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Abstract. For Markov chains and Markov processes exhibiting a form of sto-
chastic monotonicity (higher states have higher transition probabilities in terms
of stochastic dominance), stability and ergodicity results can be obtained using
order-theoretic mixing conditions. We complement these results by providing
quantitative bounds on deviations between distributions. We also show that
well-known total variation bounds can be recovered as a special case.

1. Introduction

Quantitative bounds on the distance between distributions generated by Markov
models have many applications in statistics, computer science, and the natural and
social sciences (see, e.g., [25, 20]). One approach to producing such bounds uses
total variation distance and exploits minorization conditions (see, e.g., [24, 8, 13,
2]). Another branch of the literature bounds deviations using Wasserstein distance
(see, e.g., [7, 4, 5, 21, 22]). In general, total variation bounds require relatively
strong mixing conditions on the law of motion in some “attracting” region of the
state space, while Wasserstein bounds rely on some degree of continuity of the
laws of motion with respect to a specified metric.1

Although this research covers many important applications, there are also sig-
nificant cases where Markov chains lack both the minorization and continuity
properties discussed above, making total variation and Wasserstein-type bounds
difficult or impossible to apply. Fortunately, some of these models also possess
valuable structure in the form of stochastic monotonicity. Such monotonicity can
be exploited to obtain stability and ergodicity via order-theoretic versions of mix-
ing conditions [3, 15, 16, 10, 9]. In this paper, we complement these stability and
ergodicity results by providing quantitative bounds for stochastically monotone
Markov chains.
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1Total variation bounds can also be studied within the setting of Wasserstein distance by

choosing the ground metric on the state space to be the discrete metric. See, for example, [4].
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While there are some exising results that use stochastic monotonicity to bound
the distributions generated by Markov chains [19, 11], these bounds are stated
in terms of total variation distance, which again requires traditional minorization
conditions (as opposed to the order-theoretic mixing conditions discussed in the
last paragraph). In this paper, we aim to fully exploit monotonicity by instead
bounding total ordered variation distance [16] between distributions. This works
well because (a) our mixing conditions are stated in terms of order, and (b) total
ordered variation distance respects order structure on the state space.

Our main theorem is closely related to the total variation bound in Theorem 1 of
[24], which is representative of existing work on total variation bounds and supplies
a simple and elegant proof. The main differences between that theorem and the
one presented below is that we use total ordered variation distance instead of total
variation distance and an order-theoretic mixing condition instead of a standard
minorization condition. At the same time, as we show in Sections 5.1, it is possible
to recover Theorem 1 of [24] from our main theorem by adopting a particular choice
of partial order.

Our work is also related to Wasserstein bounds on the deviation between distri-
butions for Markov models, as found for example in [4, 22]. However, rather than
bounding Wasserstein distance, our main theorem bounds deviations measured in
terms of two directed Wasserstein semimetrics, each of which is connected to the
same partial order on the state space. Further details are given in Section 5.2.

2. Set Up

We first recall key definitions and state some preliminary results.

2.1. Environment. Throughout this paper, X is a Polish space, B is its Borel
sets, and ⪯ is a closed partial order on X. The last statement means that the
graph of ⪯, denoted by

G = {(𝑥, 𝑥′) ∈ X ×X : 𝑥 ⪯ 𝑥′}, (1)

is closed under the product topology on X × X. A map ℎ : X → R is called
increasing if 𝑥 ⪯ 𝑥′ implies ℎ(𝑥) ⩽ ℎ(𝑥′). We take 𝑝B to be the set of all probability
measures on B and let 𝑏B be the bounded Borel measurable functions sending X
into R. Given ℎ ∈ 𝑏B and 𝜇 ∈ 𝑝B we set 𝜇(ℎ) ≔

