the land of weighted supremum
norms, finding an elegant technique and the ability to treat quite a large class of mod-
els.

Should you seek to use this theory for a given application, you will quickly dis-
cover that while the basic ideas are straightforward, the problem of choosing a suitable
weighting function can be quite tricky. We give some indication of how to go about
this using our benchmark example: the optimal savings model.

12.2.1 Weighted Supremum Norms

To begin, let κ be a function from S to R such that κ ≥ 1. For any other v : S → R,
define the κ-weighted supremum norm

‖v‖κ := sup
x∈S

|v(x)|
κ(x)

=
∥∥∥ v

κ

∥∥∥
∞

(12.8)

Definition 12.2.1 Let bκS be the set of all v : S → R such that ‖v‖κ < ∞. We refer to
these functions as the κ-bounded functions on S. On bκS define the metric

dκ(v, w) := ‖v − w‖κ = ‖v/κ − w/κ‖∞

Define also bκB(S) := bκS ∩ mB(S) and bκcS := bκS ∩ cS. In other words, bκB(S)
is the κ-bounded functions on S that are also (Borel) measurable, and bκcS is the κ-
bounded functions on S that are also continuous.

Exercise 12.13 Show that v ∈ bκS if and only if v/κ ∈ bS.

Exercise 12.14 Show that bB(S) ⊂ bκB(S) and bcS ⊂ bκcS.
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Exercise 12.15 Confirm that (bκS, dκ) is a metric space.

It is a convenient fact that dκ-convergence implies pointwise convergence. Pre-
cisely, if (wn) is a sequence in bκS and dκ(wn, w) → 0 for some w ∈ bκS, then wn(x) →
w(x) for every x ∈ S. To see this, pick any x ∈ S. We have

|wn(x)/κ(x)− w(x)/κ(x)| ≤ ‖wn − w‖κ → 0

∴ |wn(x)− w(x)| ≤ ‖wn − w‖κκ(x) → 0

The next lemma states that the usual pointwise ordering on bκS is “closed” with
respect to the dκ metric. The proof is an exercise.

Lemma 12.2.2 If (wn) is a dκ-convergent sequence in bκS with wn ≤ w ∈ bκS for all n ∈ N,
then lim wn ≤ w.

The space (bκS, dκ) and its closed subspaces would not be of much use to us should
they fail to be complete. Fortunately all the spaces of κ-bounded functions are com-
plete under reasonable assumptions.

Theorem 12.2.3 The space (bκS, dκ) is a complete metric space.

Proof. Let (vn) be a Cauchy sequence in (bκS, dκ). It is left to the reader to show that
(vn/κ) is then Cauchy in (bS, d∞). Since the latter space is complete, there exists some
function v̂ ∈ bS with ‖vn/κ − v̂‖∞ → 0. We claim that v̂ · κ ∈ bκS and ‖vn − v̂ · κ‖κ →
0, in which case the completeness of (bκS, dκ) is established. That v̂κ ∈ bκS follows
from boundedness of v̂. Moreover,

‖vn − v̂κ‖κ = ‖vn/κ − (v̂κ)/κ‖∞ = ‖vn/κ − v̂‖∞ → 0 (n → ∞)

The completeness of (bκS, dκ) is now verified.

Exercise 12.16 Show that if κ is Borel measurable, then bκB(S) is a closed subset of
(bκS, dκ), and that if κ is continuous, then bκcS is a closed subset of (bκS, dκ).

Theorem 12.2.4 If κ is measurable, then (bκB(S), dκ) is complete. If κ is continuous, then
(bκcS, dκ) is complete.

This follows from exercise 12.16 and theorem 3.2.1 on page 49.
The following result is a useful extension of Blackwell’s sufficient condition, which

can be used to establish that a given operator is a uniform contraction on bκS.
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Theorem 12.2.5 Let M be a subset of bκS such that v + aκ ∈ M whenever v ∈ M. Let
T : M → M be a monotone operator, in the sense that v ≤ v′ implies Tv ≤ Tv′. If, in
addition, there is a λ ∈ [0, 1) such that

T(v + aκ) ≤ Tv + λaκ for all v ∈ M and a ∈ R+ (12.9)

then T is uniformly contracting on (M, dκ) with modulus λ.

You will be able to verify this result by modifying the proof of theorem 6.3.5
(page 344) appropriately.

12.2.2 Results and Applications

Let S, A, r, F, Γ, and ρ again define an SDP, just as in §10.1. Let gr Γ have its previous
definition. However, instead of assumptions 10.1.3–10.1.5 on page 229, we assume the
following:

Assumption 12.2.6 The reward function r is continuous on gr Γ.

Assumption 12.2.7 Γ : S → B(A) is continuous and compact valued.

Assumption 12.2.8 gr Γ 3 (x, u) 7→ F(x, u, z) ∈ S is continuous for all z ∈ Z.

The only difference so far is that r is not required to be bounded. For our last
assumption we replace boundedness of r by

Assumption 12.2.9 There exists a continuous function κ : S → [1, ∞) and constants
R ∈ R+ and β ∈ [1, 1/ρ) satisfying the conditions

sup
u∈Γ(x)

|r(x, u)| ≤ Rκ(x) ∀ x ∈ S (12.10)

sup
u∈Γ(x)

∫
κ[F(x, u, z)]ϕ(dz) ≤ βκ(x) ∀ x ∈ S (12.11)

In addition, the map (x, u) 7→
∫

κ[F(x, u, z)]ϕ(dz) is continuous on gr Γ.

Remark 12.2.10 Actually it is sufficient to find a continuous nonnegative function κ sat-
isfying the conditions of assumption 12.2.9. The reason is that if κ is such a function,
then κ̂ := κ + 1 is a continuous function that is greater than 1 and satisfies the condi-
tions of the assumption with the same constants R and β. You may want to check this
claim as an exercise.

In applications the difficulty is in constructing the required function κ. The follow-
ing example illustrates how this might be done:
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Example 12.2.11 Consider again the stochastic optimal savings model, this time sat-
isfying all of the conditions in assumption 10.1.9 (page 233) apart from boundedness
of U. Instead U is required to be nonnegative. In addition we assume that

κ(y) :=
∞

∑
t=0

δtEU(ŷt) < ∞ (y ∈ S) (12.12)

Here δ is a parameter satisfying ρ < δ < 1, and (ŷt)t≥0 is defined by

ŷt+1 = f (ŷt, Wt+1) and ŷ0 = y (12.13)

The process (ŷt) is an upper bound for income under the set of feasible policies. It is
the path for income when consumption is zero in each period.

We claim that the function κ in (12.12) satisfies all the conditions of assumption
12.2.9 for the optimal savings model.4 In making the argument, it is useful to define
N to be the Markov operator corresponding to (12.13). Hopefully it is clear to you that
for this operator we have EU(ŷt) = NtU(y) for each t ≥ 0, so κ can be expressed as
∑t δtNtU.

Lemma 12.2.12 The function κ in (12.12) is continuous and increasing onR+.

The proof can be found in the appendix to this chapter. Let us show instead that the
conditions of assumption 12.2.9 are satisfied, beginning with (12.10). In the optimal
savings model r(x, u) = U(y − k) and Γ(x) = Γ(y) = [0, y]. Since U is increasing and
nonnegative, we have

sup
u∈Γ(x)

|r(x, u)| = sup
0≤k≤y

U(y − k) ≤ U(y) ≤ κ(y)

Thus (12.10) holds with R = 1. Now let’s check that (12.11) also holds. Observe that

sup
0≤k≤y

∫
κ( f (k, z))ϕ(dz) ≤

∫
κ( f (y, z))ϕ(dz) = Nκ(y)

where we are using the fact that κ is increasing on S. Now

Nκ = N
∞

∑
t=0

δtNtU =
∞

∑
t=0

δtNt+1U = (1/δ)
∞

∑
t=0

δt+1Nt+1U ≤ (1/δ)κ

∴ sup
0≤k≤y

∫
κ( f (k, z))ϕ(dz) ≤ βκ(y), where β := 1/δ

Since δ was chosen to satisfy ρ < δ < 1, we have 1 ≤ β < 1/ρ as desired.

4In view of remark 12.2.10 we need not verify that κ ≥ 1.
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Finally, to complete the verification of assumption 12.2.9, we need to check that
(x, u) 7→

∫
κ[F(x, u, z)]ϕ(dz) is continuous, which in the present case amounts to

showing that if (yn, kn) is a sequence with 0 ≤ kn ≤ yn and converging to (y, k),
then ∫

κ( f (kn, z))ϕ(dz) →
∫

κ( f (k, z))ϕ(dz)

Evidently z 7→ κ( f (kn, z)) is dominated by κ( f (ȳ, z)), where ȳ := supn kn, and an
application of the dominated convergence theorem completes the proof.

Returning to the general case, as in chapter 10 we define the function vσ by

vσ(x) := E
∞

∑
t=0

ρtrσ(Xt) for x ∈ S, where Xt+1 = F(Xt, σ(Xt), Wt+1) with X0 = x

Unlike the situation where r is bounded, this expression is not obviously finite, or
even well defined. Indeed it is not clear that ∑∞

t=0 ρtrσ(Xt(ω)) is convergent at each
ω ∈ Ω. And even if this random variable is well defined and finite, the expectation
may not be.5

To start to get a handle on the problem, let’s prove that

Lemma 12.2.13 For all x ∈ S and all σ ∈ Σ we have E|rσ(Xt)| ≤ Rβtκ(x).

Proof. That E|rσ(Xt)| = Mt
σ|rσ| ≤ Rβtκ pointwise on S can be proved by induction.

For t = 0 we have |rσ(x)| ≤ Rκ(x) by (12.10). Suppose in addition that Mt
σ|rσ| ≤ Rβtκ

holds for some arbitrary t ≥ 0. Then

Mt+1
σ |rσ| = MσMt

σ|rσ| ≤ MσRβtκ = RβtMσκ ≤ Rβt(βκ) = Rβt+1κ

where the second inequality follows from (12.11).

Lemma 12.2.14 For each σ ∈ Σ and x ∈ S we have E∑∞
t=0 ρt|rσ(Xt)| < ∞.

Proof. Pick any σ ∈ Σ and x ∈ S. Using the monotone convergence theorem followed
by lemma 12.2.13, we obtain

E
∞

∑
t=0

ρt|rσ(Xt)| =
∞

∑
t=0

ρtE|rσ(Xt)| ≤
∞

∑
t=0

ρtRβtκ(x)

Since ρ · β < 1 the right-hand side is finite, as was to be shown.

This lemma implies that limT→∞ ∑T
t=0 ρtrσ(Xt(ω)) exists (and hence the infinite

sum is well defined) forP-almost every ω ∈ Ω. The reason is that a real-valued series

5It may be infinite or it may involve an expression of the form ∞ − ∞.
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∑t at converges whenever it converges absolutely, that is, when ∑t |at| < ∞. This ab-
solute convergence is true of ∑t ρtrσ(Xt(ω)) for P-almost every ω by lemma 12.2.14
and the fact that a random variable with finite expectation is finite almost every-
where.6 It also implies via the dominated convergence theorem (why?) that we can
pass expectation through infinite sum to obtain our previous expression for vσ:

vσ(x) := E

[
∞

∑
t=0

ρtrσ(Xt)

]
=

∞

∑
t=0

ρtMt
σrσ(x)

We will need the following lemma, which is proved in the appendix to this chapter:

Lemma 12.2.15 Let assumptions 12.2.6–12.2.9 all hold. If w ∈ bκcS, then the mapping
(x, u) 7→

∫
w[F(x, u, z)]ϕ(dz) is continuous on gr Γ.

Parallel to definition 10.1.6 on page 232, for w ∈ bκB(S) we say that σ ∈ Σ is
w-greedy if

σ(x) ∈ argmax
u∈Γ(x)

{
r(x, u) + ρ

∫
w[F(x, u, z)]ϕ(dz)

}
(x ∈ S) (12.14)

Lemma 12.2.16 Let assumptions 12.2.6–12.2.9 hold. If w ∈ bκcS, then Σ contains at least
one w-greedy policy.

The proof follows from lemma 12.2.15, and is essentially the same as that of lemma
10.1.7 on page 232. We can now state the main result of this section.

Theorem 12.2.17 Under assumptions 12.2.6–12.2.9, the value function v∗ is the unique
function in bκcS satisfying

v∗(x) = max
u∈Γ(x)

{
r(x, u) + ρ

∫
v∗[F(x, u, z)]ϕ(dz)

}
(x ∈ S) (12.15)

A feasible policy is optimal if and only if it is v∗-greedy. At least one such policy exists.

12.2.3 Proofs

Let’s turn to the proof of theorem 12.2.17. Throughout this section, assumptions 12.2.6–
12.2.9 are in force.

In parallel to §10.1, let Tσ : bκB(S) → bκB(S) be defined for all σ ∈ Σ by

Tσw(x) = r(x, σ(x)) + ρ
∫

w[F(x, σ(x), z)]ϕ(dz) = rσ(x) + ρMσw(x)

6For a proof of this last fact, see Schilling (2005, cor. 10.13).
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and let the Bellman operator T : bκcS → bκcS be defined by

Tw(x) = max
u∈Γ(x)

{
r(x, u) + ρ

∫
w[F(x, u, z)]ϕ(dz)

}
(x ∈ S)

Exercise 12.17 Confirm that Tσ maps bκB(S) to itself and T maps bκcS to itself.

Lemma 12.2.18 Let γ := ρβ. For every σ ∈ Σ, the operator Tσ is uniformly contracting on
the metric space (bκB(S), dκ), with

‖Tσw − Tσw′‖κ ≤ γ‖w − w′‖κ ∀w, w′ ∈ bκB(S) (12.16)

and the unique fixed point of Tσ in bκB(S) is vσ. In addition Tσ is monotone on bκB(S), in
the sense that if w, w′ ∈ bB(S) and w ≤ w′, then Tσw ≤ Tσw′.

Proof. The proof that Tσ is monotone is left to the reader. The proof that Tσvσ =
vσ is identical to the proof in §10.1 for bounded r. The proof that Tσ is a uniform
contraction goes as follows: Pick any w, w′ ∈ bκB(S). Making use of the linearity and
monotonicity of Mσ, we have

|Tσw − Tσw′| = |ρMσw − ρMσw′| = ρ|Mσ(w − w′)|
≤ ρMσ|w − w′| ≤ ρ‖w − w′‖κMσκ ≤ ρβ‖w − w′‖κκ

The rest of the argument is an exercise.

Next we turn to the Bellman operator.

Lemma 12.2.19 The operator T is uniformly contracting on (bκcS, dκ), with

‖Tw − Tw′‖κ ≤ γ‖w − w′‖κ ∀w, w′ ∈ bκcS (12.17)

where γ := ρβ. In addition T is monotone on bκcS, in the sense that if w, w′ ∈ bκcS and
w ≤ w′, then Tw ≤ Tw′.

Exercise 12.18 Prove lemma 12.2.19. In particular, prove that T is uniformly contract-
ing with modulus γ by applying theorem 12.2.5 (page 308).

The proof of theorem 12.2.17 now follows from lemmas 12.2.18 and 12.2.19 in an
almost identical fashion to the bounded case (see §10.1.3). The details are left to the
reader.
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12.3 Commentary

Monotonicity in parameters is a major topic in mathematical economics and dynamic
programming. Useful references include Lovejoy (1987), Puterman (1994), Topkis
(1998), Hopenhayn and Prescott (1992), Huggett (2003), Amir (2005), Mirman et al.
(2008), Acemoglu and Jensen (2015), Barthel and Sabarwal (2018), and Jensen (2018).

Our treatment of concavity and differentiability is standard. The classic reference
is Stokey and Lucas (1989). Corollary 12.1.10 is due to Mirman and Zilcha (1975). The
connection between lemma 12.1.11 and differentiability of the value function is due
to Benveniste and Scheinkman (1979), and is based on earlier results in Rockafellar
(1970).

Global stability of the stochastic optimal growth model under certain Inada-type
conditions was proved by Brock and Mirman (1972). See also Mirman (1970, 1972,
1973), Mirman and Zilcha (1975), Hopenhayn and Prescott (1992), Stachurski (2002),
Nishimura and Stachurski (2004), Olsen and Roy (2006), Zhang (2007), Kamihigashi
(2007), or Chatterjee and Shukayev (2008). The techniques used here closely follow
Nishimura and Stachurski (2004).

Our discussion of unbounded dynamic programming in §12.2 closely follows the
theory developed in Hernández-Lerma and Lasserre (1999, ch. 8). Boyd (1990) is an
early example of the weighted norm approach in economics, with an application to
recursive utility. See also Becker and Boyd (1997). Le Van and Vailakis (2005) is a
more recent treatment of the same topic. Stokey and Alvarez (1998) use weighted
norm techniques for dynamic programs with certain homogeneity properties. See
also Rincon-Zapatero and Rodriguez-Palmero (2003), Martins-da-Rocha and Vailakis
(2010), and Ma et al. (2020).
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Appendix A

Real Analysis

This appendix reviews some bits and pieces from basic real analysis that are used
in the book. If you lack background in analysis, then it’s probably best to parse the
chapter briefly and try some exercises before starting the main body of the text.

A.1 The Nuts and Bolts

We start off our review with fundamental concepts such as sets and functions, and
then move on to a short discussion of probability on finite sample spaces.

A.1.1 Sets and Logic

Pure mathematicians might tell you that everything is a set, or that sets are the only
primitive (i.e., the only mathematical objects not defined in terms of something else).
We won’t take such a purist view. For us a set is just a collection of objects viewed as a
whole. Functions are rules that associate elements of one set with elements of another.

Examples of sets include N, Z, and Q, which denote the natural numbers (i.e.,
positive integers), the integers, and the rational numbers respectively. The objects
that make up a set are referred to as its elements. If a is an element of A we write
a ∈ A. The set that contains no elements is called the empty set and denoted by ∅. Sets
A and B are said to be equal if they contain the same elements. Set A is called a subset
of B (written A ⊂ B) if every element of A is also an element of B.1 Clearly, A = B if
and only if A ⊂ B and B ⊂ A.

1Something to ponder: In mathematics any logical statement that cannot be tested is regarded as (vacu-
ously) true. It follows that ∅ is a subset of every set.
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If S is a given set, then the collection of all subsets of S is itself a set. We denote it
by P(S).

The intersection A ∩ B of two sets A and B consists of all elements found in both A
and B; A and B are called disjoint if A ∩ B = ∅. The union of A and B is the set A ∪ B
consisting of all elements in at least one of the two. The set-theoretic difference A \ B is
defined as

A \ B := {x : x ∈ A and x /∈ B}

In the case where the discussion is one of subsets of some fixed set A, the difference
A \ B is called the complement of B and written Bc.

If A is an arbitrary “index” set so that {Kα}α∈A is a collection of sets, then we
define

∩α∈AKα := {x : x ∈ Kα for all α ∈ A}

and
∪α∈AKα := {x : there exists an α ∈ A such that x ∈ Kα}

The same collection {Kα}α∈A is called pairwise disjoint if any pair Kα, Kβ with α 6= β is
disjoint.

The following two equalities are known as de Morgan’s laws:

1. (∪α∈AKα)
c = ∩α∈AKc

α

2. (∩α∈AKα)
c = ∪α∈AKc

α

Let’s see how we prove these kinds of set equalities by going through the proof of the
first one slowly. Let A := (∪α∈AKα)c and B := ∩α∈AKc

α. Take some arbitrary element
x ∈ A. Since x ∈ A, it must be that x is not in Kα for any α. In other words, x ∈ Kc

α for
every α. But if this is true, then, by the definition of B, we see that x ∈ B. Since x was
arbitrary, we have A ⊂ B. Similar reasoning shows that B ⊂ A, and hence A = B.

The Cartesian product of sets A and B is the set of ordered pairs

A × B := {(a, b) : a ∈ A, b ∈ B}

For example, if A is the set of outcomes for a random experiment (experiment A), and
B is the set of outcomes for a second experiment (experiment B), then A × B is the
set of all outcomes for the experiment C, which consists of first running A and then
running B. The pairs (a, b) are ordered, so (a, b) and (b, a) are not in general the same
point. In the preceding example this is necessary so that we can distinguish between
the outcomes for the first and second experiment.

Infinite Cartesian products are also useful. If (An) is a collection of sets, one for
each n ∈ N, then

×n≥1 An := {(a1, a2, . . .) : an ∈ An}
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If An = A for all n, then ×n≥1 A is often written as AN.
So much for sets. Now let’s very briefly discuss logic and the language of mathe-

matics. We proceed in a “naive” way (rather than axiomatic), with the idea of quickly
introducing the notation and its meaning. If you are not very familiar with formal
mathematics, I suggest that you skim through and return as required.

Logic starts with the notion of mathematical statements, which we denote with
capital letters such as P or Q. Typical examples are

P = the area of a rectangle is the product of its two sides

Q = x is strictly positive

Next we assign truth values to these statements, where each statement is labeled either
“true” or “false.” A starting point for logic is the idea that every sensible mathematical
statement is either true or false. The truth value of “maybe” is not permitted.

In general, mathematical statements should not really be thought of as inherently
true or false. For example, you might think that P above is always a true statement.
However, it is better to regard P as consistent with the natural world in certain ways,
and therefore a useful assumption to make when performing geometric calculations.
At the same time, let’s not rule out the possibility of assuming that P is false in order
to discover the resulting implications.

Much of mathematics is about determining the consistency of given truth values
assigned to collections of mathematical statements. This is done according to the rules
of logic. For example, if a statement P is labeled as true, then its negation ∼ P is false.
Also, ∼ (∼ P) must have the same truth value as P.

Statements can be combined using the elementary connectives “and” and “or.” State-
ment “P and Q” is true if both P and Q are true, and false otherwise. Statement
“P or Q” is false if both P and Q are false, and true otherwise. You might try to con-
vince yourself that

∼ (A or B) ≡ (∼ A) and (∼ B) & ∼ (A and B) ≡ (∼ A) or (∼ B)

where the notation P ≡ Q means that P and Q are logically equivalent (i.e., always have
the same truth value).

Another form of relationship between statements is implication. For example, sup-
pose that we have sets A and B with A ⊂ B. Let P be the statement x ∈ A and Q be
the statement x ∈ B. If P is labeled as true, then Q must also be true, since elements
of A are also elements of B. We say that P implies Q (alternatively: if P, then Q), and
write P =⇒ Q.

Sometimes it is not so easy to see that P =⇒ Q. Mathematical proofs typically
involve creating a chain of statements R1, . . . , Rn with

P =⇒ R1 =⇒ · · · =⇒ Rn =⇒ Q
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Often this is done by working forward from P and backward from Q, and hoping that
you meet somewhere in the middle. Another strategy for proving that P =⇒ Q is to
show that ∼ Q =⇒ ∼ P.2 For if the latter holds then so must P =⇒ Q be valid, for
when P is true Q cannot be false (if it were, then P could not be true).

The universal quantifier ∀ (for all) and the existential quantifier ∃ (there exists) are
used as follows. If P(α) is statement about an object α, then

∀ α ∈ Λ, P(α)

means that for all elements α of the set Λ, the statement P(α) holds.

∃ α ∈ Λ such that P(α)

means that P(α) is true for at least one α ∈ Λ. The following equivalences hold:

∼ [∀ α ∈ Λ, P(α)] ≡ ∃ α ∈ Λ such that ∼ P(α), and

∼ [∃ α ∈ Λ such that P(α)] ≡ ∀ α ∈ Λ, ∼ P(α)

A.1.2 Functions

A function f from set A to set B, written A 3 x 7→ f (x) ∈ B or f : A → B, is a rule
associating to each and every one of the elements a in A one and only one element
b ∈ B.3 The point b is also written as f (a), and called the image of a under f . For
C ⊂ A, the set f (C) is the set of all images of points in C, and is called the image of C
under f . Formally,

f (C) := {b ∈ B : f (a) = b for some a ∈ C}

Also, for D ⊂ B, the set f−1(D) is all points in A that map into D under f , and is
called the preimage of D under f . That is,

f−1(D) := {a ∈ A : f (a) ∈ D}

When D consists of a single point b ∈ B we write f−1(b) rather than f−1({b}). In
general, f−1(b) may contain many elements of A or none.