∫
ℎ d𝜇. The symbol 𝑖𝑏B

represents all increasing ℎ ∈ 𝑏B.
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For 𝜇, 𝜈 in 𝑝B, we say that 𝜇 is stochastically dominated by 𝜈 and write 𝜇 ⪯𝑠 𝜈 if
𝜇(ℎ) ⩽ 𝜈(ℎ) for all ℎ ∈ 𝑖𝑏B. In addition, we set

𝜌(𝜇, 𝜈) ≔ sup
𝐼∈𝑖B

(𝜇(𝐼) − 𝜈(𝐼)) + sup
𝐼∈𝑖B

(𝜈(𝐼) − 𝜇(𝐼)). (2)

This is the total ordered variation metric on 𝑝B. A proof that 𝜌 is indeed a metric
can be found in Lemma 4.1 of [16]. Positive definiteness follows from the fact
that 𝜌(𝜇, 𝜈) = 0 implies 𝜇 ⪯𝑠 𝜈 and 𝜈 ⪯𝑠 𝜇. Since ⪯𝑠 is antisymmetric on 𝑝B [14,
Lemma 1], we then have 𝜇 = 𝜈. Connections between 𝜌 and the total variation
and Wasserstein metrics are discussed in Section 5.

A function 𝑄 : (X,B) → R is called a transition kernel on X if 𝑄 is a map
from X × B to [0, 1] such that 𝑥 ↦→ 𝑄(𝑥, 𝐴) is measurable for each 𝐴 ∈ B and
𝐴 ↦→ 𝑄(𝑥, 𝐴) is a probability measure on B for each 𝑥 ∈ X. At times we use the
symbol 𝑄𝑥 to represent the distribution 𝑄(𝑥, ·) at given 𝑥. A transition kernel 𝑄
on X is called increasing if 𝑄ℎ ∈ 𝑖𝑏B whenever ℎ ∈ 𝑖𝑏B. Equivalently,

𝑄𝑥 ⪯𝑠 𝑄𝑥′ whenever 𝑥 ⪯ 𝑥′.

For a transition kernel 𝑄 on X, we define the left and right Markov operators
generated by 𝑄 via

𝜇𝑄(𝐴) =
∫

𝑄(𝑥, 𝐴)𝜇(d𝑥) and 𝑄 𝑓 (𝑥) =
∫

𝑓 (𝑦)𝑄(𝑥, d𝑦).

(The left Markov operator 𝜇 ↦→ 𝜇𝑄 maps 𝑝B to itself, while the right Markov
operator 𝑓 ↦→ 𝑄 𝑓 acts on 𝑓 ∈ 𝑏B.) A discrete-time X-valued stochastic process
(𝑋𝑡)𝑡⩾0 on a filtered probability space (Ω,F ,P, (F𝑡)𝑡⩾0) is called Markov-(𝑄, 𝜇) if
𝑋0

𝑑
= 𝜇 and E[ℎ(𝑋𝑡+1) |F𝑡] = 𝑄ℎ(𝑋𝑡) with probability one for all 𝑡 ⩾ 0 and ℎ ∈ 𝑏B.

2.2. Couplings. A coupling of (𝜇, 𝜈) ∈ 𝑝B × 𝑝B is a probability measure 𝜋 on
B ⊗ B satisfying 𝜋(𝐴×X) = 𝜇(𝐴) and 𝜋(X× 𝐴) = 𝜈(𝐴) for all 𝐴 ∈ B. Let C (𝜇, 𝜈)
denote the set of all couplings of (𝜇, 𝜈) and let

𝛼(𝜇, 𝜈) = sup
𝜋∈C (𝜇,𝜈)

𝜋(G). (3)

The value 𝛼(𝜇, 𝜈) can be understood as a measure of “partial stochastic domi-
nance” of 𝜈 over 𝜇 [17]. In line with this interpretation, and applying Strassen’s
theorem [26, 18], we have

𝛼(𝜇, 𝜈) = 1 whenever 𝜇 ⪯𝑠 𝜈. (4)

Let 𝑄 be a transition kernel onX. A Markov coupling of 𝑄 is a real-valued function
𝑄̂ on (X ×X) × (B ⊗ B) such that

(i) (𝑥, 𝑥′) ↦→ 𝑄̂((𝑥, 𝑥′), 𝐸) is measurable for each 𝐸 ∈ B ⊗ B and
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(ii) 𝑄̂ (𝑥,𝑥′) is a coupling of 𝑄𝑥 and 𝑄𝑥′ for all 𝑥, 𝑥′ ∈ X.

In other words, 𝑄̂ is a transition kernel on X × X that couples the distributions
𝑄𝑥 and 𝑄𝑥′ at every pair of points in the state space.

We call 𝑄̂ a ⪯-maximal Markov coupling of 𝑄 if 𝑄̂ is a Markov coupling of 𝑄 and,
in addition,

𝑄̂((𝑥, 𝑥′),G) = 𝛼(𝑄𝑥 , 𝑄𝑥′) for all (𝑥, 𝑥′) ∈ X ×X. (5)

Informally, 𝑄̂ serves as a transition kernel of a “joint” chain ((𝑋𝑡, 𝑋′
𝑡 ))𝑡⩾0 that

maximizes the probability of attaining 𝑋𝑡 ⪯ 𝑋′
𝑡 at each step. Below we make use

of the following existence result.

Lemma 2.1. If 𝑄 is a transition kernel on X, then 𝑄 has at least one ⪯-maximal
Markov coupling.

Proof. Let 𝑄 be a transition kernel on X. By Theorem 1.1 of [27], given lower
semicontinuous 𝑔 : X ×X→ R, there exists a transition kernel 𝑄̂ on X ×X such
that 𝑄̂ is a Markov coupling of 𝑄 and, in addition

(𝑄̂𝑔)(𝑥, 𝑥′) = inf
{∫

𝑔 d𝜋 : 𝜋 ∈ C (𝑄𝑥 , 𝑄𝑥′)
}
.

As G is closed, this equality is attained when 𝑔 = 1 − 1G. Since 𝑄̂ (𝑥,𝑥′) and 𝜋 are
probability measures, we then have

𝑄̂((𝑥, 𝑥′),G) = sup {𝜋(G) : 𝜋 ∈ C (𝑄𝑥 , 𝑄𝑥′)} .

This shows that 𝑄̂ is a ⪯-maximal Markov coupling of 𝑄. □

The following simple lemma will be important for our bounds.

Lemma 2.2. If 𝑄 is increasing and 𝑄̂ is a ⪯-maximal Markov coupling of 𝑄, then
G is absorbing for 𝑄̂.

Proof. Let 𝑄 and 𝑄̂ be as stated. If (𝑥, 𝑥′) is in G, then, since 𝑄 is increasing, we
have 𝑄𝑥 ⪯𝑠 𝑄𝑥′ . Combining this inequality with (4) yields 𝛼(𝑄𝑥 , 𝑄𝑥′) = 1. Applying
property (5) produces 𝑄̂((𝑥, 𝑥′),G) = 1. Hence G is absorbing for 𝑄̂. □

3. Main Result

In this section we state our main result concerning rates of convergence.
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3.1. A Quantitative Bound. Let 𝑄 be an increasing transition kernel on X and
let 𝑄̂ be a ⪯-maximal Markov coupling of 𝑄. Let 𝑊 be a measurable function
from X × X to [1,∞). Suppose that, for some measurable set 𝐶 in X and some
strictly increasing convex function 𝛿 : R+ → R+ with 𝛿(0) = 0, the kernel 𝑄̂ obeys
the drift condition

𝑄̂𝑊 (𝑥, 𝑥′) ⩽ 𝛿(𝑊 (𝑥, 𝑥′)) for all (𝑥, 𝑥′) ∉ 𝐶 × 𝐶. (6)