Let S be any set. For every A ⊂ S, let S 3 x 7→ 1A(x) ∈ {0, 1} be the function that
takes the value 1 when x ∈ A and zero otherwise. This function is called the indicator
function of A.

2The latter implication is known as the contrapositive of the former.
3Some writers refer to a function f by the symbol f (x), as in “the production function f (x) is increas-

ing. . . ,” or similar. Try not to follow this notation. The symbol f (x) represents a value, not a function.
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Exercise A.1 Argue that 1Ac = 1S − 1A holds pointwise on S (i.e., 1Ac(x) = 1S(x)−
1A(x) at each x ∈ S). In what follows we usually write 1S simply as 1. Argue further
that if A1, . . . , An is a collection of subsets, then maxi 1Ai = 1 − ∏i 1Ac

i
.

A function f : A → B is called one-to-one if distinct elements of A are always
mapped into distinct elements of B, and onto if every element of B is the image under
f of at least one point in A. A function that is both one-to-one and onto is called a
bijection.

You will be able to verify that f : A → B is a bijection if and only if f−1(b) consists
of precisely one point in A for each b ∈ B. In this case f−1 defines a function from B
to A by setting f−1(b) equal to the unique point in A that f maps into b. This function
is called the inverse of f . Note that f ( f−1(b)) = b for all b ∈ B, and that f−1( f (a)) = a
for all a ∈ A.

New functions are often defined from old functions by composition: If f : A → B
and g : B → C, then g ◦ f : A → C is defined at x ∈ A by (g ◦ f )(x) := g( f (x)). It is
easy to check that if f and g are both one-to-one and onto, then so is g ◦ f .

Preimages and set operations interact nicely. For example, if f : A → B, and E and
F are subsets of B, then

f−1(E ∪ F) = f−1(E) ∪ f−1(F)

To see this, suppose that x ∈ f−1(E ∪ F). Then f (x) ∈ E ∪ F, so f (x) ∈ E or f (x) ∈ F
(or both). Therefore x ∈ f−1(E) or x ∈ f−1(F), whence x ∈ f−1(E) ∪ f−1(F). This
proves that f−1(E ∪ F) ⊂ f−1(E) ∪ f−1(F). A similar argument shows that f−1(E ∪
F) ⊃ f−1(E) ∪ f−1(F), from which equality now follows.

More generally, we have the following results. (Check them.)

Lemma A.1.1 Let f : A → B, and let E and {Eγ}γ∈C all be arbitrary subsets of B.4 We have

1. f−1(Ec) = [ f−1(E)]c,

2. f−1(∪γEγ) = ∪γ f−1(Eγ), and

3. f−1(∩γEγ) = ∩γ f−1(Eγ).

The forward image is not as well behaved as the preimage.

Exercise A.2 Construct an example of sets A, B, C, D, with C, D ⊂ A, and function
f : A → B, where f (C ∩ D) 6= f (C) ∩ f (D).

Using the concept of bijections, let us now discuss some different notions of in-
finity. To start, notice that it is not always possible to set up a bijection between two

4Here C is any “index” set.
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sets. (Consider the case where one set has two elements and the other has one—try to
find a bijection.) When a bijection does exist, the two sets are said to be in one-to-one
correspondence, or have the same cardinality. This notion captures the idea that the two
sets “have the same number of elements,” but in a way that can be applied to infinite
sets.

Definition A.1.2 A nonempty set A is called finite if it has the same cardinality as the
set {1, 2, . . . , n} for some n ∈ N. Otherwise, A is called infinite. If A is either finite
or in one-to-one correspondence with N, then A is called countable. Otherwise, A is
called uncountable.5

The distinction between countable and uncountable sets is important, particularly
for measure theory. In the rest of this section we discuss examples and results for these
kinds of properties. The proofs are a little less than completely rigorous—sometimes
all the cases are not covered in full generality—but you can find formal treatments in
almost all textbooks on real analysis.

An example of a countable set is E := {2, 4, . . .}, the even elements of N. We can
set up a bijection f : N → E by letting f (n) = 2n. The set O := {1, 3, . . .} of odd
elements of N is also countable, under f (n) = 2n − 1. These examples illustrate that
for infinite sets, a proper subset can have the same cardinality as the original set.

Theorem A.1.3 Countable unions of countable sets are countable.

Proof. Let An := (a1
n, a2

n, . . .) be a countable set, and let A := ∪n≥1 An. For simplicity
we assume that the sets (An) are all infinite and pairwise disjoint. Arranging the
elements of A into an infinite matrix, we can count them in the following way:

a1
1 → a2

1 a3
1 → · · ·

↙ ↗
a1

2 a2
2 · · ·

↓ ↗

a1
3

...
...

This system of counting provides a bijection withN.

Exercise A.3 Show that Z := {. . . ,−1, 0, 1, . . .} is countable.

Theorem A.1.4 Finite Cartesian products of countable sets are countable.
5Sets we are calling countable some authors refer to as at most countable.
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Proof. Let’s just prove this for a pair A and B, where both A and B are infinite. In this
case, the Cartesian product can be written as

(a1, b1) → (a1, b2) (a1, b3) → · · ·
↙ ↗

(a2, b1) (a2, b2) · · ·
↓ ↗

(a3, b1)
...

...

Now count as indicated.

Theorem A.1.5 The set of all rational numbersQ is countable.

Proof. The set Q = {p/q : p ∈ Z, q ∈ Z, q 6= 0} can be put in one-to-one corre-
spondence with a subset of Z× Z = {(p, q) : p ∈ Z, q ∈ Z}, which is countable by
theorem A.1.4. Subsets of countable sets are countable.

Not all sets are countable. In fact, countable Cartesian products of countable sets
may be uncountable. For example, consider {0, 1}N, the set of all binary sequences
(a1, a2, . . .), where ai ∈ {0, 1}. If this set were countable, then it could be listed as
follows:

1 ↔ a1, a2, a3, . . .
2 ↔ b1, b2, b3, . . .
...

...

where the sequences on the right-hand side are binary sequences. Actually such a
list is never complete: We can always construct a new binary sequence c1, c2, . . . by
setting c1 to be different from a1 (zero if a1 is one, and one otherwise), c2 to be different
from b2, and so on. This differs from every element in our supposedly complete list
(in particular, it differs from the n-th sequence in that their n-th elements differ); a
contradiction indicating that {0, 1}N is uncountable.6

The cardinality of the set of binary sequences is called the power of the continuum.
The assertion that there are no sets with cardinality greater than countable and less
than the continuum is called the Continuum Hypothesis, and is a rather tricky prob-
lem to say the least.

6This is Cantor’s famous diagonal argument.
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A.1.3 Basic Probability

In this section we briefly recall some elements of probability on finite sets. Consider
a finite set Ω, a typical element of which is ω. A probability P on Ω is a function from
P(Ω), the set of all subsets of Ω, into [0, 1] with properties

1. P(Ω) = 1, and

2. if A, B ⊂ Ω and A ∩ B = ∅, then P(A ∪ B) = P(A) +P(B).

The pair (Ω,P) is sometimes called a finite probability space. Subsets of Ω are also called
events. The elements ω that make up Ω are the primitive events, while general B ⊂ Ω
is a composite event, consisting of M ≤ #Ω primitive events.7 The number P(B) is the
“probability that event B occurs.” In other words,P(B) represents the probability that
when uncertainty is resolved and some ω ∈ Ω is selected by “nature,” the statement
ω ∈ B is true.

Exercise A.4 Let p : Ω → [0, 1], where ∑ω∈Ω p(ω) = 1, and let

P(B) := ∑
ω∈B

p(ω) (B ⊂ Ω) (A.1)

Show that properties (1) and (2) both hold for P defined in (A.1).

The next few results follow easily from the definition of a probability.

Lemma A.1.6 If A ⊂ Ω, then P(Ac) = 1 −P(A).

Proof. Here of course Ac := Ω \ A. The proof is immediate from (1) and (2) above
because 1 = P(Ω) = P(A ∪ Ac) = P(A) +P(Ac).

Exercise A.5 Prove that P(∅) = 0. Prove that if A ⊂ B, then P(B \ A) = P(B) −
P(A). Prove further that if A ⊂ B, then P(A) ≤ P(B).

The idea that if A ⊂ B, then P(A) ≤ P(B) is fundamental. Event B occurs when-
ever A occurs, so the probability of B is larger. Many crucial ideas in probability boil
down to this one point.

Exercise A.6 Prove that if A and B are (not necessarily disjoint) subsets of Ω, then
P(A ∪ B) ≤ P(A) +P(B). Construct an example of a probability P and subsets A, B
such that this inequality is strict. Show that in general, P(A ∪ B) = P(A) +P(B)−
P(A ∩ B).

7If A is a set, then #A denotes the number of elements in A.
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If A and B are two events and P(B) > 0, then the conditional probability of A given
B is

P(A | B) :=
P(A ∩ B)
P(B)

(A.2)

It represents the probability that A will occur, given the information that B has oc-
curred.

What is the justification for the expression (A.2)? Informally, the probability P(C)
of an event C can be thought of as the fraction of times that C occurs in n independent
and identical experiments, as n → ∞. Letting ωn be the outcome of the n-th trial and
#A be the number of elements in set A, we can write this as

P(C) = lim
n→∞

#{n : ωn ∈ C}
n

The conditional P(A | B) is (approximately) the number of times both A and B occur
over a large number of observations, expressed as a fraction of the number of occur-
rences of B:

P(A | B) ∼=
#{n : ωn ∈ A and B}

#{n : ωn ∈ B}

Dividing through by n and taking the limit gives

P(A | B) ∼=
#{n : ωn ∈ A and B}/n

#{n : ωn ∈ B}/n
→ P(A ∩ B)

P(B)

Events A and B are called independent if P(A ∩ B) = P(A)P(B). You will find it easy
to confirm that if A and B are independent, then the conditional probability of A given
B is just the probability of A.

We will make extensive use of the law of total probability, which says that if A ⊂ Ω
and B1, . . . , BM is a partition of Ω (i.e., Bm ⊂ Ω for each m, the Bm’s are mutually dis-
joint in the sense that Bj ∩ Bk is empty when j 6= k, and ∪M

m=1Bm = Ω) withP(Bm) > 0
for all j, then

P(A) =
M

∑
m=1

P(A | Bm) ·P(Bm)

The proof is quite straightforward, although you should check that the manipulations
of intersections and unions work if you have not seen them before:

P(A) = P(A ∩ ∪M
m=1Bm) = P(∪M

m=1(A ∩ Bm))

=
M

∑
m=1

P(A ∩ Bm) =
M

∑
m=1

P(A | Bm) ·P(Bm)
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Now consider a random variable taking values in some collection of numbers S. For-
mally, a random variable X is a function from the sample space Ω into S. The idea is
that “nature” picks out an element ω in Ω according to some probability. The random
variable now sends this ω into X(ω) ∈ S. We can think of X as “reporting” the out-
come of the draw to us in a format that is more amenable to analysis. For example,
Ω might be a collection of binary sequences, and X translates these sequences into
(decimal) numbers.

Each probability P on Ω and X : Ω → S induces a distribution8 ϕ on S via

ϕ(x) = P{ω ∈ Ω : X(ω) = x} (x ∈ S) (A.3)

Exercise A.7 Show that ϕ(x) ≥ 0 and ∑x∈S ϕ(x) = 1.

In what follows we will often write the right-hand side of (A.3) simply as P{X =
x}. Please be aware of this convention. We say that X is distributed according to ϕ,
and write X ∼ ϕ.

An aside: If you stick to elementary probability, then you may begin to feel that the
distinction between the underlying probabilityP and the distribution ϕ of X is largely
irrelevant. Why can’t we just say that X is a random variable with distribution ϕ, and
Y is another random variable with distribution ψ? The meaning of these statements
seems clear, and there is no need to introduce P and Ω, or to think about X and Y as
functions.

The short answer to this question is that it is often useful to collect different ran-
dom variables on the one probability space defined by Ω and P. With this construct
one can then discuss more complex events, such as convergence of a sequence of ran-
dom variables on (Ω,P) to yet another random variable on (Ω,P).

Next we define expectation. Let X : Ω → S and let P be a probability on Ω. The
expectation EX of X is given by

EX := ∑
ω∈Ω

X(ω)P{ω} (A.4)

Exercise A.8 Prove that if X ∼ ϕ, then EX = ∑x∈S xϕ(x).9 Prove the more general
result that if Y = h(X) for some real-valued function h of X (i.e., h : S → R), then

EY := ∑
ω∈Ω

h(X(ω))P{ω} = ∑
x∈S

h(x)ϕ(x) (A.5)

8What we call a distribution here is often referred to as a probability mass function.
9Hint: Divide Ω into sets Bx for x ∈ S, where Bx := {ω ∈ Ω : X(ω) = x}.
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A.2 The Real Numbers

As usual, R denotes the so-called real numbers, which you can visualize as the “con-
tinuous” real line. We will make use of several of its properties. One property worth
mentioning before we start is that the setR is uncountable. This can be proved by show-
ing thatR is in one to one correspondence with the set of all binary sequences—which
were shown to be uncountable in §A.1.2. (For the correspondence, think of the way
that computers represent numbers in binary form.) R also has certain algebraic, order,
and completeness properties, which we now detail.

A.2.1 Real Sequences

In what follows, if x ∈ R then |x| denotes its absolute value. For any x, y ∈ R the
triangle inequality |x + y| ≤ |x|+ |y| holds.

Exercise A.9 Show that if a, b, and x are any real numbers, then

|a − b| ≤ |a − x|+ |x − b| and | |x| − |a| | ≤ |x − a| (A.6)

A subset A of R is called bounded if there is an M ∈ N such that |x| ≤ M, all
x ∈ A. The ϵ-ball or ϵ-neighborhood around a ∈ R is the set of points x ∈ R such
that |a − x| < ϵ.10 An X-valued sequence is a function from the natural numbers
N := {1, 2, . . .} to nonempty set X, traditionally denoted by notation such as (xn). It
is called a real sequence when X ⊂ R. A real sequence (xn) is called bounded if its
range is a bounded set (i.e., ∃M ∈ N such that |xn| ≤ M for all n ∈ N).

A real sequence (xn) is said to be convergent if there is an x ∈ R such that, given
any ϵ > 0, we can find an N ∈ N with the property |xn − x| < ϵ whenever n ≥
N. This property will often be expressed by saying that (xn) is eventually in any
ϵ-neighborhood of x. The point x is called the limit of the sequence, and we write
limn→∞ xn = x or xn → x as n → ∞.

This definition of convergence can be a little hard to grasp at first. One way is
to play the “ϵ, N game.” If I claim that a sequence is convergent, then, for every ϵ-
neighborhood you give me, I commit to providing you with an index N such that
all points further along the sequence than the N-th one (i.e., points xN , xN+1, . . .) are
in that ϵ-neighborhood. For example, consider xn = 1/n2. I claim xn converges to
zero. When you give me ϵ = 1/3, I can give you N = 2, because n ≥ 2 implies
xn = 1/n2 ≤ 1/4 < ϵ. In fact, I can give you an “algorithm” for generating such an
N: Given ϵ > 0, take any N ∈ N greater than 1/

√
ϵ.

Sometimes the “points” ∞ and −∞ can are regarded as limits of sequences. In
what follows, we will say that xn → ∞, or limn xn = ∞, if for each M ∈ N there is an

10This “ball” will look more ball-like once we move to higher dimensional spaces.
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N ∈ N such that xn ≥ M whenever n ≥ N. Similarly we say that xn → −∞ if, for
each M ∈ N there is an N ∈ N such that xn ≤ −M whenever n ≥ N. Also, sequence
(xn) is called monotone increasing (resp., decreasing) if xn ≤ xn+1 (resp, xn+1 ≤ xn) for
all n ∈ N. If (xn) is monotone increasing (resp., decreasing) and converges to some
x ∈ R, then we write xn ↑ x (resp., xn ↓ x).

Lemma A.2.1 Let (xn) be a sequence in R, and let x ∈ R. Then xn → x if and only if
|xn − x| → 0.

Proof. The first statement says that we can make |xn − x| less than any given ϵ > 0 by
choosing n sufficiently large. The second statement says that we can make ||xn − x| −
0| less than any given ϵ > 0 by choosing n sufficiently large. Clearly, these statements
are equivalent.

Lemma A.2.2 Each real sequence has at most one limit.

Proof. Let xn → a and xn → b. Suppose that a 6= b. By choosing ϵ small enough,
we can take ϵ-balls Ba and Bb around a and b that are disjoint.11 By the definition of
convergence, (xn) is eventually in Ba and eventually in Bb. In which case there must
be an N such that xN ∈ Ba and xN ∈ Bb. But this is impossible. Hence a = b.

While most of the numbers that we deal with in every day life can be expressed in
terms of integers or rational numbers, for more sophisticated mathematicsQ does not
suffice. Simple equations using rational numbers may not have rational solutions, and
sequences of rational numbers that seem to converge to something may not converge
to any rational number. The real numbers “complete” the rational numbers, in the
sense that sequences of rationals—or reals—that “appear to converge” will have a
limit within the setR.

To make this precise, recall that a sequence (xn) in R is called Cauchy if, for any
ϵ > 0, there exists an N ∈ N such that for any n and m greater than N, |xn − xm| < ϵ.
Now Cauchy sequences seem to be converging to something, so we can express the
idea of completeness ofR—as opposed toQ—by saying that every Cauchy sequence
inR does converge to an element ofR.

Axiom A.2.3 (Completeness ofR) Every Cauchy sequence on the real line is convergent.

There are formal constructions of the real numbers from the rationals by which this
statement can be proved, but we will take it as axiomatic. This completeness property
of R is one of the most important and fundamental ideas of real analysis. For exam-
ple, it allows us to define a solution to a particular problem as the limit of a Cauchy
sequence of numbers generated by some approximation process, without fearing the

11Using (A.6), show that if ϵ < |a − b|/2, then x ∈ Ba and x ∈ Bb is impossible.
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embarrassment that would result should such a limit point fail to exist. This is impor-
tant because many types of sequences are Cauchy. The following example is extremely
useful in both theory and applications:

Theorem A.2.4 Every bounded monotone sequence inR is convergent.

Proof. We prove the case where (xn) is increasing (xn+1 ≥ xn for all n). By axiom A.2.3,
it suffices to show that (xn) is Cauchy. Suppose that it is not. Then we can find an
ϵ0 > 0 such that, given any N ∈ N, there is a pair n, m ∈ N with N ≤ n < m and
xm − xn ≥ ϵ0. But then (xn) cannot be bounded above. (Why?) Contradiction.12

Exercise A.10 Prove that if (xn) ⊂ R is convergent, then (xn) is bounded.13

Now we introduce the notion of subsequences. Formally, a sequence (yn) is called
a subsequence of another sequence (xn) if there is a strictly increasing function f : N→
N such that yn = x f (n) for all n ∈ N. To put it more simply, (yn) is the original se-
quence (xn) but with some points omitted. The function f picks out a strictly increas-
ing sequence of positive integers n1 < n2 < · · · that are to make up the subsequence,
in the sense that y1 = xn1 , y2 = xn2 , and so forth. Often one writes this new sequence
as (xnk ).

Exercise A.11 Show that if (xn) ⊂ R converges to x ∈ R, then so does every subse-
quence.

Exercise A.12 Show that (xn) converges to x ∈ R if and only if every subsequence of
(xn) has a subsubsequence that converges to x.

Theorem A.2.5 Every real sequence has a monotone subsequence.

Proof. Call an element xk in (xn) dominant if all the following elements are less than
or equal to it. If there are infinitely many such dominant elements, then we can select
these to be our monotone subsequence (which is decreasing). If not, let xm be the last
dominant term. Since xm+1 is not dominant, there is a j > m + 1 such that xj > xm+1.
Since xj is not dominant there is an i > j such that xi > xj. Continuing in this way, we
can pick out a monotone subsequence (which is increasing).

Now we have the following crucial property of R. Usually called the Bolzano–
Weierstrass theorem, it also extends to higher dimensional space (see theorem 3.2.9
on page 52) and forms the foundations of countless results in analysis.

12How are you going with proof by contradiction? After a while you will become familiar with the style
of argument. The assertion that (xn) is not Cauchy led to a contradiction—in this case of the hypothesis
that (xn) is bounded. We are forced to conclude that this assertion (i.e., that (xn) is not Cauchy) is false. In
other words, (xn) is Cauchy.

13Hint: How many points are there outside a given ϵ-ball around the limit?
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Theorem A.2.6 Every bounded sequence inR has a convergent subsequence.

Proof. Take a given sequence in R. By theorem A.2.5, the sequence has a monotone
subsequence, which is a sequence in its own right. Evidently this sequence is also
bounded. By theorem A.2.4, every bounded monotone sequence converges.

The next result is important in practice, and the proof is an exercise.

Theorem A.2.7 Let (xn) and (yn) be two sequences inR, with lim xn = x and lim yn = y.
If xn ≤ yn for all n ∈ N, then x ≤ y.14

Often when we use this result one sequence will be a constant. For example, if
xn ≤ b for all n ∈ N, then lim xn ≤ b. Note that taking limits does not preserve strict
ordering! For example, 1/n > 0 for all n, but limn 1/n > 0 is false.

Theorem A.2.8 Let (xn), (yn) and (zn) be three sequences in R, with xn ≤ yn ≤ zn for all
n ∈ N. If xn → a and zn → a both hold, then yn → a.

Proof. Fix ϵ > 0. We can choose an N ∈ N such that if n ≥ N, then xn > a − ϵ and
zn < a + ϵ. (Why?) For such n we must have |yn − a| < ϵ.

You might have thought it would be simpler to argue that, since xn ≤ yn ≤ zn for
all n, we have lim xn ≤ lim yn ≤ lim zn from theorem A.2.7. But this is not permissible
because we did not know at the start of the proof that lim yn exists. Theorem A.2.7
expressly requires that the limits exist. (This is an easy mistake to make.)

Theorem A.2.9 Let (xn) and (yn) be real sequences. If xn → x and yn → y, then xn + yn →
x + y.

Proof. Fix ϵ > 0. By the triangle inequality,

|(xn + yn)− (x + y)| ≤ |xn − x|+ |yn − y| (A.7)

Choose N ∈ N such that |xn − x| < ϵ/2 whenever n ≥ N, and N′ ∈ N such that
|yn − y| < ϵ/2 whenever n ≥ N′. For n ≥ max{N, N′}, the right-hand side of (A.7) is
less than ϵ.

Exercise A.13 Show that if a ∈ R and xn → x, then axn → ax.

Theorem A.2.10 Let (xn) and (yn) be real sequences. If xn → x and yn → y, then xnyn →
xy.

14Hint for the proof: Suppose that x > y. Take ϵ-balls around each point that do not intersect. (Convince
yourself that this is possible.) Now try to contradict xn ≤ yn for all n.
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Proof. In view of exercise A.10, there is a positive integer M such that |xn| ≤ M for all
n ∈ N. By the triangle inequality,

|xnyn − xy| = |xnyn − xny + xny − xy| ≤ |xnyn − xny|+ |xny − xy|
= |xn||yn − y|+ |y||xn − x| ≤ M|yn − y|+ |y||xn − x| < ϵ

The result now follows from exercise A.13 and theorem A.2.9.

If (xn) is a sequence in R, the term ∑n≥1 xn or ∑n xn is defined, when it exists,
as the limit of the sequence (sk), where sk := ∑k

n=1 xn. If sk → ∞, then we write
∑n xn = ∞. Of course the limit may fail to exist entirely, as for xn = (−1)n.

Lemma A.2.11 Let (xn) ⊂ R+. If ∑n xn < ∞, then xn → 0.

Proof. Suppose instead that xn → 0 fails. Then ∃ ϵ > 0 such that xn > ϵ infinitely
often. (Why?) Hence ∑n xn = ∞. (Why?) Contradiction.