We set
𝐵 = max

{
1, 𝛿−1 (𝐵0)

}
where 𝐵0 ≔ sup

(𝑥,𝑥′)∈𝐶×𝐶
𝑅𝑊 (𝑥, 𝑥′) (7)

and
𝑅𝑊 (𝑥, 𝑥′) ≔

∫ ∫
𝑊 (𝑦, 𝑦′)1{𝑦 ⪯̸ 𝑦′}𝑄̂((𝑥, 𝑥′), d(𝑦, 𝑦′)). (8)

In addition, let
𝜀 = inf {𝛼(𝑄𝑥 , 𝑄𝑥′) : (𝑥, 𝑥′) ∈ 𝐶 × 𝐶} . (9)

Given 𝜇, 𝜇′ in 𝑝B, we set

(𝜇 × 𝜇′) (𝑊) =
∫ ∫

𝑊 (𝑥, 𝑥′)𝜇(d𝑥)𝜇′(d𝑥′). (10)

In (7), 𝛿−1 is the inverse of 𝛿. Below, 𝛿−𝑡 indicates indicates 𝑡 compositions of 𝛿−1

with itself. We are now ready to state the main result on quantitative bounds.

Theorem 3.1. For all 𝑗, 𝑡 ∈ N with 𝑗 ⩽ 𝑡, we have

𝜌(𝜇𝑄𝑡, 𝜇′𝑄𝑡) ⩽ 2(1 − 𝜀) 𝑗 + 𝐵 𝑗−1

𝛿−𝑡 (1) [(𝜇 × 𝜇′) (𝑊) + (𝜇′ × 𝜇)(𝑊)] .

Theorem 3.1 provides a total ordered variation bound on the deviation between
the time-𝑡 distributions 𝜇𝑄𝑡 and 𝜇′𝑄𝑡 generated by iterating with the Markov
operator 𝑄, taking as given an arbitrary pair of initial distributions 𝜇, 𝜇′ in 𝑝B.
When 𝛿 is linear we obtain the geometric case. Since this case is important we
state it as a corollary.

Corollary 3.2. If the conditions above hold with (6) replaced by

𝑄̂𝑊 (𝑥, 𝑥′) ⩽ 𝛾𝑊 (𝑥, 𝑥′) for all (𝑥, 𝑥′) ∉ 𝐶 × 𝐶 (11)

for some positive constant 𝛾, then, for all 𝑗, 𝑡 ∈ N with 𝑗 ⩽ 𝑡,

𝜌(𝜇𝑄𝑡, 𝜇′𝑄𝑡) ⩽ 2(1 − 𝜀) 𝑗 + 𝛾𝑡𝐵 𝑗−1 [(𝜇 × 𝜇′) (𝑊) + (𝜇′ × 𝜇) (𝑊)].

The bound in Corollary 3.2 can be viewed as an order-theoretic version of the
geometric total variation bound in Theorem 1 of [24]. Further comparisons are
given in Section 5.1.
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3.2. Sketch of Proof. The bound in Theorem 3.1 is obtained by tracking a joint
chain ((𝑋𝑡, 𝑋′

𝑡 ))𝑡⩾0 generated by a ⪯-maximal Markov coupling 𝑄̂ and started from
initial condition 𝜇×𝜇′. Because 𝑄̂ is a Markov coupling of 𝑄, the individual chains
(𝑋𝑡)𝑡⩾0 and (𝑋′

𝑡 )𝑡⩾0 are Markov-(𝑄, 𝜇) and Markov-(𝑄, 𝜇′) respectively. Taking 𝜏

to be the first time that 𝑋𝑡 ⪯ 𝑋′
𝑡 occurs, one can use the fact that G is absorbing

for 𝑄̂ (Lemma 2.2) to obtain

𝜏 ⩽ 𝑡 if and only if 𝑋𝑡 ⪯ 𝑋′
𝑡 . (12)

Next, an order-theoretic version of a standard total variation coupling argument
is used to generate the bound (𝜇𝑄𝑡)(𝐼) − (𝜇′𝑄𝑡)(𝐼) ⩽ P{𝑋𝑡 ⪯̸ 𝑋′

𝑡 } for all 𝐼 ∈ 𝑖B. In
view of (12), the left hand side is also bounded above by P{𝜏 > 𝑡}. This in turn is
bounded using the drift to 𝐶 × 𝐶 implied by (6), and the 𝜀-probability of the joint
chain ((𝑋𝑡, 𝑋′

𝑡 ))𝑡⩾0 entering G after 𝐶 × 𝐶 implied by (9). Reversing the roles of 𝜇

and 𝜇′ and then adding the two inequalities leads to the bound in Theorem 3.1.
Details are in Section 4.

3.3. Univariate Drift. In applications, drift conditions on the underlying kernel
𝑄 are usually easier to test and interpret than drift conditions on a joint kernel
such as (6). Fortunately, there are relatively straightforward ways to map the
former (let’s call them “univariate” drift conditions) to the latter (“joint” drift
conditions). For example, suppose that 𝑄 is a transition kernel on X and 𝑉 is a
measurable function from X to R+. Suppose there exist 𝜆, 𝛽 ∈ R+ such that 𝜆 < 1
and

𝑄𝑉 (𝑥) ⩽ 𝜆𝑉 (𝑥) + 𝛽 for all 𝑥 ∈ X. (13)

In this setting, we can attain (11) by setting 𝐶 = {𝑥 ∈ X : 𝑉 (𝑥) ⩾ 𝑑} for some
fixed 𝑑 ⩾ 1 and then

𝑊 (𝑥, 𝑥′) = 1 + 𝑉 (𝑥) + 𝑉 (𝑥′) and 𝛾 =
1 + 𝜆𝑑 + 2𝛽

1 + 𝑑
.

A proof that (11) holds with these definitions can be found in Theorem 12 of [23].

Alternatively, if 𝑉 ⩾ 1, then we can choose 𝐶 in the same way and then set

𝑊 (𝑥, 𝑥′) = 𝑉 (𝑥) + 𝑉 (𝑥′)
2

and 𝛾 = 𝜆 + 2𝛽
𝑑
.

Indeed, since 𝑄̂ is a Markov coupling of 𝑄, an application of (13) yields

𝑄̂𝑊 (𝑥, 𝑥′) = 𝑄𝑉 (𝑥) + 𝑄𝑉 (𝑥′)
2

⩽ 𝜆𝑊 (𝑥, 𝑥′) + 𝛽 =

(
𝜆 + 𝛽

𝑊 (𝑥, 𝑥′)

)
𝑊 (𝑥, 𝑥′).

The drift condition (11) now follows from 𝑑/2 ⩽ 𝑊 on the complement of 𝐶 × 𝐶.
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4. Proof of Theorem 3.1

In this section we prove Theorem 3.1. Throughout, 𝑄 is an increasing transition
kernel on X, 𝑄̂ is a ⪯-maximal Markov coupling of 𝑄, and the conditions in
Section 3.1 are in force. We fix 𝜋 ∈ 𝑝(B ⊗ B) and take ((𝑋𝑡, 𝑋′

𝑡 ))𝑡⩾0 to be Markov-
(𝑄̂, 𝜋) on a filtered probability space (Ω,F ,P, (F𝑡)𝑡⩾0). Let 𝜏 be the stopping
time 𝜏 = inf{𝑡 ⩾ 0 : 𝑋𝑡 ⪯ 𝑋′

𝑡 } with inf ∅ =∞. Let

𝑁𝑡 =
𝑡∑
𝑗=0
1{(𝑋 𝑗, 𝑋

′
𝑗) ∈ 𝐶 × 𝐶}

count the number of visits of this joint chain to 𝐶×𝐶. In addition, we set 𝑁−1 ≔ 0.