A.2.2 Max, Min, Sup, and Inf

Let x and y be any two real numbers. We will use the notation x ∨ y for the maximum
of x and y, while x ∧ y is their minimum. The following equalities are bread and
butter:

Lemma A.2.12 For any x, y ∈ R and any a ≥ 0 we have the following identities:

1. x + y = x ∨ y + x ∧ y.

2. |x − y| = x ∨ y − x ∧ y.

3. |x − y| = x + y − 2(x ∧ y).

4. |x − y| = 2(x ∨ y)− x − y.

5. a(x ∨ y) = (ax) ∨ (ay).

6. a(x ∧ y) = (ax) ∧ (ay).

To see that x + y = x ∨ y + x ∧ y, pick any x, y ∈ R. Suppose without loss of
generality that x ≤ y. Then x ∨ y + x ∧ y = y + x, as was to be shown. The remaining
equalities are left as exercises.

Exercise A.14 Show that if xn → x in R, then |xn| → |x|. (Hint: Use (A.6) on
page 327.) Using this result and identities 3 and 4 in lemma A.2.12, argue that if
xn → x and yn → y, then xn ∧ yn → x ∧ y and xn ∨ yn → x ∨ y.
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If A ⊂ R, the maximum of A, when it exists, is a number m ∈ A with a ≤ m for all
a ∈ A. The minimum is defined analogously. For any finite collection of real numbers,
the maximum and minimum always exist. For infinite collections this is not the case.
To deal with infinite sets we introduce the notion of suprema and infima.

Given a set A ⊂ R, an upper bound of A is any number u such that a ≤ u for all
a ∈ A. If s ∈ R is an upper bound for A and also satisfies s ≤ u for every upper bound
u of A, then s is called the supremum of A. You will be able to verify that at most one
such s exists. We write s = sup A.

Lemma A.2.13 Suppose that s is an upper bound of A. The following statements are then
equivalent:

1. s = sup A.

2. s ≤ u for all upper bounds u of A.

3. ∀ ϵ > 0, ∃ a ∈ A with a > s − ϵ.

4. There exists a sequence (an) ⊂ A with an ↑ s.

Exercise A.15 Prove lemma A.2.13.

Exercise A.16 Show that sup(0, 1) = 1 and sup(0, 1] = 1. Show that if a set A contains
one of its upper bounds u, then u = sup A.

Theorem A.2.14 Every nonempty subset ofR that is bounded above has a supremum inR.

The proof is omitted, but this is in fact equivalent to axiom A.2.3. Either one can be
treated as the axiom. They assert the “completeness” of the real numbers.

If A is not bounded above, then it is conventional to set sup A := ∞. With this
convention, the following statement is true:

Lemma A.2.15 If A, B ⊂ R with A ⊂ B, then sup A ≤ sup B.

Proof. If sup B = ∞ the result is trivial. Suppose instead that B is bounded above,
and let b̄ := sup B, ā = sup A. By lemma A.2.13, there is a sequence (an) ⊂ A with
an ↑ ā. But b̄ is an upper bound for A (why?), so an ≤ b̄ for all n. It now follows from
theorem A.2.7 that ā = lim an ≤ b̄.

For A ⊂ R a lower bound of A is any number l such that a ≥ l for all a ∈ A. If
i ∈ R is an lower bound for A and also satisfies i ≥ l for every lower bound l of A,
then i is called the infimum of A. At most one such i exists. We write i = inf A. Every
nonempty subset ofR bounded from below has an infimum.
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Exercise A.17 Let A be bounded below. Show that i = inf A if and only if i is a lower
bound of A and, for each ϵ > 0, there is an a ∈ A with a < i + ϵ.

Lemma A.2.16 If A, B ⊂ R with A ⊂ B, then inf A ≥ inf B.

Proof. The proof is an exercise.

For (xn) ⊂ R we set

lim inf xn := lim
n→∞

inf
k≥n

xk and lim sup xn := lim
n→∞

sup
k≥n

xk

If (xn) is bounded, then both lim inf xn and lim sup xn always exist inR. (Why?)

Exercise A.18 For A a bounded subset of R, let −A be all b ∈ R such that b = −a for
some a ∈ A. Show that − sup A = inf(−A). Let (xn) be a bounded sequence of real
numbers. Show that − lim sup xn = lim inf−xn.

Exercise A.19 Let (xn) be a sequence of real numbers, and let x ∈ R. Show that
limn xn = x if and only if lim supn xn = lim infn xn = x.

Exercise A.20 Let (xn), (yn), and (zn) be sequences of real numbers with xn ≤ yn + zn
for all n ∈ N. Show that the following inequality always holds:

lim sup xn ≤ lim sup yn + lim sup zn

Exercise A.21 Show that (xn) ⊂ R+ and lim sup xn = 0 implies lim xn = 0.15

Let f : A → R, where A is any nonempty set. We will use the notation

sup f :=: sup
x∈A

f (x) := sup{ f (x) : x ∈ A}

Also, if g : A → R, then f + g is defined by ( f + g)(x) = f (x) + g(x), while | f | is
defined by | f |(x) = | f (x)|.

Lemma A.2.17 Let f , g : A → R, where A is any nonempty set. Then

sup( f + g) ≤ sup f + sup g

Proof. We can and do suppose that sup f and sup g are finite. (Otherwise the result is
trivial.) For any x ∈ A, f (x) ≤ sup f and g(x) ≤ sup g.

∴ f (x) + g(x) ≤ sup f + sup g
15Hint: A neat argument follows from theorem A.2.8.
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∴ sup( f + g) ≤ sup f + sup g

Lemma A.2.18 If f : A → R, then | sup f | ≤ sup | f |.

Proof. We can and do suppose that sup | f | < ∞. Evidently sup f ≤ sup | f |.16 To
complete the proof, we need only show that − sup f ≤ sup | f | also holds. This is the
case because

0 = sup(− f + f ) ≤ sup(− f ) + sup f ≤ sup | f |+ sup f

Exercise A.22 Show via counterexample that the statement | sup f | = sup | f | does not
hold in general.

Let A ⊂ R. A function f : A → R is called monotone increasing on A if, whenever
x, y ∈ A and x ≤ y, we have f (x) ≤ f (y). It is called monotone decreasing if, whenever
x ≤ y, we have f (x) ≥ f (y). We say strictly monotone increasing or strictly monotone
decreasing if the previous inequalities can be replaced with strict inequalities.

Exercise A.23 Let S be any set, let g : S → R, and let x̄ be a maximizer of g on S, in the
sense that g(x̄) ≥ g(x) for all x ∈ S. Prove that if f : R → R is monotone increasing,
then x̄ is a maximizer of f ◦ g on S.

A.2.3 Functions of a Real Variable

Let’s recall some basics about functions when send subsets of R into R. Below we
define such concepts as continuity, differentiability, convexity, and concavity. If you
are rusty on these definitions, then it is probably worth skim-reading this section and
completing a few of the exercises.

Let A ⊂ R and let f , g : A → R. As usual, the sum of f and g is the function
f + g defined by ( f + g)(x) := f (x) + g(x). Similarly, the product f g is defined by
( f g)(x) := f (x)g(x). The product of real number α and f is the function (α f )(x) :=
α f (x). Recall that f is called bounded if its range is a bounded set (i.e., ∃ M ∈ N such
that | f (a)| ≤ M for all a ∈ A).

Exercise A.24 Show that if f and g are bounded and α ∈ R, then f + g, f g, and α f are
also bounded functions.

Function f : A → R is said to be continuous at a ∈ A if for every sequence (xn) in
A converging to a we have f (xn) → f (a). (Sketch it.) It is called continuous on A (or

16Pick any x ∈ A. Then f (x) ≤ | f (x)| ≤ sup | f |. Since x is arbitrary, sup f ≤ sup | f |.
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just continuous) whenever it is continuous at every a ∈ A. Continuity of functions
captures the idea that small changes to the input do not lead to sudden jumps in the
output. Notice that in requiring that f (xn) → f (a) for each xn → a, we require that not
only does f (xn) actually converge for each choice of xn → a, but all these sequences
converge to the same limit, and moreover that limit is f (a).

Exercise A.25 Prove carefully that the functions f (x) = x + 1 and g(x) = x2 are
continuous. Give an example of a function that is not continuous, showing how it
fails the definition.

More generally, for the same f : A → R and for a ∈ A, we say that y = limx→a f (x)
if f (xn) → y for every sequence (xn) ⊂ A with xn → a. Note that limx→a f (x) may
not exist. It may be the case that different sequences converging to a yield different
limits for the sequence f (xn), or indeed that f (xn) does not converge at all. But this
new notation is useful because we can now say that f is continuous at a if and only if
limx→a f (x) exists and is equal to f (a).

Exercise A.26 Show that if f and g are continuous functions and α ∈ R, then f + g,
f g and α f are also continuous.

Exercise A.27 A function f : A → R is said to be continuous from the left at x ∈ A
if f (xn) → f (x) for every sequence xn ↑ x; and continuous from the right at x ∈ A
if f (xn) → f (x) for every sequence xn ↓ x. Clearly, a function continuous at x is
both continuous from the left at x and continuous from the right at x. Show that the
converse also holds.17

One of the many delightful results concerning continuous functions is the inter-
mediate value theorem:

Theorem A.2.19 Let f : [a, b] → R, where a < b. If f is continuous on [a, b] and f (a) <
0 < f (b), then there exists an s ∈ (a, b) with f (s) = 0.

Proof. Let A := {x ∈ [a, b] : f (x) < 0}, and let s be the supremum of this set. (Why
can we be sure that such a supremum exists?) We claim that f (s) = 0. To see why
this must be the case, observe that since s = sup A there exists a sequence (xn) with
f (xn) < 0 and xn ↑ s. (Why?) By continuity of f , we have lim f (xn) = f (s). But
f (xn) < 0 for all n, so lim f (xn) ≤ 0. Hence f (s) ≤ 0. On the other hand, since s is an
upper bound of A, we know that x > s implies x /∈ A, in which case f (x) ≥ 0. Take
a strictly decreasing sequence (xn) in (s, b] with xn ↓ s. (Convince yourself that such
a sequence does exist.) As f (xn) ≥ 0 for all n it follows that lim f (xn) = f (s) ≥ 0.
Therefore f (s) = 0.

17Hint: You might like to make use of exercise A.12 and theorem A.2.5.
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Exercise A.28 Using theorem A.2.19 (the result, not the proof), show that the same
result holds when f (b) < 0 < f (a).

Let’s briefly review differentiability. Let f : (a, b) → R, and let x ∈ (a, b). The
function f is said to be differentiable at x if, for every sequence (hn) converging to zero
and satisfying hn 6= 0 and x + hn ∈ (a, b) for each n, the sequence

f (x + hn)− f (x)
hn

converges, and the limit is independent of the choice of (hn). If such a limit exists, it
is denoted by f ′(x). The function f is called differentiable if it is differentiable at each
point in its domain, and continuously differentiable if, in addition to being differentiable,
x 7→ f ′(x) is continuous everywhere on the domain of f .

Exercise A.29 Let f : R → R be defined by f (x) = x2. Prove that f ′(x) = 2x for any
x ∈ R.

A function f from an interval I toR is called convex (resp., strictly convex) if

λ f (x) + (1 − λ) f (y) ≥ f (λx + (1 − λ)y)

for all λ ∈ [0, 1] and x, y ∈ I (resp., for all x 6= y and all λ ∈ (0, 1)), and concave (resp.,
strictly concave) if

λ f (x) + (1 − λ) f (y) ≤ f (λx + (1 − λ)y)

for all λ ∈ [0, 1] and x, y ∈ I (resp., for all x 6= y and all λ ∈ (0, 1)). Since f is concave
if and only if − f is convex, we can think of convexity as the fundamental property;
concavity is merely a shorthand way of referring to convexity of − f .

There are numerous connections between continuity, differentiability, and convex-
ity. For example, if f : [a, b] → R is convex, then it is continuous everywhere on (a, b).
Also you are no doubt aware that if f is twice differentiable, then nonnegativity of
f ′′ on (a, b) is equivalent to convexity on (a, b). These facts can be proved from the
definitions above.

Finally, let’s consider right and left derivatives. Let f : (a, b) → R. For fixed x ∈
(a, b) we define

D(x, h) :=
f (x + h)− f (x)

h
(h 6= 0 and x + h ∈ (a, b))

If for each sequence hn ↓ 0 the limit limn→∞ D(x, hn) exists and is equal to the same
number, we call that number the right-hand derivative of f at x, and denote it by
f ′+(x). If for each sequence hn ↑ 0 the limit limn→∞ D(x, hn) exists and is equal to
the same number, we call that number the left-hand derivative of f at x, and denote
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it by f ′−(x). It turns out that f is differentiable at x if and only if both the left- and
right-hand derivatives exist at x and are equal. The proof is not too difficult if you feel
like doing it as an exercise.

The following lemma collects some useful facts:

Lemma A.2.20 If f is concave on (a, b), then f ′+ and f ′− exist everywhere on (a, b). For each
x ∈ (a, b),

f ′+(x) = sup
h>0

D(x, h) and f ′−(x) = inf
h<0

D(x, h)

Moreover f ′+ ≤ f ′− everywhere on (a, b). If f ′+(x) = f ′−(x) at some point x ∈ (a, b), then f
is differentiable at x, and f ′(x) = f ′+(x) = f ′−(x).

Exercise A.30 Prove lemma A.2.20. First show that when f is concave, D(x, h) is de-
creasing in h. Next apply existence results for limits of monotone bounded sequences.
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Chapter Appendixes

B.1 Appendix to Chapter 3

Let us briefly discuss the topic of parametric continuity. The question we address is
whether or not the solution to a given optimization problem varies continuously with
the parameters that define the problem. The classic theorem in this area is Berge’s
theorem of the maximum. You should familiarize yourself at least with the statement
of the theorem.

To begin, let A and B be two sets. A function Γ from A into P(B) (i.e., into the
subsets of B) is called a correspondence from A to B. Correspondences are often used
to define constraint sets. For example, a ∈ A might be the price of a commodity, or
a level of wealth, and Γ(a) ⊂ B is the budget set associated with that value of the
parameter.

Now suppose that A and B are metric spaces, and let Γ be a correspondence from
A to B. We say that Γ is compact-valued if Γ(a) is a compact subset of B for every
a ∈ A, and nonempty if Γ(a) 6= ∅ for every a ∈ A. A nonempty compact-valued
correspondence Γ from A to B is called upper-hemicontinuous at a ∈ A if, for each
sequence (an) ⊂ A with an → a, and each sequence (bn) ⊂ B with bn ∈ Γ(an) for
all n ∈ N, the sequence (bn) has a convergent subsequence whose limit is in Γ(a).
It is called lower-hemicontinuous at a if, for each (an) ⊂ A with an → a and each
b ∈ Γ(a), there is a sequence (bn) ⊂ B with bn ∈ Γ(an) for all n ∈ N, and bn → b
as n → ∞. Finally, Γ is called continuous at a if it is both upper-hemicontinuous and
lower-hemicontinuous at a. It is called continuous if it is continuous at a for each
a ∈ A.

The following lemma treats an important special case:

339
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Lemma B.1.1 Let A ⊂ R, let g and h be continuous functions from A toR, and let Γ : A →
P(R) be defined by

Γ(x) = {y ∈ R : g(x) ≤ y ≤ h(x)} (x ∈ A)

If g and h are continuous functions, then the correspondence Γ is also continuous.

Proof. Pick any a ∈ A. First let’s check upper-hemicontinuity at a. Let (an) ⊂ A,
an → a, and let (bn) ⊂ B, bn ∈ Γ(an) for all n. We claim the existence of a subsequence
(bnj) and a b ∈ Γ(a) with bnj → b as j → ∞.

To see why—fill in any gaps in the argument to your own satisfaction—note that
(an) is bounded and C := {a} ∪ {an}n∈N is closed, from which it follows that G :=
infx∈C g(x) and H = supx∈C h(x) exist (see theorem 3.2.11 on page 53). But as G ≤
bn ≤ H for all n, the sequence bn is bounded and hence contains a convergent subse-
quence bnj → b. Observing that g(anj) ≤ bnj ≤ h(anj) for all j ∈ N, we can take the
limit to obtain g(a) ≤ b ≤ h(a). In other words, b ∈ Γ(a), as was to be proved.

Regarding lower-hemicontinuity at a, given (an) with an → a and b ∈ Γ(a), we
claim there is a sequence (bn) ⊂ B with bn ∈ Γ(an) for all n ∈ N and bn → b. To see
this, suppose first that b = g(a). Setting bn = g(an) gives the desired convergence.
The case of b = h(a) is treated similarly. Suppose instead that g(a) < b < h(a). It
follows that for N sufficiently large we have g(an) < b < h(an) whenever n ≥ N.
Taking b1, . . . , bN−1 arbitrary and bn = b for all n ≥ N gives a suitable sequence
bn → b.

Exercise B.1 Let Γ : A → B be a correspondence such that Γ(a) is a singleton {ba}
for each a ∈ A. Show that if Γ is a continuous correspondence, then a 7→ ba is a
continuous function.

Now we can state Berge’s theorem.

Theorem B.1.2 Let Θ and U be two metric spaces, let Γ be a correspondence from Θ to U,
and let

gr Γ := {(θ, u) ∈ Θ × U : u ∈ Γ(θ)}
If f : gr Γ → R is continuous, and Γ is nonempty, compact-valued and continuous, then the
function

g : Θ 3 θ 7→ max
u∈Γ(θ)

f (θ, u) ∈ R

is continuous on Θ. The correspondence of maximizers

M : Θ 3 θ 7→ argmax
u∈Γ(θ)

f (θ, u) ⊂ U

is compact-valued and upper-hemicontinuous on Θ. In particular, if M(θ) is single-valued,
then it is continuous.



Preface 341

In the theorem, continuity of f on gr Γ means that if (θ, u) ∈ gr Γ and (θn, un) is a
sequence in gr Γ with (θn, un) → (θ, u), then f (θn, un) → f (θ, u). (This is a stronger
requirement than assuming f is continuous in each individual argument while the
other is held fixed.) The theorem is well-known to economists, and we omit the proof.
See Aliprantis and Border (1999, thm. 16.31), or Stokey and Lucas (1989, thm. 3.6).

The next result is a direct implication of Berge’s theorem B.1.2 but pertains to para-
metric continuity of fixed points.

Theorem B.1.3 Let Θ, U, and Γ be as in theorem B.1.2. Let g : gr Γ → U, and let

F(θ) := {u ∈ U : u = g(θ, u)} (θ ∈ Θ)

If F(θ) is nonempty for each θ ∈ Θ, g is continuous on gr Γ, and Γ is nonempty, compact-
valued and continuous, then θ 7→ F(θ) is compact-valued and upper-hemicontinuous on Θ.
In particular, if F(θ) is single-valued, then it is continuous.

Proof. Continuity of g on gr Γ means that if (θ, u) ∈ gr Γ and (θn, un) is a sequence in
gr Γ with (θn, un) → (θ, u), then g(θn, un) → g(θ, u). Let f : gr Γ → R be defined by

f (θ, u) = −ρ(u, g(θ, u))

where ρ is the metric on U. You will be able to show that f is also continuous on
gr Γ. Theorem B.1.2 then implies that θ 7→ M(θ) is compact-valued and upper-hemi-
continuous, where M(θ) is the set of maximizers argmaxu∈Γ(θ) f (θ, u).

Now pick any θ ∈ Θ. As F(θ) is assumed to be nonempty, the set of maximizers
of f and fixed-points of g coincide. That is, M(θ) = F(θ). Since θ is arbitrary, M
and F are the same correspondence on Θ, and θ 7→ F(θ) is also compact-valued and
upper-hemicontinuous.

Next we turn to the

Proof of theorem 3.2.17. Uniqueness is by exercise 3.45. To prove existence, define r : S →
R by r(x) = ρ(Tx, x). It is not too difficult to show that r is continuous (with respect
to ρ). Since S is compact, r has a minimizer x∗. But then Tx∗ = x∗ must hold, because
otherwise

r(Tx∗) = ρ(TTx∗, Tx∗) < ρ(Tx∗, x∗) = r(x∗)

contradicting the definition of x∗.
Next we show that Tnx → x∗ as n → ∞ for all x ∈ S. To see this, pick any x ∈ S and

consider the real sequence (αn) defined by αn := ρ(Tnx, x∗). Since T is contracting,
the sequence (αn) is monotone decreasing, and therefore converges (why?) to some
limit α ≥ 0. I claim that α = 0.
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To see this, we can argue as follows: By compactness of S the sequence (Tnx) has
a subsequence (Tn(k)x) with Tn(k)x → x′ for some x′ ∈ S. It must be the case that
ρ(x′, x∗) = α. The reason is that y 7→ ρ(y, x∗) is continuous as a map from S to R
(example 3.1.5 on page 44). Hence ρ(Tn(k)x, x∗) → ρ(x′, x∗). But ρ(Tn(k)x, x∗) → α
and sequences have at most one limit, so ρ(x′, x∗) = α.

It is also the case that ρ(Tx′, x∗) = α. To see this, note that by continuity of T we
have

T(Tn(k)x) = Tn(k)+1x → Tx′

Since y 7→ ρ(y, x∗) is continuous, we have ρ(Tn(k)+1x, x∗) → ρ(Tx′, x∗). At the same
time, ρ(Tn(k)+1x, x∗) → α is also true, so ρ(Tx′, x∗) = α.

We have established the existence of a point x′ ∈ S such that both ρ(x′, x∗) and
ρ(Tx′, x∗) are equal to α. If α > 0 the points x′ and x∗ are distinct, implying

α = ρ(x′, x∗) > ρ(Tx′, Tx∗) = ρ(Tx′, x∗) = α

Contradiction.

B.2 Appendix to Chapter 4

We now provide the proof of theorem 4.3.4 on page 90. To begin our proof, consider
the following result:

Lemma B.2.1 If ϕ and ψ are elements of P(S) and h : S → R+, then∣∣∣∣∣∑x∈S
h(x)ϕ(x)− ∑

x∈S
h(x)ψ(x)

∣∣∣∣∣ ≤ 1
2

sup
x,x′

|h(x)− h(x′)| · ‖ϕ − ψ‖1

Proof. Let ρ(x) := ϕ(x)− ψ(x), ρ+(x) := ρ(x) ∨ 0, ρ−(x) := (−ρ(x)) ∨ 0. It is left to
the reader to show that ρ(x) = ρ+(x)− ρ−(x), that |ρ(x)| = ρ+(x) + ρ−(x), and that
∑x∈S ρ+(x) = ∑x∈S ρ−(x) = (1/2)‖ρ‖1.

In view of the equality |a − b| = a ∨ b − a ∧ b (lemma A.2.12, page 331), we have∣∣∑ hϕ − ∑ hψ
∣∣ = ∣∣∑ hρ

∣∣ = ∣∣∑ hρ+ − ∑ hρ−
∣∣

=
(
∑ hρ+

)∨ (
∑ hρ−

)
−
(
∑ hρ+

)∧ (
∑ hρ−

)
Consider the two terms to the right of the last equality. If sup h := supx∈S h(x) and
inf h := infx∈S h(x), then the first term satisfies(

∑ hρ+
)∨ (

∑ hρ−
)
≤
(
sup h ∑ ρ+

)∨ (
sup h ∑ ρ−

)
= sup h

(
∑ ρ+

)∨ (
∑ ρ−

)
= sup h

‖ρ‖1

2
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while the second satisfies(
∑ hρ+

)∧ (
∑ hρ−

)
≥
(
inf h ∑ ρ+

)∧ (
inf h ∑ ρ−

)
= inf h

(
∑ ρ+

)∧ (
∑ ρ−

)
= inf h

‖ρ‖1

2

Combining these two bounds, we get

∣∣∑ hϕ − ∑ hψ
∣∣ ≤ (sup h − inf h)

‖ρ‖1

2

This is the same bound as given in the statement of the lemma.

We need two more results to prove theorem 4.3.4, both of which are straightfor-
ward.