Lemma 4.1. The process (𝑀𝑡)𝑡⩾0 defined by

𝑀𝑡 = 𝐵−𝑁𝑡−1𝛿−𝑡
[
𝑊 (𝑋𝑡, 𝑋′

𝑡 )
]
1{𝜏 > 𝑡}

is a supermartingale.

Proof. In the argument below, we will make use of the implication

(𝑥, 𝑥′) ∈ 𝐶 × 𝐶 =⇒ 𝐵−1𝛿−(𝑡+1) [𝑅𝑊 (𝑥, 𝑥′)
]
⩽ 𝛿−𝑡 (𝑊 (𝑥, 𝑥′)), (14)

which holds for all 𝑡 ⩾ 0. To establish (14), we fix 𝑡 and use (𝑥, 𝑥′) ∈ 𝐶 × 𝐶 and
the definition of 𝐵 to obtain 𝛿−1(𝑅𝑊 (𝑥, 𝑥′)) ⩽ 𝐵. Using 𝑊 ⩾ 1 now produces
𝛿−1(𝑅𝑊 (𝑥, 𝑥′)) ⩽ 𝐵𝑊 (𝑥, 𝑥′). Since 𝐵 ⩾ 1 and 𝛿−1 is increasing and concave with
𝛿−1(0) = 0, applying 𝛿−1 to both sides of the previous bound and using the scaling
inequality gives

𝛿−2(𝑅𝑊 (𝑥, 𝑥′)) ⩽ 𝛿−1(𝐵𝑊 (𝑥, 𝑥′)) ⩽ 𝐵𝛿−1(𝑊 (𝑥, 𝑥′)).

Continuing to iterate in the same way yields (14).

Now we show that (𝑀𝑡)𝑡⩾0 is an (F𝑡)-supermartingale. Clearly (𝑀𝑡)𝑡⩾0 is adapted.
In proving E[𝑀𝑡+1 |F𝑡] ⩽ 𝑀𝑡 we can and do assume that 𝜏 > 𝑡, since 𝜏 ⩽ 𝑡 implies
𝜏 ⩽ 𝑡 + 1, in which case the inequality is trivial. Let us first consider the case
(𝑋𝑡, 𝑋′

𝑡 ) ∈ 𝐶 × 𝐶. When this holds, we have 𝑁𝑡 = 𝑁𝑡−1 + 1, so

E [𝑀𝑡+1 |F𝑡] = 𝐵−𝑁𝑡−1−1E
[
𝛿−(𝑡+1) (𝑊 (𝑋𝑡+1, 𝑋

′
𝑡+1))1{𝜏 > 𝑡 + 1} |F𝑡

]
= 𝐵−𝑁𝑡−1−1E

[
𝛿−(𝑡+1) (𝑊 (𝑋𝑡+1, 𝑋

′
𝑡+1))1{𝑋𝑡+1 ⪯̸ 𝑋′

𝑡+1} |F𝑡

]
= 𝐵−𝑁𝑡−1−1E

[
𝛿−(𝑡+1) (𝑊 (𝑋𝑡+1, 𝑋

′
𝑡+1)1{𝑋𝑡+1 ⪯̸ 𝑋′

𝑡+1}) |F𝑡

]
.

The second equality follows from the identity in (12), while the third follows from
𝛿(0) = 𝛿−1(0) = 0. Since 𝛿−1 is concave, using the previous chain of equalities and
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Jensen’s inequality for conditional expectations, along with the definition of 𝑅 in
(8), we have

E [𝑀𝑡+1 |F𝑡] ⩽ 𝐵−𝑁𝑡−1𝐵−1𝛿−(𝑡+1) [E [
𝑊 (𝑋𝑡+1, 𝑋

′
𝑡+1)1{𝑋𝑡+1 ⪯̸ 𝑋′

𝑡+1} |F𝑡

] ]
= 𝐵−𝑁𝑡−1𝐵−1𝛿−(𝑡+1) [𝑅𝑊 (𝑋𝑡, 𝑋′

𝑡 )
]

⩽ 𝐵−𝑁𝑡−1𝛿−𝑡 [𝑊 (𝑋𝑡, 𝑋′
𝑡 )]

= 𝑀𝑡,

where the second inequality is by (14), as well as the restriction (𝑋𝑡, 𝑋′
𝑡 ) ∈ 𝐶 × 𝐶.