Lemma B.2.2 Let p, M, ϕ, and ψ be as in theorem 4.3.4. Then1

‖ϕM − ψM‖1 ≤ 1
2

sup
x,x′

‖p(x, dy)− p(x′, dy)‖1 · ‖ϕ − ψ‖1

Proof. In the proof of this lemma, if ϕ ∈ P(S) and A ⊂ S, we will write ϕ(A) as a
shorthand for ∑y∈A ϕ(x). So pick any A ⊂ S. In view of lemma B.2.1, we have∣∣∣∣∣∑x∈S

P(x, A)ϕ(x)− ∑
x∈S

P(x, A)ψ(x)

∣∣∣∣∣ ≤ 1
2

sup
x,x′

|P(x, A)− P(x′, A)| · ‖ϕ − ψ‖1

Applying the result of exercise 4.38, we obtain∣∣∣∣∣∑x∈S
P(x, A)ϕ(x)− ∑

x∈S
P(x, A)ψ(x)

∣∣∣∣∣ ≤ 1
4

sup
x,x′

‖p(x, dy)− p(x′, dy)‖1 · ‖ϕ − ψ‖1

which is another way of writing

|ϕM(A)− ψM(A)| ≤ 1
4

sup
x,x′

‖p(x, dy)− p(x′, dy)‖1 · ‖ϕ − ψ‖1

∴ sup
A⊂S

|ϕM(A)− ψM(A)| ≤ 1
4

sup
x,x′

‖p(x, dy)− p(x′, dy)‖1 · ‖ϕ − ψ‖1

Using exercise 4.38 again, we obtain the bound we are seeking.

1Here ‖p(x, dy)− p(x′, dy)‖1 is to be interpreted as ∑y∈S |p(x, y)− p(x′y)|.
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To prove the first claim in theorem 4.3.4, it remains only to show that

1
2

sup
x,x′

‖p(x, dy)− p(x′, dy)‖1 = 1 − inf
x,x′

∑
y∈S

p(x, y) ∧ p(x′, y)

It is sufficient (why?) to show that ‖p(x, dy) − p(x′, dy)‖1/2 = 1 − ∑y∈S p(x, y) ∧
p(x′, y) for any pair x, x′. Actually this is true for any pair of distributions, as shown
in the next and final lemma.

Lemma B.2.3 For any pair µ, ν ∈ P(S), we have ‖µ − ν‖1/2 = 1 − ∑y∈S µ(y) ∧ ν(y).

Proof. From lemma A.2.12 (page 331) one can show that given any pair of real num-
bers a and b, we have |a − b| = a + b − 2a ∧ b. Hence for each x ∈ S we obtain

|µ(x)− ν(x)| = µ(x) + ν(x)− 2µ(x) ∧ ν(x)

Summing over x gives the identity we are seeking.

The first claim in theorem 4.3.4 is now established. Regarding the second claim,
we have

1 − α(p) =
1
2

sup
x,x′

‖p(x, dy)− p(x′, dy)‖1

= sup
x 6=x′

‖p(x, dy)− p(x′, dy)‖1

‖δx − δx′‖1
≤ sup

µ 6=ν

‖µM − νM‖1

‖µ − ν‖1

The claim now follows from the definition of the supremum.

B.3 Appendix to Chapter 6

Proof of theorem 6.3.5. Pick any u and v in bU. Observe that

u = u + v − v ≤ v + |u − v| ≤ v + ‖u − v‖∞

where (in)equalities are pointwise on U. By the monotonicity property of T, we have
Tu ≤ T(v + ‖u − v‖∞). Applying (6.32), we have Tu − Tv ≤ λ‖u − v‖∞. Reversing
the roles of u and v gives Tv − Tu ≤ λ‖u − v‖∞. These two inequalities are sufficient
for the proof. (Why?)
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B.4 Appendix to Chapter 8

First let us prove lemma 8.2.1, beginning with some preliminary discussion: We can
extend M to act on all functions f in L1(S) by setting f M(y) :=

∫
p(x, y) f (x)dx. The

inequality ‖ f M‖1 ≤ ‖ f ‖1 always holds. Under the following condition it is strict:

Lemma B.4.1 Let f ∈ L1(S). Then ‖ f M‖1 < ‖ f ‖1 if and only if

λ[( f+M) ∧ ( f−M)] > 0

Proof. In view of lemma A.2.12 (page 331) the pointwise inequality

| f M| = | f+M − f−M| = f+M + f−M − 2( f+M) ∧ ( f−M)

holds. Integrating over S and making some simple manipulations, we have

‖ f M‖1 = λ( f+) + λ( f−)− 2λ[( f+M) ∧ ( f−M)]

∴ ‖ f M‖1 = ‖ f ‖1 − 2λ[( f+M) ∧ ( f−M)]

The proof is done.

Proof of lemma 8.2.1. Note that it is sufficient to prove the stated result for the case
t = 1 because if it holds at t = 1 for an arbitrary kernel q and its associated Markov
operator N, then it holds for q := pt, and the Markov operator associated with pt is
Mt (lemma 8.1.8, page 194).

So choose any distinct ϕ, ψ ∈ D(S), and let f := ϕ − ψ. In view of lemma B.4.1 we
will have ‖ϕM − ψM‖1 < ‖ϕ − ψ‖ whenever∫ [(∫

p(x, y) f+(x)dx
)∧(∫

p(x, y) f−(x)dx
)]

dy > 0 (B.1)

With a little bit of effort one can show that, for each y ∈ S, we have(∫
p(x, y) f+(x)dx

)∧(∫
p(x′, y) f−(x′)dx′

)
≥
∫ ∫

p(x, y) ∧ p(x′, y) f+(x) f−(x′)dxdx′

Integrating over y shows that (B.1) dominates∫ ∫ [∫
p(x, y) ∧ p(x′, y)dy

]
f+(x) f−(x′)dxdx′

Since the inner integral is always positive by hypothesis, and both f+ and f− are
nontrivial (due to distinctness of ϕ and ψ), this term is strictly positive. Lemma 8.2.1
is now established.
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Proof of proposition 8.2.8. In lemma 11.2.8 it is shown that if λ(w · ϕ) < ∞ and the
geometric drift condition holds then (ϕMt)t≥0 is tight. It remains to establish this
result for general ψ ∈ D(S). We establish it via the following two claims:

1. The set D0 of all ϕ ∈ D(S) with λ(w · ϕ) < ∞ is dense in D(S).2

2. If there exists a sequence (ϕn) ⊂ D(S) such that (ϕnMt)t≥0 is tight for each
n ∈ N and d1(ϕn, ψ) → 0, then (ψMt)t≥0 is tight.

The two claims are sufficient because if claim 1 holds, then there is a dense subset
D0 of D(S) such that trajectories starting from D0 are all tight. Since D0 is dense, the
existence of a sequence with the properties in claim 2 is assured.

Regarding the first claim, let Cn := {x : w(x) ≤ n} and pick any ϕ ∈ D(S). Define
ϕn := an1Cn ϕ, where an is the normalizing constant 1/λ(1Cn ϕ). It can be verified
that the sequence (ϕn) lies in D0 and converges pointwise to ϕ. Scheffè’s lemma (see
Taylor, 1997, page 186) implies that for densities pointwise convergence implies d1
convergence. Since ϕ is an arbitrary density, D0 is dense.

Regarding claim 2, pick any ϵ > 0, and choose n such that d1(ϕn, ψ) ≤ ϵ/2. Non-
expansiveness of M implies that d1(ϕnMt, ψMt) ≤ ϵ/2 for all t. Since (ϕnMt) is tight,
there exists a compact set K such that λ(1Kc ϕnMt) ≤ ϵ/2 for all t. But then

λ(1Kc ψMt) = λ(1Kc |ψMt − ϕnMt + ϕnMt|) ≤ d1(ψMt, ϕnMt) + λ(1Kc ϕnMt) ≤ ϵ

for all t ∈ N. Hence (ψMt)t≥0 is tight as claimed.

Proof of proposition 8.2.9. Fix ϵ > 0. We claim the existence of a δ > 0 such that∫
A ψMt(x)dx < ϵ whenever λ(A) < δ. Since (ψMt)t≥0 is tight, there exists a com-

pact set K such that

λ(1Kc ψMt) :=:
∫

Kc
ψMt dλ <

ϵ

2
∀ t ∈ N (B.2)

For any Borel set A ⊂ S the decomposition∫
A

ψMt dλ =
∫

A∩K
ψMt dλ +

∫
A∩Kc

ψMt dλ (B.3)

holds. Consider the first term in the sum. We have∫
A∩K

(ψMt)(x)λ(dx) =
∫

A∩K

[∫
p(x, y)(ψMt−1)(x)λ(dx)

]
λ(dy)

=
∫ [∫

A∩K
p(x, y)λ(dy)

]
(ψMt−1)(x)λ(dx)

2A subset A of a metric space U is called dense in U if every element of U is the limit of a sequence in A.
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But by the hypothesis p ≤ m and the fact that the image of the continuous function m
is bounded on K by some constant N < ∞,∫

A∩K
p(x, y)λ(dy) ≤

∫
A∩K

m(y)λ(dy) ≤ N · λ(A)

∴
∫

A∩K
ψMt dλ =

∫ [∫
A∩K

p(x, y)λ(dy)
]

ψMt−1 dλ ≤ Nλ(A) (B.4)

Combining (B.2), (B.3), and (B.4), we obtain the bound∫
A
(ψMt)(x)λ(dx) ≤ N · λ(A) +

ϵ

2

for any t and any A ∈ B(S). Setting δ := ϵ/(2N) now gives the desired result.

B.5 Appendix to Chapter 10

Next we give the proof of theorem 10.2.9. To simplify notation, we write ‖ · ‖∞ as ‖ · ‖.
The theorem claims that if σ is the policy generated by the approximate value iteration
algorithm, then

‖v∗ − vσ‖ ≤ 2
(1 − ρ)2 (ρ‖vn − vn−1‖+ ‖v∗ − Lv∗‖)

This result follows immediately from the next two lemmas.

Lemma B.5.1 The vn-greedy policy σ satisfies

‖v∗ − vσ‖ ≤ 2
1 − ρ

‖vn − v∗‖ (B.5)

Proof. We have
‖v∗ − vσ‖ ≤ ‖v∗ − vn‖+ ‖vn − vσ‖ (B.6)

The second term on the right-hand side of (B.6) satisfies

‖vn − vσ‖ ≤ ‖vn − Tvn‖+ ‖Tvn − vσ‖ (B.7)

Consider the first term on the right-hand side of (B.7). Observe that for any w ∈
bB(S), we have

‖w − Tw‖ ≤ ‖w − v∗‖+ ‖v∗ − Tw‖ ≤ ‖w − v∗‖+ ρ‖v∗ − w‖ = (1 + ρ)‖w − v∗‖

Substituting in vn for w, we obtain

‖vn − Tvn‖ ≤ (1 + ρ)‖vn − v∗‖ (B.8)
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Now consider the second term on the right-hand side of (B.7). Since σ is vn-greedy,
we have Tvn = Tσvn, and

‖Tvn − vσ‖ = ‖Tσvn − vσ‖ = ‖Tσvn − Tσvσ‖ ≤ ρ‖vn − vσ‖

Substituting this bound and (B.8) into (B.7), we obtain

‖vn − vσ‖ ≤ (1 + ρ)‖vn − v∗‖+ ρ‖vn − vσ‖

∴ ‖vn − vσ‖ ≤ 1 + ρ

1 − ρ
‖vn − v∗‖.

This inequality and (B.6) together give

‖v∗ − vσ‖ ≤ ‖v∗ − vn‖+
1 + ρ

1 − ρ
‖vn − v∗‖

Simple algebra now gives (B.5).

Lemma B.5.2 For every n ∈ N, we have

(1 − ρ)‖v∗ − vn‖ ≤ ‖v∗ − Lv∗‖+ ρ‖vn − vn−1‖

Proof. Let v̂ be the fixed point of T̂. By the triangle inequality,

‖v∗ − vn‖ ≤ ‖v∗ − v̂‖+ ‖v̂ − vn‖ (B.9)

Regarding the first term on the right-hand side of (B.9), we have

‖v∗ − v̂‖ ≤ ‖v∗ − T̂v∗‖+ ‖T̂v∗ − v̂‖
= ‖v∗ − Lv∗‖+ ‖T̂v∗ − T̂v̂‖ ≤ ‖v∗ − Lv∗‖+ ρ‖v∗ − v̂‖

∴ (1 − ρ)‖v∗ − v̂‖ ≤ ‖v∗ − Lv∗‖ (B.10)

Regarding the second term in the sum (B.9), we have

‖v̂ − vn‖ ≤ ‖v̂ − T̂n+1v0‖+ ‖T̂n+1v0 − T̂nv0‖ ≤ ρ‖v̂ − vn‖+ ρ‖vn − vn−1‖

∴ (1 − ρ)‖v̂ − vn‖ ≤ ρ‖vn − vn−1‖ (B.11)

Combining (B.9), (B.10), and (B.11) gives the bound we are seeking.



Preface 349

B.6 Appendix to Chapter 11

Proof of lemma 11.1.13. It is an exercise to show that if ϕ, ψ ∈ P(S), then

‖ϕ − ψ‖TV = 2(ϕ − ψ)+(S) = 2(ϕ − ψ)−(S) = 2(ϕ − ψ)(S+) (B.12)

where S+ is a positive set for the signed measure ϕ − ψ. Now suppose that S+ is a
maximizer of |ϕ(B)− ψ(B)| over B(S). In this case, we have

sup
B∈B(S)

|ϕ(B)− ψ(B)| = |ϕ(S+)− ψ(S+)| = (ϕ − ψ)(S+)

and the claim in lemma 11.1.13 follows from (B.12). Hence we need only show that
S+ is indeed a maximizer. To do so, pick any B ∈ B(S), and note that

|ϕ(B)− ψ(B)| = |(ϕ − ψ)+(B)− (ϕ − ψ)−(B)|
= (ϕ − ψ)+(B) ∨ (ϕ − ψ)−(B)− (ϕ − ψ)+(B) ∧ (ϕ − ψ)−(B)

where the second equality follows from lemma A.2.12 on page 331.

∴ |ϕ(B)− ψ(B)| ≤ (ϕ − ψ)+(B) ∨ (ϕ − ψ)−(B) ≤ (ϕ − ψ)+(S)

But (ϕ − ψ)+(S) = (ϕ − ψ)(S+) by definition, so S+ is a maximizer as claimed.

Next let’s prove theorem 11.2.4. In the proof, P is a stochastic kernel and M is the
Markov operator. By assumption, Mh ∈ bcS whenever h ∈ bcS.

Proof of theorem 11.2.4. Let ψ be as in the statement of the theorem, so (ψMt)t≥1 is
tight. Let νn := 1

n ∑n
t=1 ψMt. The sequence (νn)n≥1 is also tight (proof?), from which it

follows (see Prohorov’s theorem, on page 257) that there exists a subsequence (νnk ) of
(νn) and a ν ∈ P(S) such that dFM(νnk , ν) → 0 as k → ∞. It is not hard to check that,
for all n ∈ N, we have

νnM − νn =
ψMn+1 − ψM

n

We aim to show that dFM(νM, ν) = 0, from which it follows that ν is stationary for
M. From the definition of the Fortet–Mourier distance (see page 256), it is sufficient
to show that for any bounded Lipschitz function h ∈ bℓS with ‖h‖bℓ ≤ 1 we have
|νM(h)− ν(h)| = 0.

So pick any such h. Observe that

|νM(h)− ν(h)| ≤ |νM(h)− νnM(h)|+ |νnM(h)− νn(h)|+ |νn(h)− ν(h)| (B.13)
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for all n ∈ N. All three terms on the right-hand side of (B.13) converge to zero along
the subsequence (nk), which implies |νM(h)− ν(h)| = 0. To see that this is the case,
consider the first term. We have

|νM(h)− νnk M(h)| = |ν(Mh)− νnk (Mh)| → 0

where the equality is from the duality property in theorem 9.2.10 (page 224), and con-
vergence is due to the fact that Mh is bounded and continuous, and dFM(νnk , ν) → 0
as k → ∞.

Consider next the second term in (B.13). That |νnk M(h)− νnk (h)| converges to zero
as k → ∞ follows from the bound

|νnk M(h)− νnk (h)| =
1
nk

|ψMnk+1(h)− ψM(h)| ≤ 2
nk

That the final term in the sum (B.13) converges to zero along the subsequence (nk) is
trivial, and this completes the proof of theorem 11.2.4.

Proof of lemma 11.3.3. The xb that solves P(xb) = α
∫

p∗(z)ϕ(dz) satisfies D(αP(0)) ≤
xb because P(xb) = α

∫
p∗(z)ϕ(dz) ≤ αp∗(0) = αP(0). Here we are using the fact that

p∗(0) = P(0).3 Also D(αP(0)) > 0 because D(P(0)) = 0 and D is strictly decreasing.
Since xb ≥ D(αP(0)), we have shown that xb > 0.

We claim in addition that if x ≤ xb, then p∗(x) = P(x) and I(x) = 0. That p∗(x) =
P(x) implies I(x) = 0 is immediate from the definition: I(x) = x − D(p∗(x)) (see
page 141). Hence we need only prove that when x ≤ xb we have p∗(x) = 0. But if
x ≤ xb, then P(xb) ≤ P(x), and hence

P(x) ≥ α
∫

p∗(z)ϕ(dz) ≥ α
∫

p∗(αI(x) + z)ϕ(dz)

That p∗(x) = P(x) is now clear from the definition of p∗.4

B.7 Appendix to Chapter 12

Proof of proposition 12.1.8. Pick any a > 0 and define the h : [0, a] → R by

h(s) := U(a − s) + W(s), W(s) := ρ
∫

w[ f (s, z)]ϕ(dz)

3To prove this, one can show via (6.31) on page 142 that if p ≤ P(0), then Tp ≤ P(0), from which it
follows that p∗ = limn TnP ≤ P(0). Therefore p∗(0) ≤ P(0). On the other hand, p∗ ≥ P, so p∗(0) ≥ P(0).
Hence p∗(0) = P(0).

4For the definition refer to (6.29) on page 141.
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Given any ϵ > 0, we have

h(a)− h(a − ϵ)

ϵ
= −U(ϵ)

ϵ
+

W(a)− W(a − ϵ)

ϵ
(B.14)

If σ(a) = a, then h(a) ≥ h(a − ϵ), and (B.14) is nonnegative for all ϵ > 0. But this
is impossible: On one hand, W(s) is concave and its left-hand derivative exists at
a (lemma A.2.20, page 337), implying that the second term on the right-hand side
converges to a finite number as ϵ ↓ 0. On the other hand, the assumption U′(0) = ∞
implies that the first term converges to −∞.

Proof of proposition 12.1.9. Fix w ∈ C ibcS and a > 0. Define

W(x, s) := U(x − s) + ρ
∫

w( f (s, z))ϕ(dz) (x > 0 and s ≤ x)

From proposition 12.1.8 we have σ(a) < a. From this inequality one can establish the
existence of an open neighborhood G of zero with 0 ≤ σ(a) ≤ a + h for all h ∈ G.

∴ W(a + h, σ(a)) ≤ Tw(a + h) = W(a + h, σ(a + h)) ∀ h ∈ G

It then follows that for all h ∈ G,

Tw(a + h)− Tw(a) ≥ W(a + h, σ(a))− W(a, σ(a)) = U(a − σ(a) + h)− U(a − σ(a))

Take hn ∈ G, hn > 0, hn ↓ 0. Since hn > 0, we have

Tw(a + hn)− Tw(a)
hn

≥ U(a − σ(a) + hn)− U(a − σ(a))
hn

∀ n ∈ N

Let DTw+ denote the right derivative of Tw, which exists by concavity of Tw. Taking
limits gives DTw+(a) ≥ U′(a − σ(a)).

Now take hn ∈ G, hn < 0, hn ↑ 0. Since hn < 0, we get the reverse inequality

Tw(a + hn)− Tw(a)
hn

≤ U(a − σ(a) + hn)− U(a − σ(a))
hn

∀ n ∈ N

and taking limits gives DTw−(a) ≤ U′(a − σ(a)). Thus

DTw−(a) ≤ U′(a − σ(a)) ≤ DTw+(a)

But concavity of Tw and lemma A.2.20 imply that DTw+(a) ≤ DTw−(a) also holds.
In which case the left and right derivatives are equal (implying differentiability of Tw
at a), and their value is U′(a − σ(a)).
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Proof of proposition 12.1.12. Fix a > 0. Let s∗ := σ(a) be optimal investment, and let
v := v∗ be the value function. In light of proposition 12.1.8 we have s∗ < a. Let’s
assume for now that

h(s) := U(a − s) + ρ
∫

v( f (s, z))ϕ(dz)

is differentiable on [0, a), and that

h′(s) = −U′(a − s) + ρ
∫

U′ ◦ c( f (s, z)) f ′(s, z)ϕ(dz) (B.15)

(If s = 0, then by differentiability we mean that the right-hand derivative h′+(0) exists,
although it is permitted to be +∞.)

The inequality (12.3) is then equivalent to h′(s∗) ≤ 0. This must hold because s∗

is a maximizer and s∗ < a, in which case h′(s∗) > 0 is impossible. Thus it remains
only to show that h is differentiable on [0, a), and that h′ is given by (B.15). In view of
corollary 12.1.10, it suffices to show that

h′(s) = −U′(a − s) + ρ
∫

∂

∂s
v( f (s, z))ϕ(dz) (0 < s < a)

The only difficultly in the preceding set of arguments is in showing that

d
ds

∫
v( f (s, z))ϕ(dz) =

∫
∂

∂s
v( f (s, z))ϕ(dz) (B.16)

To see this, define

g(s) :=
∫

v( f (s, z))ϕ(dz) (s > 0)

and consider the derivative at fixed s > 0. Let h0 < 0 be such that s + h0 > 0. For all
h > h0 it is not hard to show that

g(s + h)− g(s)
h

=
∫ [v( f (s + h, z))− v( f (s, z))

h

]
ϕ(dz)

Since s 7→ v( f (s, z)) is concave for each z, the inequality

v( f (s + h, z))− v( f (s, z))
h

≤ v( f (s + h0, z))− v( f (s, z))
h0

:= M(z)

holds for all z (see exercise A.30 on page 337). The function M is bounded and there-
fore ϕ-integrable. As a result the dominated convergence theorem implies that for
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hn → 0 with hn > h0 and hn 6= 0 we have

g(s) = lim
n→∞

∫ [v( f (s + hn, z))− v( f (s, z))
hn

]
ϕ(dz)

=
∫

lim
n→∞

[
v( f (s + hn, z))− v( f (s, z))

hn

]
ϕ(dz)

=
∫

∂

∂s
v( f (s, z))ϕ(dz)

The last equality is due to the fact that s 7→ v( f (s, z)) is differentiable in s for each
z.

Proof of proposition 12.1.13. Starting with the second claim, in the notation of the proof
of proposition 12.1.12, we are claiming that if h′(s∗) < 0, then s∗ = 0. This follows
because if s∗ > 0, then s∗ is interior, in which case h′(s∗) = 0.

The first claim will be established if, whenever f (0, z) = 0 for each z ∈ Z, we have
0 < σ(a) for all a > 0. (Why?) Suppose instead that σ(a) = 0 at some a > 0, so

v(a) = U(a) + ρ
∫

v[ f (0, z)]ϕ(dz) = U(a) (B.17)

where we have used U(0) = 0. Define also

vξ := U(a − ξ) + ρ
∫

v[ f (ξ, z)]ϕ(dz) (B.18)

where ξ is a positive number less than a. Using optimality and the fact that U(a) =
v(a), we get

0 ≤
v(a)− vξ

ξ
=

U(a)− U(a − ξ)

ξ
− ρ

∫ v[ f (ξ, z)]
ξ

ϕ(dz) ∀ ξ < a

Note that the first term on the right-hand side of the equal sign converges to the finite
constant U′(a) as ξ ↓ 0. We will therefore induce a contradiction if the second term
(i.e., the integral term) converges to plus infinity. Although our simple version of the
monotone convergence theorem does not include this case, it is sufficient to show that
the integrand converges to infinity as ξ ↓ 0 for each fixed z; interested readers should
consult, for example, Dudley (2002, thm. 4.3.2).5 To see that this is so, observe that for
any z ∈ Z,

lim
ξ↓0

v[ f (ξ, z)]
ξ

= lim
ξ↓0

v[ f (ξ, z)]
f (ξ, z)

f (ξ, z)
ξ

≥ lim
ξ↓0

U[ f (ξ, z)]
f (ξ, z)

f (ξ, z)
ξ

→ ∞

We have used here the fact that v ≥ U pointwise on S.
5We are using the fact that the integrand increases monotonically as ξ ↓ 0 for each fixed z, as follows

from concavity of f in its first argument, and the fact that the value function is increasing.
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Proof of lemma 12.1.16. Set w1 := (U′ ◦ c)1/2, as in the statement of the proposition. We
have ∫

w1[ f (σ(a), z)]ϕ(dz) =
∫ [

U′ ◦ c[ f (σ(a), z)]
f ′(σ(a), z)
f ′(σ(a), z)

]1/2

ϕ(dz)

To break up this expression, we make use of the fact that if g and h are positive real
functions on S, then by the Cauchy–Schwartz inequality (Dudley 2002, cor. 5.1.4),

∫
(gh)1/2dϕ ≤

(∫
g dϕ ·

∫
h dϕ

)1/2
(B.19)

It follows that∫
w1[ f (σ(a), z)]ϕ(dz)

≤
[∫

U′ ◦ c[ f (σ(a), z)] f ′(σ(a), z)ϕ(dz)
]1/2 [∫ 1

f ′(σ(a), z)
ϕ(dz)

]1/2

Substituting in the Euler equation, we obtain

∫
w1[ f (σ(a))z]ϕ(dz) ≤

[
U′ ◦ c(a)

ρ

]1/2 [∫ 1
f ′(σ(a), z)

ϕ(dz)
]1/2

Using the definition of w1, this expression can be rewritten as

∫
w1[ f (σ(a))z]ϕ(dz) ≤

[∫ 1
ρ f ′(σ(a), z)

ϕ(dz)
]1/2

w1(a)

From assumption 12.1.15 one can deduce the existence of a δ > 0 and an α1 ∈ (0, 1)
such that [∫ 1

ρ f ′(σ(a), z)
ϕ(dz)

]1/2
< α1 < 1 for all a < δ

∴
∫

w1[ f (σ(a), z)]ϕ(dz) ≤ α1w1(a) (a < δ)

On the other hand, if a ≥ δ, then∫
w1[ f (σ(a), z)]ϕ(dz) ≤ β1 :=

∫
w1[ f (σ(δ), z)]ϕ(dz)

The last two inequalities together give the bound∫
w1[ f (σ(a), z)]ϕ(dz) ≤ α1w1(a) + β1 (a ∈ S)

This completes the proof of lemma 12.1.16.
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Proof of lemma 12.2.12. Our first observation is that if w is any continuous and in-
creasing function on R+ with Nw(y) =

∫
w( f (y, z))ϕ(dz) < ∞ for every y ∈ R+,

then Nw is also continuous and increasing on R+. Monotonicity of Nw is obvi-
ous. Continuity holds because if yn → y, then (yn) is bounded by some ȳ, and
w( f (yn, ·)) ≤ w( f (ȳ, ·)). As

∫
w( f (ȳ, z))ϕ(dz) < ∞, the dominated convergence the-

orem gives us limn→∞ Nw(yn) → Nw(y).
A simple induction argument now shows that NtU is increasing and continuous

on R+ for every t ≥ 0. The fact that κ is monotone increasing on R+ is immediate
from this result, given that κ = ∑t δtNtU. (Why?) Continuity of κ on R+ can be
established by corollary 7.3.8 on page 178. Take yn → y and note again the existence
of a ȳ such that yn ≤ ȳ for every n ∈ N. Thus δtNtU(yn) ≤ δtNtU(ȳ) for every n and
every t. Moreover δtNtU(yn) → δtNtU(y) as n → ∞ for each t. Corollary 7.3.8 now
gives

lim
n→∞

κ(yn) =
∞

∑
t=0

lim
n→∞

δtNtU(yn) =
∞

∑
t=0

δtNtU(y) = κ(y)

Proof of lemma 12.2.15. Pick v ∈ bκcS, (x, u) ∈ gr Γ and (xn, un) → (x, u). Let v̂ :=
v + ‖v‖κκ. Observe that v̂ is both continuous and nonnegative. Let v̂k be a sequence
of bounded continuous nonnegative functions on S with v̂k ↑ v̂ pointwise. (Can you
give an explicit example of such a sequence?) By the dominated convergence theorem,
for each k ∈ Nwe have

lim inf
n

∫
v̂[F(xn, un, z)]ϕ(dz) ≥ lim inf

n

∫
v̂k[F(xn, un, z)]ϕ(dz) =

∫
v̂k[F(x, u, z)]ϕ(dz)

Taking limits with respect to k gives

lim inf
n

∫
v̂[F(xn, un, z)]ϕ(dz) ≥

∫
v̂[F(x, u, z)]ϕ(dz)

It follows that
ĝ(x, u) :=

∫
v̂[F(x, u, z)]ϕ(dz)

is lower-semicontinuous (lsc) on gr Γ. And if ĝ is lsc, then so is

g(x, u) :=
∫

v[F(x, u, z)]ϕ(dz)

as g(x, u) = ĝ(x, u)− ‖v‖κ

∫
κ[F(x, u, z)]ϕ(dz).

Since v was an arbitrary element of bκcS, and since −v is also in bκcS, we can also
conclude that −g is lsc on gr Γ—equivalently, g is usc on gr Γ (recall exercise 3.10 on
page 45). But if g is both lsc and usc on gr Γ, then g is continuous on gr Γ, as was to be
shown.
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Total variation norm, 253
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Uniform integrability, 201
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Union, 318
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Upper bound, 332
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concavity of, 299
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Economic Dynamics: Solutions
to Selected Exercises

This document contains solutions to most of the exercises for the second edition of
Economic Dynamics: Theory and Computation by John Stachurski.

I have focused on providing the kinds of answers that I thought would be hard to
find by searching. (For example, the exercises in Appendix A are all quite standard,
since we area treating basic real analysis, and solutions are omitted.)

Solution to Exercise 1.1. The variable X1 is normally distributed, since X0 is con-
stant and constant plus normal equals normal. Moreover Xt+1 is normally distributed
whenever Xt is normally distributed because linear combinations of independent nor-
mal random variables are themselves normal.

Solution to Exercise 2.1. Here is a modification that produces the maximizer:

set c = −∞
for x in S do

if c < f (x) then
set c = f (x)
set x∗ = x

end
end
print x∗

The reason the maximizer is more useful is that it provides more information: The
maximum is easily evaluated once we have the maximizer but the converse is not
true.

Solution to Exercise 2.2. I won’t provide a solution to this exercise or the next one, but
I encourage you to write the algorithms up in your favorite programming language
and test them. It will not be hard to iterate until the program is working correctly.
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Solution to Exercise 2.5. Fix x ∈ S and z ∈ (0, 1]. If τ(z) = x, then, since all elements
of S are distinct, the definition of τ implies z ∈ I(x). Conversely, if z ∈ I(x), then,
since all intervals are disjoint, we have τ(z) = x.

Solution to Exercise 3.2. Let ‖ · ‖ be a norm on Rk and fix x, y ∈ Rk. By the triangle
inequality, ‖x‖ = ‖x − y + y‖ ≤ ‖x − y‖+ ‖y‖. Hence ‖x‖ − ‖y‖ ≤ ‖x − y‖. Revers-
ing the roles of x and y yields ‖y‖ − ‖x‖ ≤ ‖x − y‖. The last two inequalities imply
|‖x‖ − ‖y‖| ≤ ‖x − y‖, as was to be shown.

Solution to Exercise 3.3. Only the triangle inequality is nontrivial to verify. To see that
it holds in the case p = ∞, fix x, y ∈ Rk and i ≤ k. By the triangle inequality in R
we have |xi + yi| ≤ |xi|+ |yi| ≤ ‖x‖∞ + ‖y‖∞. Maximizing over i gives the triangle
inequality for the norm.

Solution to Exercise 3.4. Let (xn) and (yn) be as stated. For any n ∈ N, the triangle in-
equality gives 0 ≤ ρ(yn, x) ≤ ρ(yn, xn) + ρ(xn, x). Since the right hand side converges
to zero as n → ∞, we have ρ(yn, x) → 0, as claimed.

Solution to Exercise 3.43. Suppose that there exists a pair x, y ∈ R with Tx = x and
Ty = y. If x < y, then Tx < Ty, which contradicts the decreasing property. The case
y < x can be ruled out in similar fashion. Hence x = y.

Solution to Exercise 3.44. Let T : S → S be nonexpansive. Fix x ∈ S and (xn) ⊂ S. We
have 0 ≤ ρ(Txn, Tx) ≤ ρ(xn, x), so xn → x implies Txn → Tx. Hence T is continuous
at all x ∈ S.

Solution to Exercise 3.45. Let T be a contraction on S. If x, y ∈ S are distinct fixed
points, then ρ(x, y) = ρ(Tx, Ty) and ρ(Tx, Ty) < ρ(x, y). Contradiction.

Solution to Exercise 3.47. Let S, T be as stated and fix distinct x, y ∈ S. Taking the
derivative will convince you that T is increasing on S. Assume without loss of gener-
ality that x < y. We then have

|Tx − Ty| = Ty − Tx = y − x + e−y − e−x < y − x = |x − y|

so T is indeed contracting. At the same time, a fixed point of T on S is an x ∈ R+

satisfying x = x + e−x. Clearly this is impossible.

Solution to Exercise 4.1. Let (S, h), x and x′ be as stated. Let xt = ht(x), so that
xt → x′. For the sequence (h(xt))t≥1, continuity implies that h(xt) → h(x′). However,
(h(xt))t≥1 = (xt)t≥2, and so h(xt) → x′ also holds. (Why?) Now we have h(xt) → x′

and h(xt) → h(x′). Since limits are unique, it must be that h(x′) = x′.
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Solution to Exercise 4.2. Fix x ∈ cl A. By the definition of closure, there exists a
sequence (an) ⊂ A such that an → x. Since h(A) ⊂ A, we have h(an) ∈ A for all n.
Therefore, h(x) = limn h(an) ∈ cl A. Hence h(cl A) ⊂ cl A, as was to be shown.

Solution to Exercise 4.3. This follows directly from the definition of open sets.

Solution to Exercise 4.4. If x′ is another fixed point, then iteration from x′ fails to
converge to x∗. Contradiction.

Solution to Exercise 4.5. Let (S, h) be as stated and fix x ∈ S. The set {hn(x)}n∈N
is bounded because S is bounded, and therefore every subsequence contains a con-
vergent subsubsequence. Since S is closed, the limit is in S. Therefore {hn(x)}n∈N is
precompact as a subset of S.

Solution to Exercise 4.6. Let (S, h) be as stated and fix x ∈ S. Either x ≤ h(x) or
h(x) ≤ x. In the first case, we can apply h to both sides of the inequality to obtain
h(x) ≤ h2(x). Continuing in this fashion proves that (hn(x))n∈N is increasing. A
similar argument shows that, in the case where h(x) ≤ x, the trajectory is decreasing.

Solution to Exercise 4.7. Here’s a counterexample: Take h(x) = 2x, in the sense of
scalar multiplication. If x = (−1, 1), then h(x) = (−2, 2). Neither x ≤ h(x) nor
h(x) ≤ x.

Solution to Exercise 4.8. The relationship ht(x) = atx + b ∑t−1
i=0 ai for each t is easily

checked by induction. When |a| < 1, the first term on the right hand side converges
to zero and the second to x∗ := b/(1 − a). The reader can confirm that h(x∗) = x∗.

Solution to Exercise 4.9. The easiest way to prove this is to break it down case by case.
For example, if a = 1 and b = 0, then h is the identity, which has a continuum of fixed
points. If a = 1 and b 6= 0, then a fixed point must satisfy x = x + b for nonzero b,
which is impossible. Further details are left to the reader.

Solution to Exercise 4.10. We know thatR is complete and, moreover, |h(x)− h(y)| =
|ax − ay| = |a||x − y| for any x, y ∈ R. As |a| < 1, we can apply Banach’s fixed point
theorem.

Solution to Exercise 4.11. For the first claim, take a Cauchy sequence (xn) in (S, ρ)
and let yn = ln xn. You will be able to verify that the Cauchy property of (xn) in (S, ρ)
implies that (yn) is Cauchy in (R, | · |). Hence there exists a y ∈ R with |yn − y| → 0.
Equivalently, ρ(xn, ey) → 0. Hence (xn) is convergent in (S, ρ) and (S, ρ) is complete.
Moreover, ρ(h(k), h(k′)) = α| ln k − ln k′| = αρ(k, k′) for any k, k′ ∈ S, so h is a uniform
contraction under the metric ρ. Hence Banach’s contraction mapping theorem applies.
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Solution to Exercise 4.12. Existence of the maximum follows from Weierstrass’ the-
orem. The bound ‖Ex‖ ≤ λ‖x‖ is trivial if x = 0 so suppose otherwise. Then
‖Ex‖ = ‖x‖‖Ey‖ where y := x/‖x‖. Since ‖y‖ = 1, we now have ‖Ex‖ ≤ ‖x‖λ,
as was to be shown. The global stability result follows from Banach’s fixed point the-
orem when λ < 1, since ‖Ex − Ey‖ = ‖E(x − y)‖ ≤ λ‖x − y‖.

Solution to Exercise 4.13. In view of exercise 4.12, we need only show that λ :=
max‖x‖=1 ‖Ax‖ < 1, where ‖ · ‖ := ‖ · ‖∞. This is true because, when ‖x‖ = maxi |xi| =
1,

‖Ax‖ = max
i

∣∣∣∣∣∑j
aijxj

∣∣∣∣∣ ≤ max
i

∑
j
|aij||xj| ≤ max

i
∑

j
|aij|.

Under the stated condition on row sums, the right-hand side is < 1.

Solution to Exercise 4.14. In view of exercise 4.12, we need only show that λ :=
max‖x‖=1 ‖Bx‖ < 1, where ‖ · ‖ := ‖ · ‖1. Let β = maxj ∑i |bij|. When ‖x‖ = ∑j |xj| =
1, we have

‖Bx‖ = ∑
i

∣∣∣∣∣∑j
bijxj

∣∣∣∣∣ ≤ ∑
i

∑
j
|bij||xj| ≤ ∑

j
∑

i
|bij||xj| ≤ β

By assumption, β < 1, so λ ≤ β < 1.

Solution to Exercise 4.15. Let the stated conditions hold and let x∗ be the unique fixed
point of h in S. Fix a ∈ A. Since (S, h) is globally stable, we have an := hn(a) → x∗ as
n → ∞. As h(A) ⊂ A, the sequence (an) lies in A. Finally, because A is closed, any
limit point of a sequence in A is also in A. Therefore, x∗ ∈ A.

Solution to Exercise 4.18. To show that ĝ = τ ◦ g ◦ τ−1 holds, we can equivalently
prove that ĝ ◦ τ = τ ◦ g. For x ∈ R, we have τ(g(x)) = ln A + α ln x and ĝ(τ(x)) =
ln A + α ln x. Hence ĝ ◦ τ = τ ◦ g, as was to be shown.

Solution to Exercise 4.19. Let (S, g) and (Ŝ, ĝ) be topologically conjugate, with ĝ ◦ τ =
τ ◦ g. The stated equivalence holds because

g(x) = x ⇐⇒ τ(g(x)) = τ(x) ⇐⇒ ĝ(τ(x)) = τ(x).

Solution to Exercise 4.20. From ĝ = τ ◦ g ◦ τ−1 we have ĝ2 = τ ◦ g ◦ τ−1 ◦ τ ◦ g ◦ τ−1 =
τ ◦ g2 ◦ τ−1 and, continuing in the same way (or using induction), ĝt = τ ◦ gt ◦ τ−1

for all t ∈ N. Equivalently, ĝt ◦ τ = τ ◦ gt for all t ∈ N. Hence, using continuity of τ
and τ−1,

gt(x) → x∗ ⇐⇒ τ(gt(x)) → τ(x∗) ⇐⇒ ĝt(τ(x)) → τ(x∗).
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Solution to Exercise 4.21. These facts can be established by applying the results of the
last two exercises. Details are omitted.

Solution to Exercise 4.23. See the Jupyter code book for solutions to this and other
computational exercises.

Solution to Exercise 4.25. Let p be a stochastic kernel on S and let pt be the t-th order
kernel. By definition, p1 is a stochastic kernel on S. Now suppose the same is true at
t − 1. Then pt(x, y) = ∑z∈S pt−1(x, z)p(z, y) is nonnegative and, in addition,

∑
y∈S

pt(x, y) = ∑
y∈S

∑
z∈S

pt−1(x, z)p(z, y) = ∑
z∈S

pt−1(x, z) ∑
y∈S

p(z, y) = ∑
z∈S

pt−1(x, z).

Using the induction hypothesis now completes the proof.

Solution to Exercise 4.26. The defining expression pt(x, y) = ∑z∈S pt−1(x, z)p(z, y) is
just matrix multiplication written out element by element. Regarding these kernels as
matrices, we can equivalently write pt = pt−1 p. Thus, pt(x, y) is the (x, y)-th element
of the t-th power of p, as was to be shown.

Solution to Exercise 4.27. Fixing stochastic kernel p, as well as k, j ∈ N and x, y ∈ S,
we have, by lemma 4.2.5,

pj+k(x, y) = (δxMj+k)(y) = (δxMjMk)(y) = ∑
z∈S

(δxMj)(z)pk(z, y)

Since (δxMj)(z) = pj(x, z), we recover the Chapman–Kolmogorov relation.

Solution to Exercise 4.28. This follows easily from the definitions and induction on t.
The details are omitted.

Solution to Exercise 4.29. See the code book for solutions to this and other computa-
tional exercises.

Solution to Exercise 4.35. At one billion paths per second, total run time is 10100/109 =
1091 seconds. There are around 3 × 107 seconds in year, so run time in years is more
than 1083. The universe is estimated to be around 4 × 1010 years old.

Solution to Exercise 4.37. Fix ψ ∈ P(S). At each y ∈ S, we have ψM(y) = ∑x∈S p(x, y)ψ(x).
Since p is a stochastic kernel, easy arguments confirm that ψM(y) ≥ 0 and ∑y∈S ψM(y) =
1. Hence ψM ∈ P(S).

Solution to Exercise 4.38. Let ψi and Ψi be as defined in the exercise, i = 1, 2. Let
D = {x ∈ S : ψ1(x) ≥ ψ2(x)}. For any A ⊂ S, we can decompose the sum over
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A = (A ∩ D) ∪ (A ∩ Dc) and apply the triangle inequality to get

|Ψ1(A)− Ψ2(A)| ≤ ∑
x∈A∩D

|ψ1(x)− ψ2(x)|+ ∑
x∈A∩Dc

|ψ1(x)− ψ2(x)|

= ∑
A∩D

(ψ1(x)− ψ2(x)) + ∑
A∩Dc

(ψ2(x)− ψ1(x))

≤ ∑
D
(ψ1(x)− ψ2(x)) + ∑

Dc
(ψ2(x)− ψ1(x))

The right-hand side evaluates to Ψ1(D) − Ψ2(D) = |Ψ1(D) − Ψ2(D)|. As a conse-
quence of this calculation, we see that

sup
A⊂S

|Ψ1(A)− Ψ2(A)| = |Ψ1(D)− Ψ2(D)|

Now observe that

‖ψ1 − ψ2‖ = ∑
D
(ψ1(x)− ψ2(x)) + ∑

Dc
(ψ2(x)− ψ1(x))

and, moreover, since ∑x∈S(ψ1(x)− ψ2(x)) = 0,

0 = ∑
D
(ψ1(x)−ψ2(x))+∑

Dc
(ψ1(x)−ψ2(x)) = ∑

D
(ψ1(x)−ψ2(x))−∑

Dc
(ψ2(x)−ψ1(x))

Combining these results gives ‖ψ1 − ψ2‖ = 2 ∑D(ψ1(x)− ψ2(x)) = 2s(ψ1, ψ2).

Solution to Exercise 4.39. Fix ψ, ψ′ ∈ P(S) and Markov operator M corresponding to
stochastic kernel p. We have

d1(ψM, ψ′M) = ∑
y

∣∣∣∣∣∑x
p(x, y)ψ(x)− ∑

x
p(x, y)ψ′(x)

∣∣∣∣∣ ≤ ∑
y

∑
x

p(x, y)|ψ(x)− ψ′(x)|

Reversing the other of the sums and using ∑y p(x, y) = 1 gives the desired conclusion.

Solution to Exercise 4.40. If p = IN , the N × N identity, then every distribution is
stationary.

Solution to Exercise 4.41. If ψ is a stationary distribution, then ψ(IN − p + 1N×N) =
ψ1N×N = 1N . The restriction that the elements of ψ sum to 1 is imposed by the last
equality.

Solution to Exercise 4.44. Let ψ∗ = (a, b). If ψ∗ is stationary, then, by ψ∗M = ψ∗ and
the choice of p, we must have (a, b) = (b, a). Hence a + b = 1 and a = b. This yields
a = b = 1/2. For a counterexample to the global stability statement, try iterating on
ψ = (1, 0).
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Solution to Exercise 4.45. This follows directly from the definition and ∑x p(x, y) = 1
for all x.

Solution to Exercise 4.46. It is clear from the definition that p(x, dy) = q ∈ P(S)
for all x ∈ S implies α(p) = 1. Regarding the converse, suppose to the contrary
that p(x, dy) and p(x′, dy) are distinct for some x, x′ ∈ S × S. Since both p(x, dy) and
p(x′, dy) are distributions, we can select a z ∈ S with p(x, z) < p(x′, z). Hence

α(p) ≤ ∑
y∈S

p(x, y) ∧ p(x′, y) ≤ ∑
y 6=z

p(x′, y) + p(x, z) < ∑
y∈S

p(x′, y) = 1.

Solution to Exercise 4.48. Evidently

α(p) > 0 ⇐⇒ ∀ (x, x′) ∈ S × S, ∃ y ∈ S s.t. p(x, y) ∧ p(x′, y) > 0

The statement on the right means precisely that p(x, dy) and p(x′, dy) overlap.

Solution to Exercise 4.49. This follows immediately from exercise 4.47, since pt is the
periodic kernel when t is odd and the identity when t is even.

Solution to Exercise 4.50. Suppose minx∈S pt(x, ȳ) =: ϵ > 0 for some ȳ ∈ S. Under
this condition, a simple calculation yields α(pt) ≥ ϵ. Hence, by theorem 4.3.5, global
stability holds.

Solution to Exercise 4.51. Shifting a minimum inside a sum makes the value (weakly)
smaller, since we can minimize term by term. Because of this,

α(pt) = min
(x,x′)

∑
y∈S

pt(x, y) ∧ pt(x′, y) ≥ ∑
y∈S

min
(x,x′)

pt(x, y) ∧ pt(x′, y) = ∑
y∈S

min
x

pt(x, y).

Hence, if the condition of Stokey and Lucas holds, then α(pt) > 0 and (P(S), M) is
globally stable.

Solution to Exercise 4.52. To show that part 2 implies part 1, suppose α(pt) > 0 for
some t ∈ N. By theorem 4.3.4 and Banach’s contraction mapping theorem, (P(S), Mt)
is globally stable. (We are also using lemma 4.2.5 from page 80 to connect pt and Mt.)
But then (P(S), M) is globally stable, by lemma 4.1.5 on page 65.

To show that part 1 implies part 2, let ψ∗ be the stationary distribution. Note
that ∃ȳ ∈ S with ψ∗(ȳ) > 0. By global stability, pt(x, ȳ) → ψ∗(ȳ) for any x. Using
finiteness of S, we can obtain a t ∈ Nwith minx∈S pt(x, ȳ) > 0. But then α(pt) > 0, by
exercise 4.50.
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Solution to Exercise 4.53. In view of exercise 4.48, it suffices to provide a pair of rows
of pQ that fail to overlap (when regarded as distributions). This is true for the first and
last rows of the matrix.

Solution to Exercise 4.54. Applying exercise 4.48, we have α(p23
q ) > 0 because any

two rows of p23
q overlap.

Solution to Exercise 4.58. Let p be the corresponding stochastic kernel. In view of
exercise 4.48, it suffices to show that any two rows of p overlap.

Notice that inventory shifts to zero in one step whenever demand is greater than
Q. Given our definition of b, this is a positive probability event. Hence p(x, 0) > 0 for
all x ∈ S. As a result, any two rows overlap.

Solution to Exercise 4.62. Let p be the identity on S and let x, y be distinct points in S.
Both δx and δy are stationary for p. But (Xt) started at x never visits y. Hence δy does
not match the fraction of time the chain spends in each state.

Solution to Exercise 5.1. Fix σ ∈ Σ and (x, y) ∈ S × S. Letting Z be a draw from ϕ,
The kernel corresponding to the SRS (5.1) obeys

pσ(x, y) = P{σ(x) + Z = y} = P{Z = y − σ(x)} = ϕ(y − σ(x))

Solution to Exercise 5.5. Some thought will convince you that p(x, y) > 0 for every
(x, y) ∈ S × S. For example, if y ≥ B(x), then the state travels from x to y whenever
Wv

t+1 = 0 and Wu
t+1 = y − B(x). This is a positive probability event. It follows directly

from strict positivity of p that α(p) > 0. Hence global stability holds.

Solution to Exercise 6.1. These results follow easily from the restrictions on the pro-
duction function and the fact that Z := (0, ∞), so every shock is positive.

Solution to Exercise 6.2. Code is in the Jupyter code book. Since the draws {ki
t}n

i=1
are IID across i, the sample mean converges to the mean, as per the LLN result in
theorem 4.3.6.

Solution to Exercise 6.10. Let fn be the kernel density estimate in (6.10). Clearly fn is
nonnegative. Also, since K is a density, for any y ∈ R and δ > 0, applying the change
of variable z = (x − y)/δ yields∫

K
(

x − y
δ

)
dx =

∫
K(z)δdz = δ

It now follows from the definition of fn that
∫

fn(x)dx = 1 for all n.
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Solution to Exercise 6.17. The proof is straightforward: If u and v are arbitrary ele-
ments of the metric space (U, d) and M and N have the stated properties, then

d(MNu, MNv) ≤ d(Nu, Nv) ≤ ρd(u, v)

This is all we need to show.

Solution to Exercise 6.20. Since continuity is directly assumed, we only need to check
that functions in C are bounded. But this is obvious because S = [a, ∞) and each
p ∈ C is decreasing. Hence p(x) ≤ p(a) < ∞ for all x ∈ S.

Solution to Exercise 6.21. These claims follow from the fact that convergence in d∞
preserves weak inequalities. For example, suppose hn ∈ C for all n and d∞(hn, h) → 0
for some function h ∈ bcS. Fixing x ∈ S and noting that uniform convergence implies
pointwise convergence, we have hn(x) ≥ P(x) for all n and hn(x) → h(x). Hence
h(x) ≥ P(x). Since x is arbitrary, h ≥ P on S.

Solution to Exercise 6.22. This is just a matter of checking the definition. Details are
omitted.

Solution to Exercise 6.23. Let h1 and h2 be as stated, with fixed points x1 and x2.
Suppose to the contrary that x1 > x2. Then, since h1 is decreasing, h1(x1) ≤ h1(x2).
Because h1 ≤ h2 and xi is a fixed point of hi, this yields x1 ≤ h2(x2) = x2. Contradic-
tion.

Solution to Exercise 6.24. This is immediate because v(x) is the maximum of α
∫

p(z)ϕ(z)dz
and P(x). Hence if α

∫
p(z)ϕ(z)dz ≤ P(x), then v(x) = P(x). Given that r ∈

[P(x), v(x)], we now have r = P(x).

Solution to Exercise 6.25. We are considering the unique r ∈ [P(x), v(x)] such that
(6.31) holds. To prove that

r = α
∫

p(α(x − D(r)) + z)ϕ(z)dz

as required by the exercise, it suffices to show that r > P(x), for then the claim will
be true by (6.31). But r > P(x) must hold. To see this, suppose to the contrary that
r = P(x). By (6.31), this leads to

r = max
{

α
∫

p(z)ϕ(z)dz, P(x)
}

At the same time, our hypothsis is α
∫

p(z)ϕ(z)dz > P(x), whence r > P(x). Contra-
diction.
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Solution to Exercise 6.27. When we compare P and p∗, we understand that the former
is the value of a commodity without storage, while the latter is the value of the same
commodity when we add the possibility of storage. The commodity is more valuable
when it can be stored. (The degree of storability is parameterized by α, so higher α
pushes up p∗.)

Solution to Exercise 7.1. The claim is that if A ⊂ B, then λ(A) ≤ λ(B). As in the main
text, let CF be the set of coverings of F. In addition, let HF be the set {∑n ℓ(In) : (In) ∈
CF}. By A ⊂ B, every covering of B is also a covering of A. Hence CB ⊂ CA, and,
in turn, HB ⊂ HA. By lemma A.2.16 on page 333, HB ⊂ HA implies inf HA ≤ inf HB.
That is, λ(A) ≤ λ(B).

Solution to Exercise 7.2. The claim is that if A and B are any two subsets of Rk, then
λ(A∪ B) ≤ λ(A) + λ(B). To see this, fix ϵ > 0 and choose covers (IA

n )n≥1 and (IB
n )n≥1

of A and B respectively such that ∑n ℓ(IA
n ) ≤ λ(A) + ϵ/2 and ∑n ℓ(IB

n ) ≤ λ(B) + ϵ/2.
Clearly (∪n IA

n ) ∪ (∪n IB
n ) contains A ∪ B, so (IA

n , IB
n )n≥1 is a cover of A ∪ B.4 By the

definition of λ, we then have

λ(A ∪ B) ≤ ∑
n
ℓ(IA

n ) + ∑
n
ℓ(IB

n ) ≤ λ(A) + λ(B) + ϵ

Since ϵ was arbitrary, the claim has been established.

Solution to Exercise 7.3. The claim is that for any (An) ⊂ P(R) we have λ(∪n An) ≤
∑n λ(An). To see this, fix any such (An), and any ϵ > 0. Associate to each An a cover
(In

j )j≥1 such that ∑j ℓ(In
j ) ≤ λ(An) + ϵ2−n. The family (In

j )n,j≥1 is countable (see the
figure in the proof of theorem A.1.3 on page 322) and covers ∪n An. The rest of the
proof is similar to that of exercise 7.2.

Solution to Exercise 7.4. In view of (7.3), to show that Rk ∈ L , we need to demon-
strate that λ(B) = λ(B ∩Rk) + λ(B ∩ (Rk)c) for arbitrary B ⊂ R. Since (Rk)c = ∅,
this equality will hold provided that λ(∅) = 0. This is indeed the case, since J was
allowed to contain empty intervals in its definition, and we set ℓ(∅) = 0.

The proof that ∅ ∈ L is similar and hence omitted. Thus it remains only to show
that if N ⊂ R and λ(N) = 0, then N ∈ L . To this end, pick any such N and any
B ⊂ R. The claim will be established if we can show that

λ(B) ≥ λ(B ∩ N) + λ(B ∩ Nc)

4If you want to be more formal and insist that a cover is a single sequence (Jn)n≥1, then you can construct
such a sequence by letting the odd elements J1, J3, J5, . . . equal (IA

n )n≥1 and the even elements J2, J4, J6, . . .
equal (IB

n )n≥1.
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(The reverse inequality holds by subadditivity.) By monotonicity and λ(N) = 0, we
have λ(B ∩ N) = 0, so the claim reduces to λ(B) ≥ λ(B ∩ Nc). Since B ∩ Nc ⊂ B,
another application of monotonicity yields the desired result.

Solution to Exercise 7.5. Suppose that countable additivity holds. The claim is that
λ(∪N

n=1 An) = ∑N
n=1 λ(An) for any finite collection of disjoint sets (An)N

n=1. Let (An)N
n=1

be such a colleciton. The desired equality can be obtained by applying countable ad-
ditivity to the sequence (Bn)n≥1, where Bn := An for n ≤ N and Bn := ∅ for n > N.

Solution to Exercise 7.6. Let A and B be two sets in L with A ⊂ B and λ(B) < ∞.
The claim is that λ(B \ A) = λ(B)− λ(A). To see this, observe that B \ A and A are
disjoint sets with union B. Hence, by additivity, λ(B \ A) + λ(A) = λ(B). Since all
terms are finite, we can rearrange to obtain the desired equality.

Solution to Exercise 7.7. The claim is that λ(Rk) = ∞. Since λ(Rk) is a well-defined
element of [0, ∞], it suffices to show that λ(Rk) is bigger than any real number. To
this end, consider the intervals In := (0, n]k := (0, n]× · · · × (0, n]. By monotonicity
(exercise 7.1) we have λ(R) ≥ λ(In) for all n. By lemma 7.1.1 we have λ(In) = ℓ(In) =
nk. Hence λ(R) ≥ nk for all n ∈ N, competing the proof.

Solution to Exercise 7.8. The claim is that countable sets have zero measure. To see
this, A be any countable set, and let (an)n≥1 be an enumeration of A consisting only of
distinct points. By countable additivity and the fact that singletons have zero measure,
we have λ(A) = ∑n λ({an}) = 0.

Solution to Exercise 7.9. Let S be a σ-algebra on S. The claim is that both S ∈ S and
∅ ∈ S . Since S is closed under complements, it is enough to check that S ∈ S . Since
S is nonempty by definition, there exists at least one A ∈ S . By the definition of S ,
we then have Ac ∈ S , and therefore A ∪ Ac ∈ S . But A ∪ Ac = S.

Solution to Exercise 7.10. The claim is that if {Sα}α∈Λ is any collection of σ-algebras
on S, then their intersection S := ∩αSα is itself a σ-algebra on S. Let’s just check that
S is closed under countable unions. To see that this is so, let (An) be a sequence of
sets with An ∈ S for all n. The statement An ∈ S is equivalent to An ∈ Sα for all
α. Fixing any such α, we can use the σ-algebra property of Sα to obtain ∪n An ∈ Sα.
Since α was arbitrary, we then have ∪n An ∈ S .

Solution to Exercise 7.11. The first claim is that if C is a σ-algebra, then σ(C ) = C .
To see this, let C be any σ-algebra. On one hand, we have σ(C ) ⊂ C , because C is a
σ-algebra containing C , and, by definition, σ(C ) is contained in every such collection.
On the other hand, C ⊂ σ(C ) also holds, because, by definition, σ(C ) is a σ-algebra
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containing C .
Next, let C and D be two collections of sets with C ⊂ D . The claim is that σ(C ) ⊂

σ(D). To see this, just observe that σ(D) is, by definition, a σ-algebra containing D ,
which in turn contains C . But σ(C ) is the the smallest σ-algebra containing C . Hence
σ(C ) ⊂ σ(D).

Solution to Exercise 7.12. To see that B(S) contains the closed subsets of the metric
space S, let F be any closed subset of S. Since G = Fc is open, G ∈ B(S). Since B(S)
is a σ-algebra, and therefore closed under complementation, it follows that F = Gc is
again in B(S).

To see thatQ ∈ B(R), observe that any singleton is closed, and hence, for a ratio-
nal number r ∈ Q, we have {r} ∈ B(S). Since Q can be expressed as the countable
union of such sets, and since B(S) is closed under countable unions, we conclude that
Q ∈ B(S).

Solution to Exercise 7.13. Let A be the set of all open intervals (a, b) ⊂ R. The claim
is that σ(A ) = B(R). To see this, observe first that since A ⊂ O , we must have
σ(A ) ⊂ σ(O) = B(R). To show that σ(O) ⊂ σ(A ) it is sufficient to prove that
σ(A ) contains the open sets. (Recall that σ(O) is, by definition, contained in every
σ-algebra that contains the open sets.) As mentioned in the hint to the exercise, every
open subset ofR can be expressed as a countable union of open intervals. Since σ(A )
contains all the open intervals and is closed under countable unions, we conclude that
σ(A ) contains the open sets.

Solution to Exercise 7.14. Let µ be a function from S to [0, ∞] such that µ is countably
additive on S and µ(A) < ∞ for some A ∈ S . The claim is that µ(∅) = 0. To
see this, just observe that since A is the disjoint union of ∅ and A, we have µ(A) =
µ(∅) + µ(A). Since µ(A) is finite, we can cancel to obtain µ(∅) = 0.

Solution to Exercise 7.15. The claim is that if µ is a measure on (S, S ), E, F ∈ S and
E ⊂ F, then µ(E) ≤ µ(F). To see this, suppose first that µ(F) = ∞. In this case we have
nothing to prove. So suppose instead that µ(F) is finite. Applying F = E ∪ (F \ E), we
have λ(F) = λ(E) + λ(F \ E). All terms are nonnegative, and the desired inequality
follows.

Solution to Exercise 7.16. Let µ be a measure on (S, S ), and let A, B ∈ S . The claim
is that µ(A ∪ B) ≤ µ(A) + µ(B). To see this, note that A ∪ B can also be written as the
disjoint union (A \ B) ∪ B. By additivity and monotonicity (exercise 7.15), we have

λ(A ∪ B) = λ(A \ B) + λ(B) ≤ λ(A) + λ(B)
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Solution to Exercise 7.17. Let (An)n≥1 be a sequence in S , and let µ be a measure
on S . The first claim is that if An ↑ A, then µ(An) ↑ µ(A). To see this, let B1 = A1
and Bn = An \ An−1 for n ≥ 2. The sequence (Bn) is disjoint with ∪k

n=1Bn = Ak and
∪nBn = A. Applying countable additivity to this sequence, we have

µ(A) = µ(∪nBn) = lim
k→∞

k

∑
n=1

µ(Bn) = lim
k→∞

µ(Ak)

as was to be shown.
The second claim is that if µ(A1) < ∞ and An ↓ A, then µ(An) ↓ µ(A). To see

this, consider the sequence (Bn) defined by Bn = A1 \ An. It is not difficult to check
that the sequence (Bn) is increasing, with ∪nBn = A1 \ A. Hence, by the preceding
result, µ(Bn) ↑ µ(A1 \ A). Given that µ(A1) < ∞, we can apply exercise 7.6 to obtain
µ(A1)− µ(An) ↑ µ(A1)− µ(A), or, equivalently, µ(An) ↓ µ(A).

Solution to Exercise 7.18. The claim is that the set function µ(A) = ∑j∈A aj is a mea-
sure on (N,P(N)). The condition µ(∅) = 0 is obvious. Regarding countable ad-
ditivity, let (An) be a disjoint sequence of subsets of N. As usual, let 1{P} be the
indicator function, which is one if statement P is true and zero if it’s false. Note that
µ(A) = ∑j≥1 1{j ∈ A}aj. Using disjointness, we have 1{j ∈ ∪n An} = ∑n 1{j ∈ An}
for any j. (Convince yourself that the right-hand size is zero when the left-hand size
is zero, and one when it is one.) As a result,

µ(∪n An) = ∑
j
1{j ∈ ∪n An}aj

= ∑
j

∑
n
1{j ∈ An}aj = ∑

n
∑

j
1{j ∈ An}aj = ∑

n
µ(An)

Here the third equality holds because ∑n ∑m bn,m = ∑m ∑n bn,m whenever the sum-
mands bn,m are nonnegative.

Solution to Exercise 7.19. The claim is that δx(A) := 1A(x) :=: 1{x ∈ A} is a prob-
ability measure on (S, S ). That δx(S) = 1 is obvious. The claim δx(∅) = 0 does
not need to be checked (exercise 7.14). Regarding countable additivity, let (An) be a
disjoint sequence in S . We saw in the solution to exercise 7.18 that 1{x ∈ ∪n An} =

∑n 1{x ∈ An}. In other words, δx(∪n An) = ∑n δx(An), as was to be shown.

Solution to Exercise 7.20. The claim is that F(x) = µ((−∞, x]) is a cumulative dis-
tribution function on R. Nonnegativity of F is obvious. To see that right-continuity
holds, let (xn) be a real sequence with xn ↓ x. Let An := (−∞, xn]. It is not difficult
to check that An ↓ A := (−∞, x]. Hence, by exercise 7.17, we have µ(An) ↓ µ(A),
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or F(xn) ↓ F(x). Since x was arbitrary, F is right-continuous on R. The proofs that
limx→−∞ F(x) = 0 and limx→∞ F(x) = 1 are similar and left to you, the reader.

Solution to Exercise 7.21. The claim is that λ(1Q) = 0. This follows directly from the
fact thatQ has zero Lebesgue measure (exercise 7.8) and the definition of the integral
for simple functions on page 168. In particular, λ(1Q) = λ(Q) = 0.

Solution to Exercise 7.22. We have s, s′ ∈ sS + and γ ≥ 0. The first claim is that
γs ∈ sS + and µ(γs) = γµ(s). This is straightforward, since for s = ∑N

n=1 αn1An we
have

γs(x) = γ
N

∑
n=1

αn1An(x) =
N

∑
n=1

γαn1An(x)

(In what follows, the argument x is usually omitted.) It is now clear that γs ∈ sS +,
and

µ(γs) =
N

∑
n=1

γαnµ(An) = γ
N

∑
n=1

αnµ(An) = γµ(s)

The second claim is that s + s′ ∈ sS + and µ(s + s′) = µ(s) + µ(s′). We prove it only
for s = α1A and s′ = β1B, where A, B ∈ S . A little thought will convince you that

s + s′ = α1A\B + (α + β)1B∩A + β1B\A (7.12)

These three sets are disjoint, and the constants are all nonnegative, so s + s′ ∈ sS + as
claimed. Moreover, by (7.12) and additivity of µ,

µ(s + s′) = αµ(A \ B) + (α + β)µ(B ∩ A) + βµ(B \ A)

= α{µ(A \ B) + µ(B ∩ A)}+ β{µ(B \ A) + µ(B ∩ A)}
= αµ ((A \ B) ∪ (B ∩ A)) + βµ ((B \ A) ∪ (B ∩ A))

= αµ(A) + βµ(B)

The last expression is just µ(s) + µ(s′), and the proof is done.
The last claim is monotonicity: s ≤ s′ implies µ(s) ≤ µ(s′). We prove it only for

s = α1A and s′ = β1B, where A, B ∈ S . The general case can be found in any text on
measure theory. To this end, let s and s′ be as above. Note that α, β ≥ 0 by assumption.
If β = 0, then s′ = 0 and hence α = 0, in which µ(s) = µ(s′) = 0. If, on the other hand,
β > 0, then we must have both α ≤ β and A ⊂ B, as any other possibility would
contradict s ≤ s′. Hence µ(A) ≤ µ(B), and µ(s) = αµ(A) ≤ βµ(B) = µ(s′).

Solution to Exercise 7.24. The first claim is that every f : S → R is P(S)-measurable.
To see this, we only need to check that f−1(B) ∈ P(S) for arbitrary B ∈ B(R). This is
trivial, because f−1(B) is a subset of S by definition. The second claim is that for S :=
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{S, ∅}, only the constant functions are S -measurable. To see this, let f (x) = α ∈ R
for all x ∈ S. Pick any B ∈ B. Suppose first that α ∈ B. In this case, f−1(B) = S, and
S ∈ S . On the other hand, if α /∈ B, then f−1(B) = ∅, which is once again an element
of S . Finally, to see that any nonconstant f is not S -measurable, let f take at least
two distinct values α and β. Let B ∈ B(R) contain α but not β. Then f−1(B) is neither
the empty set nor the whole set S. Hence f−1(B) /∈ S , and f is not S -measurable.

Solution to Exercise 7.25. The claim is that for arbitrary measurable space (S, S ), we
have sS ⊂ mS . To see this, let s be any element of sS . Recall from the definition
that s = ∑N

n=1 αn1An , where the sets A1, . . . , AN are nonempty, disjoint and An ∈ S
for all n. Pick any B ∈ B(R). Let I be all n in 1, . . . , N such that αn ∈ B. Then
f−1(B) = ∪n∈I An. Since An ∈ S for all n and S is a σ-algebra, we conclude that
f−1(B) ∈ S , and hence s ∈ mS .

Solution to Exercise 7.26. Let S be a metric space, and let f : S → R be continuous.
The claim is that f is Borel measurable, in the sense that elements of B(R) are pulled
back into elements of B(S). To see this, let O be the open sets of R. By definition, O
is a generating class of B(R), and hence, by lemma 7.2.3 on page 171, it is enough to
show that f−1(O) ∈ B(S) for all O ∈ O . By theorem 3.1.10 on page 48, we know that
f−1(O) is an open subset of S. But B(S) contains all the open sets, so we are done.

Solution to Exercise 7.27. The claim is that if f : R → R is either increasing or de-
creasing, then f is Borel measurable. Let’s check the increasing case, since the de-
creasing case is very similar. To this end, recall that f will be Borel measurable if
{ f ≤ b} ∈ B(R) for all b ∈ R. Fix any b ∈ R, and consider the set { f ≤ b} = {x ∈
R : f (x) ≤ b}. A little thought will convince you that this set is either of the form
(−∞, a) or (−∞, a]. The first set is open, and hence Borel measurable. The second
set is closed, and closed sets are also Borel measurable (theorem 7.1.7 on page 161).
Hence f is Borel measurable as claimed.

Solution to Exercise 7.28. The claim is that if (S, S ) is a measurable space, if ( fn) ⊂
mS , and if f = supn fn is finite (i.e., real-valued at each x ∈ S), then f ∈ mS . To see
this, fix any b ∈ R. From the definition of the supremum we have

{ f ≤ b} = {x ∈ S : f (x) ≤ b} = ∩n{x ∈ S : fn(x) ≤ b} ∈ S

The result now follows from lemma 7.2.4.

Solution to Exercise 7.29. Let f ∈ mS . The claim is that | f | ∈ mS . To see this, fix
b ∈ R. By lemma 7.2.4 on page 171, it is enough to show that {| f | ≤ b} ∈ S . Clearly
{| f | ≤ b} = { f ≤ b} ∩ { f ≥ −b}. The intersection is in S by the measurability of f
and the fact that S is a σ-algebra.
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Solution to Exercise 7.30. Let γ ∈ R+ and f ∈ mS +. The first claim is that µ(γ f ) =
γµ( f ). To see this, let (sn) ⊂ sS + with sn ↑ f . Clearly γsn ↑ γ f also holds. Recalling
the definition of the integral in (7.13) and proposition 7.2.1 on page 169, we have

µ(γ f ) = lim
n→∞

µ(γsn) = lim
n→∞

γµ(sn) = γ lim
n→∞

µ(sn) = γµ( f )

A subtle point here is that, as discussed after the definition of the integral was given,
if (s′n) is any sequence in sS + with s′n ↑ g, then limn µ(s′n) = µ(g). It doesn’t matter
which one we pick. This is why the first equality in the preceding expression is valid.

The next thing we need to check is that if f , g ∈ mS +, then µ( f + g) = µ( f ) +
µ(g). The proof is very similar to the last one. Observing that if sn ↑ f and s′n ↑ g, then
sn + s′n ↑ f + g. Using proposition 7.2.1 again, we get

µ( f + g) = lim
n→∞

µ(sn + s′n) = lim
n→∞

[µ(sn) + µ(s′n)] = µ( f ) + µ(g)

Using the last two results one after another yields M3.

Solution to Exercise 7.31. Let Ah = {s ∈ sS + : 0 ≤ s ≤ h} for h ∈ { f , g}. If f ≤ g
pointwise on S, then A f ⊂ Ag. The expression for the integral in (7.14) now implies
that µ( f ) ≤ µ(g).

Solution to Exercise 7.32. Let µ̂ be as defined in the exercise and fix (An) ⊂ S . If
(An) is disjoint, then 1∪n An = ∑n 1An holds. Using M3 and M5, we obtain

µ̂(∪n An) = µ

(
∑
n
1An

)
= lim

k→∞
µ

(
∑
n≤k

1An

)
= lim

k→∞
∑
n≤k

µ(1An) = ∑
n

µ̂(An)

Hence countable additivity holds. The property µ̂(∅) = 0 follows directly from M1.

Solution to Exercise 7.33. Let (En) ⊂ S have the stated properties. If f := 1∪nEn and
fn := 1En , then fn ↑ f pointwise on S. Hence, by M5, µ( f ) = limn→∞ µ( fn). In view
of M1, this becomes µ(∪nEn) = limn→∞ µ(En), which is what we need to show.

Solution to Exercise 7.34. Regarding the first statement, we have f = f1E + f1Ec .
Hence µ( f ) = µ( f1E) + µ( f1Ec). Since µ(E) = 0, part 2 of theorem 7.3.5 gives µ( f ) =
µ( f1Ec).

Regarding the second statement, fix f , g ∈ L1(µ) with f = g µ-a.e. Let E be the set
on which f and g disagree. Then, since µ(E) = 0 and f = g on Ec,

µ( f − g) = µ(1E( f − g)) + µ(1Ec( f − g)) = 0.

Hence µ( f ) = µ(g).
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Solution to Exercise 7.35. The claim is that f ≤ g µ-a.e. implies µ( f ) ≤ µ(g). So
suppose f ≤ g µ-a.e. Then, using f = f+ − f− and g = g+ − g−, we have

1Ec f+ + 1Ec g− ≤ 1Ec g+ + 1Ec f− (7.16)

everywhere on S, where E is all x such that f (x) > g(x). We now have ordered
nonnegative functions, so, applying M3 of theorem 7.3.5 combined with additivity
(M1) yields

µ(1Ec f+) + µ(1Ec g−) ≤ µ(1Ec g+) + µ(1Ec f−), (7.17)

Rearranging gives µ(1Ec f ) ≤ µ(1Ec g). Since E has measure zero, µ( f ) ≤ µ(g).

Solution to Exercise 7.36. We need to show that | f | ∈ L1(µ) and |µ( f )| ≤ µ(| f |).
The first part follows from | f | = f+ + f− and the definition of L1(µ), which requires
µ( f+) < ∞ and µ( f−) < ∞. For the second claim, we have

|µ( f )| = |µ( f+ − f−)| = |µ( f+)− µ( f−)| ≤ µ( f+) + µ( f−) = µ( f+ + f−) = µ(| f |)

Solution to Exercise 7.37. To see that (µ ◦ T−1)(∅) = 0, just observe that, for any
transformation T, we have T−1(∅) = ∅. (Since T is a function, each point in the
domain has to be mapped to some point in S′.)

Regarding countable additivity, let (An) ⊂ S ′ be disjoint and let Bn = T−1(An).
By lemma A.1.1 on page 321, we have T−1(∪n An) = ∪nT−1(An) = ∪nBn. Since T
is a function and (An) ⊂ S ′ is disjoint, the sequence (Bn) is also disjoint. Hence
µ(∪nBn) = ∑n µ(Bn). That is,

µ(T−1(∪n An)) = µ(∪nBn) = ∑
n

µ(Bn) = ∑
n

µ(T−1(An))

Put differently, (µ ◦ T−1)(∪n An) = ∑n(µ ◦ T−1)(An), as was to be shown.

Solution to Exercise 7.38. The proof that ρ satisfies the definition of a pseudometric is
routine. Distinct points can indeed be at zero distance, since x = (1, 0) and y = (1, 1)
obey ρ(x, y) = 0.

Solution to Exercise 8.2. Although the functional form for the law of motion is more
complex, the solution is conceptually the same as the solution to the previous exercise.
Further details are omitted.

Solution to Exercise 8.3. It suffices to show that

Y = s f (x)W + (1 − δ)x and W ∼ ϕ =⇒ Y ∼ ϕ

(
y − (1 − δ)x

s f (x)

)
1

s f (x)
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where the right-hand side is understood as a density in y. This implication follows
from theorem 8.1.3 with γ := (1 − δ)x and Γ = s f (x).

Solution to Exercise 8.4. We can follow the same reasoning we used for exercise 8.1.4
to obtain

p(x, y) = ϕ

(
y

sA(x) f (x)

)
1

sA(x) f (x)

Solution to Exercise 8.5. The solution is essentially the same as that for Exercise 4.25
on page 79, after replacing sums with integrals.

Solution to Exercise 8.6. We need to show that
∫

p(x, y)ψ(x)dx = ψ(y) for any given
y ∈ R, where p has the form p(x, y)dy = N(ax, 1) and ψ(dy) = N(0, 1/(1 − a2)). If
we fix y ∈ R, write out the relevant densities and cancel constants, this is equivalent
to showing that

1√
2π

∫
exp

(
− (y − ax)2

2
− x2(1 − a2)

2

)
dx = exp

(
−y2(1 − a2)

2

)
Expanding the squares, the left-hand side can be written as

1√
2π

∫
exp

(
−y2 + 2axy − x2

2

)
dx

= exp
(
−y2(1 − a2)

2

)
1√
2π

∫
exp

(
−(ay)2 + 2axy − x2

2

)
dx

Since −(ay)2 + 2axy− x2 = −(x− ay)2, the integral evaluates to
√

2π. This completes
the proof.

Solution to Exercise 8.7. Suppose that ψ∗ is a stationary density for p. Then ψ∗Mt =
ψ∗ for all t, which means that ψ∗(y) =

∫
pt(x, y)ψ∗(x)dx for all t ∈ N and y ∈ R. Fix

y ∈ R and note that, for any t ∈ N and x ∈ R, we have pt(x, y) ≤ 1/
√

2πt ≤ 1/
√

2π.
Hence pt(x, y)ψ∗(x) is dominated by the integrable function (1/

√
2π)ψ∗(x). Since

pt(x, y) → 0 as t → ∞ for any given x, the dominated convergence theorem implies
that

ψ∗(y) = lim
t→∞

∫
pt(x, y)ψ∗(x)dx = 0

Since y ∈ R was chosen arbitrarily, we conclude that ψ∗ is not a density. Contradic-
tion.
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Solution to Exercise 8.8. If m 6= n, then |ϕn − ϕm| = 1[n,n+1) +1[m,m+1), due to the fact
that the supports of these functions are completely disjoint. Hence d1(ϕn, ϕm) = 2, as
claimed. As a result, all points in the sequence (ϕn)n≥1 are isolated in D(S), and no
convergent subsequence exists.

Solution to Exercise 8.9. Fix ϕ ∈ D(S) and n ∈ N. We have

λ(ϕ) = λ(1(0,1/n]ϕ) + λ(1(1/n,1)ϕ) = λ(1(0,1/n]ϕ) + λ(1(1/n,1)|ϕn − ϕ|)

Invoking monotonicity gives

λ(ϕ) ≤ λ(1(0,1/n]ϕ) + λ(|ϕn − ϕ|).

The first term converges to zero in n by the dominated convergence theorem. The
second converges to zero in n by assumption. Hence λ(ϕ) = 0.

Solution to Exercise 8.10. Fix x ∈ R. By the triangle inequality and 0 ≤ G(x) ≤ 1, we
have

|g(x)| ≤ {|α1|(1 − G(x)) + |β1|G(x)} |x|+ c

with c = |α0|+ |β0|. The convex combination of two numbers is less than their maxi-
mum, so |g(x)| ≤ γ|x|+ c.

Solution to Exercise 9.1. Let G be any open subset ofR. Since g is continuous, g−1(G)
is open in S, and hence f−1(g−1(G)) is in F . Since (g ◦ f )−1(G) = f−1(g−1(G)), the
function g ◦ f pulls open sets back to measurable sets and is therefore Borel measur-
able. (We are using lemma 7.2.3 on page 171.)

Solution to Exercise 9.2. We can ignore the measure zero set 1{x 6= z} when integrat-
ing, so

E f =
∫

f (x)1{x = z}δz(dx) = f (z)
∫
1{x = z}δz(dx) = f (z)

Solution to Exercise 9.3. These are standard results and details are omitted.

Solution to Exercise 9.4. Let (Ω, F ,P) = (S, S , µ) and X be as stated, so that X(s) = s
for all s ∈ S. For any B ∈ S , we have X−1(B) = B ∈ S , so X is certainly measurable.
Moreover, P{X ∈ B} = P(B) = µ(B), so X has distribution µ.

Solution to Exercise 9.5. The claim is that X = H−1 is a Borel measurable function,
where H is a strictly increasing cdf. Since H is strictly increasing, it follows that H−1

is itself increasing. (You can verify it in a simple proof by contradiction.) The result
now follows from exercise 7.27.
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Solution to Exercise 9.6. Since H is increasing it preserves inequalities, which means
that

P{X ≤ z} = λ{x : H−1(x) ≤ z} = λ{x : x ≤ H(z)} = H(z)

Solution to Exercise 9.7. Pick any A, B ∈ T . We have

P{g(X) ∈ A} ∩ {h(Y) ∈ B} = P{X ∈ g−1(A)} ∩ {Y ∈ h−1(B)}
= P{X ∈ g−1(A)} ·P{Y ∈ h−1(B)}

where the second equality is by independence of X and Y. We conclude that g ◦ X and
h ◦ Y are also independent.

Solution to Exercise 9.8. Let µX := EX and µY := EY. To see that independence
implies Cov(X, Y) = 0, we note that X − µX and Y − µY are also independent (see
exercise 9.7 on page 213), so

E(X − µX)(Y − µY) = E(X − µX)E(Y − µY) = 0 · 0 = 0

Solution to Exercise 9.9. Clearly

{Xt /∈ A, ∀t ∈ N} = ∩t∈N{Xt /∈ A} ⊂ ∩t≤T{Xt /∈ A}

for all T ∈ N. By monotonicity of P and independent of the (Xt), we then have

P{Xt /∈ A, ∀t ∈ N} ≤ P∩t≤T {Xt /∈ A} = (P{Xt /∈ A})T = (1 − µ(A))T

Since µ(A) > 0, the sequence (1 − µ(A))T converges to zero in T, implying that the
probability on the left-hand side is zero.

Solution to Exercise 9.10. Let (Bn) be a disjoint sequence of Borel sets. Recall that, for
such a sequence, we have 1∪nBn = ∑∞

n 1Bn . Hence, by linearity of the integral and the
monotone convergence theorem,

µϕ(∪nBn) = λ

(
∞

∑
n
1Bn ϕ

)
=

∞

∑
n

λ(1Bn ϕ) =
∞

∑
n

µϕ(Bn)

Solution to Exercise 9.11. If such a ϕ exists, then, by setting B = 1{x = a}, we get∫
B ϕ(x)dx = δa(B) = 1. But theorem 7.3.5 tells us that λ(B) = 0 implies

∫
B ϕ(x)dx =

0. Contradiction.
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Solution to Exercise 9.12. Evidently h ≥ 0 implies Mh(x) =
∫

h(y)P(x, dy) ≥ 0 for all
x ∈ S. In addition, if |h| ≤ M, then

|Mh(x)| =
∣∣∣∣∫ h(y)P(x, dy)

∣∣∣∣ ≤ ∫
|h(y)|P(x, dy) ≤ M

∫
P(x, dy) = M

Solution to Exercise 9.13. This is easy: For any given x, we have M1S(x) =
∫

P(x, dy) =
1 = 1S(x).

Solution to Exercise 9.14. This follows directly from monotonicity of the integral. See,
for example, theorem 7.3.5 on page 177.

Solution to Exercise 9.15. This follows easily from linearity of the integral. See theo-
rem 7.3.5 on page 177.

Solution to Exercise 9.16. Fix x ∈ S. Observe that P(x, B) = ϕ{z ∈ Z : F(x, z) ∈ B}
is the image measure of ϕ under z 7→ F(x, z). As a consequence of theorem 7.3.9, in-
tegrating measurable h : S → R with respect to the image measure means integrating
h[F(x, z)] with respect to ϕ. This confirms (9.17).

Solution to Exercise 10.1. Let M ∈ N satisfy |r| ≤ M. If (xn) is any sequence inR and
∑n |xn| converges in R, then so does ∑n xn. (We say that absolute convergence of the
sum implies convergence.) Moreover, for any ω ∈ Ω,

∞

∑
t=0

|ρtrσ(Xt(ω))| ≤
∞

∑
t=0

ρt M = M
1

1 − ρ
.

Solution to Exercise 10.2. Set YN := ∑N
t=0 ρtrσ(Xt). Observe that |YN | ≤ M/(1 − ρ)

where M is an upper bound on |r|. Since constant functions are integrable when the
measure is finite, we can apply the dominated convergence theorem and linearity of
the integral to obtain

E

[
∞

∑
t=0

ρtrσ(Xt)

]
= E lim

N→∞
YN = lim

N→∞
EYN =

∞

∑
t=0

ρtErσ(Xt)

Solution to Exercise 10.3. Fix x ∈ S. The supremum in (10.3) is well-defined because
the set of values {vσ(x)}σ∈Σ is bounded above by M/(1 − ρ), where M ∈ N obeys
|r| ≤ M.
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Solution to Exercise 10.4. The only nontrivial part of this problem is checking that
the correspondence Γ defined by Γ(a) = [0, a] is continuous. This fact is implied by
lemma B.1.1 on page 339.

Solution to Exercise 10.5. Fix w ∈ bcS. Boundedness of Tw follows directly from
lemma A.2.18 on page 334, which tells us that linear combinations of bounded func-
tions are bounded. Proving continuity is just a matter of checking that all the con-
ditions of Berge’s theorem (page 340) are satisfied. That they are follows from the
assumption that w ∈ bcS, the dominated convergence theorem, and the restrictions
on the primitives. Full details are omitted.

Solution to Exercise 10.6. The aim is to apply Blackwell’s condition. For this we need
to check that T : bcS → bcS is monotone and, for all w ∈ bcS and γ ∈ R+,

T(w + γ1S) ≤ Tw + ργ1S (10.13)

That T is monotone has already been established. To verify the inequality (10.13), we
observe that, at any x ∈ S and with fixed γ ∈ R+,

T(w + γ1S)(x) = max
u∈Γ(x)

{
r(x, u) + ρ

∫
w[F(x, u, z)]ϕ(dz) + ργ

}
= Tw(x) + ργ

Hence (10.13) holds, and T is uniformly contracting on (bcS, d∞) with modulus ρ.

Solution to Exercise 10.7. Let (Pi)
k
i=1 be a partition of S. Fix w, v ∈ bB(S) and x ∈ S.

We have

|Mv(x)− Mw(x)| =
∣∣∣∣∣ k

∑
i=1

v(xi)1Pi (x)−
k

∑
i=1

w(xi)1Pi (x)

∣∣∣∣∣
Applying the triangle inequality gives

|Mv(x)− Mw(x)| ≤
k

∑
i=1

|v(xi)− w(xi)|1Pi (x) ≤ sup
1≤i≤k

|v(xi)− w(xi)|

(The last inequality uses the fact that partitions are disjoint.) Nonexpansiveness fol-
lows directly, since sup1≤i≤k |v(xi)− w(xi)| ≤ d(v, w)∞.

Solution to Exercise 10.8. Fix w, v ∈ bB(S) and x ∈ S. Choose i such that x ∈
[xi, xi+1]. We have

|Nw(x)− Nv(x)| = |λ(x)(w(xi)− v(xi)) + (1 − λ(x))(w(xi+1)− v(xi+1))|

Since convex combinations are less than suprema, we then have

|Nv(x)− Nw(x)| ≤ sup
1≤j≤k

|v(xj)− w(xj)|
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Nonexpansiveness follows directly.

Solution to Exercise 11.1. To confirm that Xn → 0 almost surely, it suffices to show
that Xn(ω) → 0 for all ω in (0, 1). But this is certainly true, since any ω ∈ (0, 1)
satisfies 1/n ≥ ω for sufficiently large n. The expectation of Xn is n2 · (1/n) = n,
which converges to +∞.

Solution to Exercise 11.2. Linear combinations of real-valued Borel measurable func-
tions are Borel measurable. Hence Xn − X is Borel measurable. Continuous transfor-
mations of Borel measurable functions are Borel measurable, so |Xn − X| is also Borel
measurable. Hence {|Xn − X| ≥ ϵ} ∈ F for all ϵ < 0, as required.

Solution to Exercise 11.3. Let (Xt)t≥1 be a zero mean sequence satisfying the stated
conditions. Since each Xi is zero mean, so is X̄n. Applying (11.1) on page 249, we have

Var(X̄n) = E

(
1
n

n

∑
i=1

Xi

)2

=
1
n2

n

∑
i=1

n

∑
j=1
EXiXj =

1
n2

n

∑
i=1

n

∑
j=1

Cov(Xi, Xj)

Since Cov(Xi, Xj) = 0 for all i 6= j and Cov(Xi, Xi) ≤ M for all i, the double sum
above is bounded by (1/n2)nM = M/n.

Solution to Exercise 11.4. Fix ϵ > 0. By the Chebychev inequality (page 212) and
exercise 11.3, we have P{|X̄n| ≥ ϵ} ≤ M/(nϵ2). Now take n → ∞.

Solution to Exercise 11.5. It is easy to verify that if T is a uniform contraction with
modulus γ and fixed point x∗ on metric space (U, ρ), then for any given x ∈ U we
have ρ(Tkx, x∗) ≤ γkρ(x, x∗) . Applying this to the Markov operator M associated
with p, along with theorem 4.3.4 on page 90, we have∥∥∥pk(x, dy)− ψ∗(dy)

∥∥∥
1
≤ γk‖δx − ψ∗‖1

for all x ∈ S, where γ := 1 − α(p). Using the definition of the norm and the fact that
the norm on the right is bounded by 2 yields the statement in exercise 11.5.

Solution to Exercise 11.6. Since S is finite there exists an H ∈ N with |h| ≤ H. The
definition of m and the triangle inequality give∣∣∣∣∣∑y∈S

h(y)pk(x, y)− m

∣∣∣∣∣ =
∣∣∣∣∣∑y∈S

h(y)pk(x, y)− ∑
y∈S

h(y)ψ∗(y)

∣∣∣∣∣
≤ ∑

y∈S
|h(y)|

∣∣∣pk(x, y)− ψ∗(y)
∣∣∣
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Combining with |h| ≤ H and the result in exercise 11.5 completes the proof.

Solution to Exercise 11.7. Let L ∈ N be such that |h(x)− m| ≤ L for all x ∈ S. Using
the computations just above exercise 11.7, we have

|Cov(h(Xi), h(Xi+k))| ≤ ∑
x∈S

|h(x)− m|ψ∗(x)

∣∣∣∣∣∑y∈S
[h(y)− m]pk(x, y)

∣∣∣∣∣
≤ L ∑

x∈S

∣∣∣∣∣∑y∈S
h(y)pk(x, y)− m

∣∣∣∣∣ψ∗(x)

From the result in exercise 11.6, the right-hand side is bounded by L ∑x∈S Kγkψ∗(x) =
LKγk, where γ ∈ [0, 1). This verifies the claim in exercise 11.7.

Solution to Exercise 11.8. We just need to check the two conditions of theorem 11.1.7
for the process (Yt) := (h(Xt)). The bound on the covariance terms follows directly
from exercise 11.7. We also require thatEh(Xt) converges to some constant. However,
we assumed that (Xt) is stationary, with Eh(Xt) = m for all t. So this convergence is
trivial. Hence all the conditions of the theorem are verified.

Solution to Exercise 11.9. Fix µ ∈ bM (S). We have S = S ∪ ∅ and the union is
disjoint, so µ(S) = µ(S) + µ(∅). That µ(∅) = 0 now follows from finiteness of µ(S),
which is part of the definition of a signed measure.

Solution to Exercise 11.11. For both claims, we discuss only µ+, since the case of µ−

is similar. Regarding the first claim, we need only show that µ+ is nonnegative and
countably additive. Nonnegativity is obvious. For countable additivity, take (Bn) to
be a disjoint sequence in B(S). Since (Bn ∩ S+) is also disjoint, we have

µ+(∪nBn) = µ((∪nBn) ∩ S+) = µ(∪n(Bn ∩ S+)) = ∑
n

µ(Bn ∩ S+) = ∑
n

µ+(Bn)

Regarding the claim µ(S+) = maxB∈B(S) µ(B), for any B ∈ B(S), we have

µ(B) = µ(B ∩ S+) + µ(B ∩ S−) ≤ µ(B ∩ S+) ≤ µ(S+)

where the last inequality is by monotonicity of µ restricted to S+.

Solution to Exercise 11.12. Fix f ∈ mB(S) with λ(| f |) < ∞ and let µ(B) := λ(1B f ).
To verify that µ ∈ bM (S), we only need to check countable additivity. So let (Bn) ⊂
B(S) be disjoint and recall that, for such a sequence, 1∪nBn = ∑n 1Bn . Hence, by
additivity of λ and the dominated convergence theorem,

µ(∪nBn) = λ(∑
n
1Bn f ) = ∑

n
λ(1Bn f ) = ∑

n
µ(Bn)
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To see that S+ and S− form a Hahn decomposition of S with respect to µ, we need
only verify that they form a measurable partition of S with µ(B) ≥ 0 for measurable
B ⊂ S+ and µ(B) ≤ 0 for measurable B ⊂ S−. All of these results are obvious from
the definitions S+ = {x ∈ S : f (x) ≥ 0} and S− = {x ∈ S : f (x) < 0}.

In addition, µ+(B) = λ(1B f+) holds because

µ+(B) = µ(B ∩ S+) = µ(B ∩ { f ≥ 0}) = λ(1B1{ f ≥ 0} f ) = λ(1B f+)

The proof for µ− is similar. Finally,

‖ f ‖1 = λ(| f |) = λ( f+) + λ( f−) = λ(1S+ f ) + λ(1S− f ) = µ(S+) + µ(S−)

as was to be shown.

Solution to Exercise 11.13. Fix µ ∈ bM (S). Let M = maxπ∈Π ∑A∈π |µ(A)|. Let π̂ =
{S+, S−}, where S+ and S− are as in theorem 11.1.9. Then π̂ is in Π and, moreover,

‖µ‖TV = µ(S+)− µ(S−) = |µ(S+)|+ |µ(S−)| = ∑
A∈π̂

|µ(A)| ≤ M

Moreover, for other π ∈ Π, we have

∑
A∈π

|µ(A)| ≤ ∑
A∈π

µ(A ∩ S+)− ∑
A∈π

µ(A ∩ S−) = µ(S+)− µ(S−) = ‖µ‖TV

Hence M ≤ ‖µ‖TV . We conclude that M = ‖µ‖TV , as was to be shown.

Solution to Exercise 11.14. Let ‖ · ‖ := ‖ · ‖TV . As you can easily verify, it suffices to
show that ‖ · ‖ has all the properties of a norm on bM . In particular, we need to show
that, for any µ, ν ∈ bM , we have (a) ‖µ‖ = 0 iff µ = 0, (b) ‖αµ‖ = |α|‖µ‖ for all α ∈ R
and (c) ‖µ + ν‖ ≤ ‖µ‖+ ‖ν‖.

For (a), that ‖µ‖ = 0 when µ = 0 is clear from ‖µ‖ = maxπ∈Π ∑A∈π |µ(A)|. To
see that the reverse implication holds, suppose µ is not the zero measure. Then there
exists a B ∈ B(S) with |µ(B)| > 0. Hence

‖µ‖ = max
π∈Π

∑
A∈π

|µ(A)| ≥ |µ(B)|+ |µ(Bc)| > 0.

Part (b) follows from

‖αµ‖ = max
π∈Π

∑
A∈π

|αµ(A)| = max
π∈Π

∑
A∈π

|α||µ(A)|

Regarding part (c), we have

‖µ + ν‖ = max
π∈Π

∑
A∈π

|µ(A) + ν(A)| ≤ max
π∈Π

∑
A∈π

|µ(A)|+ max
π∈Π

∑
A∈π

|ν(A)|

The proof is now done.
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Solution to Exercise 11.15. For each n ∈ Nwe have

sup
B∈B(S)

|ϕn(B)− ϕ(B)| ≥ |ϕn((0, ∞))− ϕ(((0, ∞))| = |ϕn((0, ∞))| = 1

From this fact, combined with lemma 11.1.13, we see that dTV(ϕn, ϕ) → 0 fails.

Solution to Exercise 11.16. Let ϕn := δ1/n and ϕ := δ0. For fixed h ∈ bcS, we have
ϕn(h) = h(1/n) → h(0) = ϕ(h). Hence ϕn → ϕ weakly.

Solution to Exercise 11.17. We give a counterexample to the claim that convergence
in distribution implies convergence in probability. Suppose (Xn) is IID and binary,
hitting −1 and 1 with equal probability. The distribution sequence is constant and
therefore convergence in distribution holds. Now suppose there exists a Z such that
Xn → Z in probability. Fix ϵ > 0. Note that |Xn − Xm| ≤ |Xn − Z|+ |Xm − Z|, so

|Xn − Xm| > ϵ =⇒ |Xn − Z| > ϵ/2 or |Xm − Z| > ϵ/2

Therefore, since P(A ∪ B) ≤ P(A) +P(B) for all A, B,

P{|Xn − Xm| > ϵ} ≤ P{|Xn − Z| > ϵ/2}+P{|Xm − Z| > ϵ/2}

Hence P{|Xn − Xn+1| > ϵ} → 0 as n → ∞. But Xn and Xn+1 are independent, so, for
small ϵ,

P{|Xn − Xn+1| > ϵ} ≥ P{Xn = −1 and Xn+1 = 1} =
1
4

Contradiction.

Solution to Exercise 11.18. Suppose ϕn → ϕ and ϕn → ϕ′, where ϕ and ϕ′ are elements
of P(S). Then, for any h ∈ bcS, we have ϕ(h) = limn ϕn(h) = ϕ′(h). But then ϕ = ϕ′,
by part 2 of theorem 11.1.16,

Solution to Exercise 11.19. For this model, we have P(x, B) = 1B(x). Given any
distribution ψ ∈ P(S) and Borel set B,∫

P(x, B)ψ(dx) =
∫
1B(x)ψ(dx) = ψ(B)

Hence ψ is stationary for P.

Solution to Exercise 11.20. Let G(x) = Ax+ b, where A and b are as in example 11.2.10.
Clearly G is continuous. We also need to show that there exists an M < ∞ and α < 1
such that ‖G(x)‖ ≤ α‖x‖ whenever ‖x‖ > M. To see that this is so, note that, as
discussed in example 11.2.10, ‖G(x)‖ = ‖Ax + b‖ ≤ λ‖x‖+ ‖b‖. We then have

‖G(x)‖
‖x‖ ≤ λ +

‖b‖
‖x‖
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Now choose α ∈ (λ, 1). Since ‖b‖/‖x‖ → 0 as ‖x‖ → ∞, we will have ‖G(x)‖/‖x‖ ≤
α when ‖x‖ is sufficiently large (more precisely, when ‖x‖ ≥ ‖b‖/(α − λ)).

Solution to Exercise 11.21. The only challenge is to show existence of a norm-like
function w : S := (0, ∞) → R+ and constants α ∈ [0, 1) and β ∈ R+ with

∫
w[skαz]ϕ(dz) ≤

αw(k)+ β for all k ∈ S. For this purpose we take w(k) := | ln k|. We saw in lemma 8.2.12
that this function is norm-like on S. Moreover,∫

w[skαz]ϕ(dz) =
∫

| ln s + α ln k + ln z|ϕ(dz) ≤ α ln |k|+ | ln s|+
∫

| ln z|ϕ(dz)

We now have the desired bound with β := | ln s|+
∫
| ln z|ϕ(dz).

Solution to Exercise 11.22. Let µ have density f and ν have density g. The claim is
that µ ∧ ν has density f ∧ g. To see that this is so, we need to show that η := µ ∧ ν
obeys η(B) = λ(1B f ∧ g) for all B ∈ B(S). Fixing such a B, we easily see that η(B) ≤
λ(1B f ) = µ(B) and similarly for ν. Hence η ≤ µ and η ≤ ν. All that remains to be
shown is that, for any κ ∈ bM (S) with κ ≤ µ and κ ≤ ν we have κ ≤ η. But this is
also clear, since

κ(B) ≤ λ(1B f ) and κ(B) ≤ λ(1Bg) =⇒ κ(B) ≤ λ(1B f ∧ g)

Solution to Exercise 11.23. Fix µ and ν in P(S). Set M := minπ∈Π ∑A∈π µ(A) ∧ ν(A)
and π̂ = {S+, S−}, where S+ and S− are the positive and negative set for µ − ν used
in the proof of lemma 11.2.14 on page 263. By construction, µ(B) ≤ ν(B) for B ∈ S−

and µ(B) ≥ ν(B) for B ∈ S+. Since π̂ is a measurable partition, we have

M ≤ ∑
A∈π̂

µ(A) ∧ ν(A) = (µ ∧ ν)(S−) + (µ ∧ ν)(S+) = µ(S−) + ν(S+) = aff(µ, ν)

At the same time, for any π ∈ Π,

aff(µ, ν) = ∑
A∈π

(µ ∧ ν)(A) ≤ ∑
A∈π

µ(A) ∧ ν(A)

so aff(µ, ν) ≤ M also holds. Hence aff(µ, ν) = M, as claimed.
Regarding the second part of the question, clearly

aff(µ, ν) = (µ ∧ ν)(S) ≤ µ(S) = 1

Moreover, if µ = ν, then, since every π ∈ Π is a measurable partition.

aff(µ, ν) = min
π∈Π

∑
A∈π

µ(A) ∧ µ(A) = min
π∈Π

∑
A∈π

µ(A) = 1
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Finally, if µ and ν are distinct, then there exists a B ∈ B(S) with µ(B) < ν(B). As a
result,

aff(µ, ν) = min
π∈Π

∑
A∈π

µ(A) ∧ ν(A) ≤ µ(B) ∧ ν(B) + µ(Bc) ∧ ν(Bc) < ν(B) + ν(Bc) = 1

Solution to Exercise 11.24. Suppose (11.15) holds and fix x, x′ ∈ S. We have Pm
x ≥ ϵν

and Pm
x′ ≥ ϵν, so Pm

x ∧ Pm
x′ ≥ ϵν. Evaluating at S gives aff(Pm

x , Pm
x′ ) ≥ ϵ. Hence

α(Pm) ≥ ϵ > 0.

Solution to Exercise 11.25. Suppose condition M holds for some m ∈ N and ϵ > 0.
Fix x, x′ ∈ S. We have (Pm

x ∧ Pm
x′ )(S) = Pm(x, S−) + Pm(x′, S+), where S− and S+ are

negative and positive for Pm(x, dy)− Pm(x′, dy) respectively. In addition, S+ = (S−)c.
Hence, by condition M,

aff(Pm
x , Pm

x′ ) = (Pm
x ∧ Pm

x′ )(S) = Pm(x, S−) + Pm(x′, (S−)c) ≥ ϵ > 0.

As a result, α(Pm) > 0.

Solution to Exercise 11.28. If the SRS is monotone increasing and h ∈ ibS, then x ≤ x′

implies h[F(x, z)] ≤ h[F(x′, z)] for all z ∈ Z, so, by monotonicity of the integral,

Mh(x) =
∫

h[F(x, z)]ϕ(dz) ≤
∫

h[F(x′, z)]ϕ(dz) = Mh(x′)

Hence Mh ∈ ibS, as was to be shown.

Solution to Exercise 11.29. Let B ∈ B(S) be an increasing set. The function 1B is
bounded and Borel measurable. In addition, with x ≤ x′, we have x ∈ B implies
x′ ∈ B and hence 1B(x) ≤ 1B(x′). The reverse implication follows from similar logic.

Solution to Exercise 11.30. Let B be an increasing set and let the SRS be monotone
increasing. Fix m ∈ N. In view of exercise 11.29, the function M1B is increasing.
Applying M to this function proves that M21B is increasing and so on up to Mm1B.
But Pm(x, B) = Mm1B(x), so x 7→ Pm(x, B) is increasing as required.

Solution to Exercise 11.31. Let ψ∗∗ ∈ P(S) satisfy ψ∗∗M = ψ∗∗ and suppose that
(11.31) holds. Fix h ∈ ibS. We then have

ψ∗∗(h) = (ψ∗∗Mt)(h) → ψ∗(h)

From this argument we see that ψ∗∗(h) = ψ∗(h) for all h ∈ ibS. Applying theo-
rem 11.1.16 on page 255 now gives ψ∗∗ = ψ∗.
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Solution to Exercise 11.32. The claim in exercise 11.32 holds because Nj := ∪t≤j{Xt ≤
X′

t} is increasing in the sense of set inclusion: if the paths have become ordered some
time prior to j, then they have become ordered some time prior to j + 1. Hence, by
exercise 7.17 on page 163, we have

P∪t≥0 {Xt ≤ X′
t} = lim

j→∞
P∪t≤j {Xt ≤ X′

t} = 1 − lim
j→∞

P∩t≤j {Xt ≰ X′
t}

Solution to Exercise 11.33. We prove only the first inequality. Since a ≤ c ≤ b, the set
[c, b] is an increasing subset of S = [a, b], so, by exercise 11.30 and the fact that the SRS
is monotone increasing, the function x 7→ Pm(x, [b, c]) is increasing. As a consequence,

Pm(x, [c, b]) ≥ Pm(a, [c, b]) ≥ ϵ

for all x ∈ S.
(If you wish to check the second inequality, you can introduce the notion of a de-

creasing set, defined analogously to an increasing set, and then show that (i) the inter-
val [a, c] is decreasing in S and (ii) the function x 7→ Pm(x, B) is decreasing whenever
B is decreasing.)

Solution to Exercise 11.34. The first claim is that all measurable subsets of order in-
ducing sets are order inducing. This is quite obvious because infima over smaller sets
are larger. So if, say, infx∈C Pm(x, {z : z ≤ c}) > 0, then the same is true when we take
the infimum over C′ ⊂ C.

The second claim follows from the first. It says that, to check the order norm-
like property, we only need to check that sufficiently large sublevel sets are ordering
inducing. This is true because smaller sublevel sets are contained in these larger ones,
and hence are automatically order inducing.

Solution to Exercise 11.35. If v(x) := 1/x + x, then sublevel sets of v are closed inter-
vals in S. Hence, by the argument immediately above the exercise, the function v is
order norm-like on S.

Solution to Exercise 11.36. Fix any constant α1 ∈ (0, 1). Since limx→∞ f (x)/x = 0, we
can choose a γ ∈ S satisfying

s f (x)EW1 ≤ α1x ∀ x > γ

Given monotonicity of f , we can take a β1 ∈ R+ with

s f (x)EW1 ≤ β1 ∀ x ≤ γ

Combining these two inequalities, we get

Mv1(x) = s f (x)EW1 ≤ α1x + β1 = α1v1(x) + β1 ∀ x ∈ S
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Solution to Exercise 11.37. Fix any constant α2 ∈ (0, 1). Since limx→0 f (x)/x = ∞, we
can obtain a γ ∈ S satisfying

E

[
1

s f (x)W1

]
≤ α2

1
x

∀ x < γ

Using monotonicity of f , we can also choose a β2 ∈ R+ with

E

[
1

s f (x)W1

]
≤ β2 ∀ x ≥ γ

Combining these two inequalities, we get

Mv2(x) = E
[

1
s f (x)W1

]
≤ α2

1
x
+ β2 = α2v2(x) + β2 ∀ x ∈ S

Solution to Exercise 11.38. This is straightforward: Fix x, x′ ∈ C. By the (ν, ϵ)-small
property, we have Px ≥ ϵν and Px′ ≥ ϵν. As a consequence, by the definition of the
infimum, Px ∧ Px′ ≥ ϵν. Evaluating at S yields γ(x, x′) ≥ ϵ, as claimed.

Solution to Exercise 11.39. The claim is that C′ ⊂ C is small whenever C is small and
C′ is measurable. This is obvious: If the bound P(x, A) ≥ ϵν(A) is true for all x ∈ C,
then certainly it is true for any x ∈ C′ ⊂ C.

Solution to Exercise 11.40. Let P(x, dy) = p(x, y)dy. Let g have the stated property (g
is nonnegative, measurable,

∫
g(y)dy > 0 and p(x, y) ≥ g(y) for all x ∈ C and y ∈ S).

Fix x ∈ C and A ∈ B(S). We have
∫

A p(x, y)dy ≥ η(A) when η is the Borel measure
given by η(B) :=

∫
B g(y)dy. Set ϵ := η(S) =

∫
g(y)dy > 0 and ν(A) = η(A)/ϵ. Then

P(x, A) ≥ ϵν(A). Hence C is small for P.

Solution to Exercise 11.41. It suffices to show that, for all b ∈ R, the interval C :=
[−b, b] is small for this kernel, since every bounded measurable set lies in such an
interval. We will only use the fact that p is everywhere positive and continuous on
R×R, which in turn implies the existence of a constant r > 0 such that p(x, y) ≥ r
whenever −b ≤ x, y ≤ b. Now set g = r1[−b,b]. For x ∈ C, we have p(x, y) ≥
r1[−b,b] = g. Applying exercise 11.40, we see that C is small for P.

Solution to Exercise 11.42. Assume the conditions of lemma 11.3.16. We can also
assume, without loss of generality, that v in the lemma satisfies v ≥ 1. (It is not
difficult to confirm that if the lemma holds for some v, α and β then it also holds
for the function v′ := v + 1 and constants α′ := α and β′ = β + 1.) Now pick any
λ ∈ (α, 1), set C := {x : v(x) ≤ β/(λ − α)} and L := β. Note that C, a sublevel
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set, is small (by assumption). We claim that then v, C, λ, and L satisfy the conditions
of definition 11.3.15. To see this, we first take x ∈ C. Then Mv(x) ≤ αv(x) + β ≤
λv(x) + L1C(x) At the same time, if x /∈ C, then v(x) > β/(λ − α), so

Mv(x)
v(x)

≤ α +
β

v(x)
≤ α + (λ − α) = λ.

Hence, in both cases, Mv(x) ≤ λv(x) + L1C(x).

Solution to Exercise 11.43. Recall from the solution to exercise 11.40 that, under the
stated conditions, C is (ϵ, ν)-small for P with ϵ :=

∫
g(y)dy > 0 and ν defined by

ν(A) =
∫

A g(y)dy/ϵ. Since
∫

C g(x)dx = ϵν(C), it is clear that
∫

C g(x)dx > 0 implies
ν(C) > 0. Hence P is aperiodic.

Solution to Exercise 11.44. Recall that the kernel P for the STAR model satisfies P(x, dy) =
p(x, y)dy where p(x, y) = ϕ(y − g(x)). Fix f ∈ D(S) and let µ ∈ P(S) be defined by
µ(B) =

∫
B f (x)dx. Since ϕ is everywhere positive, for any x ∈ S and B ∈ B(S) with

positive Lebesgue measure, we have P(x, B) =
∫

B ϕ(y − g(x))dy > 0. If µ(B) > 0,
then λ(B) > 0, so P(x, B) > 0. (Integrals of positive functions over sets of positive
measure have positive value.) Hence P is µ-irreducible.

Solution to Exercise 11.45. We need to show (a) that p(x, y) ≥ g(y) for all x ∈ C
and y ∈ R, and (b) that

∫
C g(x)dx > 0. Regarding (a), fix x ∈ C. If y ∈ C, then

p(x, y) ≥ δ = δ1C(y) =: g(y) by definition of δ. If y /∈ C, then g(y) = 0, so the
inequality is trivial. Hence (a) holds. Regarding (b), recalling that λ(C) > 0, we have
δ
∫

C 1C(x)dx = δλ(C) > 0. The proof is now done.

Solution to Exercise 12.1. Recall that fn → f uniformly implies fn → f pointwise.
Hence, if ( fn) ⊂ ibcS and fn → f ∈ bcS uniformly, then f is increasing. Indeed,
x ≤ x′ implies fn(x) ≤ fn(x′) for all n and limits in R preserve weak inequalities.
Hence f (x) ≤ f (x′). The same is not true for the set of strictly increasing functions
because limits to not in general preserve strict inequalities.

Solution to Exercise 12.2. Under the stated hypothesis, the weak inequality Tw(x) ≤
Tw(x′) in the proof of theorem 12.1.1 can be strengthened to Tw(x) < Tw(x′). Hence T
sends ibcS into the strictly increasing functions in ibcS. Since v∗ ∈ ibcS, as established
by theorem 12.1.1, it follows that Tv∗ is strictly increasing. But then v∗ is strictly
increasing, since v∗ = Tv∗.

Solution to Exercise 12.3. This just a matter of checking the conditions of theorem 12.1.1.
Clearly a ≤ a′ implies Γ(a) = [0, a] ⊂ [0, a′] = Γ(a′). Also, both rewards and the
next period state are increasing in the current state. (The transition function is f (s, z),
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which is a function of s, the action, and not the state. Hence f (s, z) is weakly increas-
ing in the state a.)

Solution to Exercise 12.4. Let g and h satisfy the stated conditions and let f = g + h.
Fix x, x′ ∈ S with x < x′ and u, u′ ∈ Γ(x) ∩ Γ(x′) with u < u′. We have

f (x, u′)− f (x, u) = g(x, u′) + h(x, u′)− g(x, u)− h(x, u)

= [g(x, u′)− g(x, u)] + [h(x, u′)− h(x, u)]

Since g has strictly increasing differences and h has increasing differences, the last
term is strictly dominated by g(x′, u′) − g(x′, u) + h(x, u′) − h(x, u), which equals
f (x′, u′)− f (x′, u).

Solution to Exercise 12.5. The correspondence is Γ(a) = [0, a], which is a decreas-
ing set in R+. That rewards have strictly increasing differences under the stated
assumptions was proved in 12.1.3. Hence we need only check the last condition
of corollary 12.1.5, which is that (x, u) 7→

∫
w[F(u, x, z)]ϕ(dz) has increasing differ-

ences whenever w ∈ ibcS. In the optimal savings model, this translates to (x, u) 7→∫
w[ f (u, z)]ϕ(dz), which certainly has (weakly) increasing differences on gr Γ, being

independent of x.

Solution to Exercise 12.6. In exercise 12.1, we proved that ibcS is a closed subset of
(bcS, d∞) by invoking the fact that weak inequalities are preserved under pointwise
limits. The proof that C ibcS is a closed subset of ibcS is very similar in spirit and
further details are omitted.

Solution to Exercise 12.7. The argument is very similar to that of exercise 12.2. Un-
der the stated condition, T maps elements of C ibcS into strictly concave elements of
C ibcS. Since v∗ ∈ C ibcS and Tv∗ = v∗, strict concavity of v∗ holds.

Solution to Exercise 12.8. The steps are quite routine by now, given the previous re-
sults, and the details are omitted.

Solution to Exercise 12.9. Let g : [a, b] → R be strictly concave and suppose that x
and x′ are distinct maximizers in [a, b], with (necessarily) common value m = g(x) =
g(x′). Then, by strict concavity,

g(0.5x + 0.5x′) > 0.5g(x) + 0.5g(x′) = m.

Since x′′ := 0.5x + 0.5x′ is in [a, b], this contradicts the statement that x and x′ are
maximizers. Hence g has at most one maximizer, as claimed. Under the conditions of
exercise 12.8, the right-hand side of the Bellman equation is strictly concave, so there
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is one and only one optimal policy for the savings model. Continuity now follows
from Berge’s theorem (page 340).

Solution to Exercise 12.10. Under the conditions of corollary 12.1.10 we have (v∗)′(a) =
U′(a − σ(a)) for all a > 0. Since U is strictly concave, U′ is strictly decreasing and
therefore invertible with strictly decreasing inverse. Denoting that inverse by h, we
have a − σ(a) = h((v∗)′(a)). Because v∗ is strictly concave, its derivative is strictly
decreasing. Hence a 7→ a − σ(a) is strictly increasing.

Solution to Exercise 12.11. We provide the key ideas of the proof. Fix a0 ∈ (0, ∞), set
s0 := σ(a0) and let

h(a) := U(a − s0) + ρ
∫

v∗[ f (s0, z)]ϕ(dz)

Then h(a) ≤ v∗(a) in a sufficiently small neighborhood of a0, where s0 is a feasible
choice. (The neighborhood is nonempty because s0 is interior.) Moreover, h(a0) =
v∗(a0) holds. Hence the derivative of v∗ at a0 exists and is equal to h′(a0). By the
definition of h, this is U′(a0 − s0) = U′(a0 − σ(a0).

Solution to Exercise 12.12. We have Mwi ≤ αiwi + βi pointwise on S for i = 1, 2. As a
result, by linearity of M,

Mw = Mw1 + Mw2 ≤ α1w1 + β1 + α2w2 + β2 ≤ α(w1 + w2) + β

where α := max{α1, α2} and β := β1 + β2.

Solution to Exercise 12.13. This equivalence follows directly from the definition of
bκS.

Solution to Exercise 12.14. If v ∈ bB(S), then |v| ≤ M for some M ∈ N. But then
|v|/κ ≤ M, since κ ≤ 1. Hence v ∈⊂ bκB(S). The proof of the second case is similar.

Solution to Exercise 12.15. The only nontrivial part of the proof is the triangle inequal-
ity. This is still quite straightforward: If u, v, w ∈ bκS, then, using add and subtract
followed by the triangle inequality inR,∣∣∣u

κ
− w

κ

∣∣∣ ≤ ∣∣∣u
κ
− v

κ

∣∣∣+ ∣∣∣v
κ
− w

κ

∣∣∣ ≤ ‖u − v‖κ + ‖v − w‖κ

Taking the supremum yields dκ(u, w) ≤ dκ(u, v) + dκ(v, w), as was to be shown.

Solution to Exercise 12.16. Regarding the first claim, suppose κ is Borel measurable.
Pointwise limits of measurable functions are measurable and dκ convergence implies
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pointwise convergence, so bκB(S) is closed in (bκS, dκ). Regarding the second claim,
suppose κ is continuous and let (vn) be a sequence in bκcS converging to v ∈ bκS.
Since vn/κ → v/κ uniformly, and since uniform limits of continuous functions are
continuous, the function v/κ is continuous. Products of continuous functions are con-
tinuous, so κ(v/κ) is continuous. That is, v ∈ bκcS.

Solution to Exercise 12.17. We provide the proof that T is invariant on bκcS. Continu-
ity of Tw follows from lemma 12.2.15, the continuity of r and Berge’s theorem of the
maximum (page 340). Hence we need only show that Tw is κ-bounded. To verify this,
we use lemma A.2.18 on page 334, combined with the triangle inequality, to obtain

|Tw(x)| ≤ max
u∈Γ(x)

|r(x, u)|+ max
u∈Γ(x)

ρ
∫

|w[F(x, u, z)]|ϕ(dz)

By assumption 12.2.9, the first term is bounded by Rκ(x). Applying the second part
of the same assumption yields

max
u∈Γ(x)

ρ
∫

|w[F(x, u, z)]|ϕ(dz) ≤ max
u∈Γ(x)

ρ
∫

‖w‖κκ[F(x, u, z)]ϕ(dz) ≤ ρ‖w‖κ βκ(x)

As a result, |Tw(x)| ≤ Rκ(x) + ρ‖w‖κ βκ(x). It follows directly that Tw is κ-bounded.

Solution to Exercise 12.18. We claim the existence of a λ < 1 such that

T(v + aκ) ≤ Tv + λaκ for all v ∈ bκcS and a ∈ R+ (12.18)

To see that this is so, fix v ∈ bκcS and a ∈ R+. We have

(T(v + aκ))(x) = max
u∈Γ(x)

{
r(x, u) + ρ

∫
(v + aκ)[F(x, u, z)]ϕ(dz)

}
= Tv(x) + ρ max

u∈Γ(x)
a
∫

κ[F(x, u, z)]ϕ(dz)

Applying assumption 12.2.9 leads to the bound

(T(v + aκ))(x) ≤ Tv(x) + aρβκ(x)

In this expression, as part of assumption 12.2.9, β can be chosen to satisfy βρ < 1.
With λ := βρ, the proof is now complete.
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