The last equality holds because we are specializing to 𝜏 > 𝑡.

Now we turn to the case (𝑋𝑡, 𝑋′
𝑡 ) ∉ 𝐶 × 𝐶. In this case we have 𝑁𝑡 = 𝑁𝑡−1, so

E[𝑀𝑡+1 |F𝑡] = 𝐵−𝑁𝑡−1E
[
𝛿−(𝑡+1) [𝑊 (𝑋𝑡+1, 𝑋

′
𝑡+1)]1{𝜏 > 𝑡 + 1} |F𝑡

]
⩽ 𝐵−𝑁𝑡−1E

[
𝛿−(𝑡+1) [𝑊 (𝑋𝑡+1, 𝑋

′
𝑡+1)] |F𝑡

]
⩽ 𝐵−𝑁𝑡−1𝛿−(𝑡+1) [E [

𝑊 (𝑋𝑡+1, 𝑋
′
𝑡+1) |F𝑡

] ]
⩽ 𝐵−𝑁𝑡−1𝛿−(𝑡+1) [𝛿[𝑊 (𝑋𝑡, 𝑋′

𝑡 )]
]

= 𝐵−𝑁𝑡−1𝛿−𝑡 [𝑊 (𝑋𝑡, 𝑋′
𝑡 )]

= 𝑀𝑡,

where the second inequality uses Jensen’s inequality again and the third inequality
uses the drift condition (6). As before, the last equality holds because we are
specializing to 𝜏 > 𝑡. We have now shown that E[𝑀𝑡+1 |F𝑡] ⩽ 𝑀𝑡 holds almost
surely, so (𝑀𝑡) is a supermartingale, as claimed. □

Lemma 4.2. If 𝑗, 𝑡 ∈ N with 𝑗 ⩽ 𝑡, then

P{𝜏 > 𝑡, 𝑁𝑡−1 < 𝑗} ⩽ 𝐵 𝑗−1

𝛿−𝑡 (1)

∫
𝑊 d𝜋.

Proof. Fix 𝑡 ∈ N and 𝑗 ⩽ 𝑡. Since 𝐵 ⩾ 1, we have

P{𝜏 > 𝑡, 𝑁𝑡−1 < 𝑗} = P{𝜏 > 𝑡, 𝑁𝑡−1 ⩽ 𝑗 − 1} = P
{
𝜏 > 𝑡, 𝐵−𝑁𝑡−1 ⩾ 𝐵−( 𝑗−1)} .

On 𝜏 > 𝑡 we have 𝐵−𝑁𝑡−1𝛿−𝑡 [𝑊 (𝑋𝑡, 𝑋′
𝑡 )] = 𝑀𝑡, so the final term in the last display

is dominated by

P
{
𝜏 > 𝑡, 𝑀𝑡 ⩾ 𝐵−( 𝑗−1)𝛿−𝑡 [𝑊 (𝑋𝑡, 𝑋′

𝑡 )]
}
⩽ P

{
𝜏 > 𝑡, 𝑀𝑡 ⩾ 𝐵−( 𝑗−1)𝛿−𝑡 (1)

}
⩽ P

{
𝑀𝑡 ⩾ 𝐵−( 𝑗−1)𝛿−𝑡 (1)

}
⩽

𝐵 𝑗−1

𝛿−𝑡 (1)E[𝑀𝑡]
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Here the first inequality is by 𝑊 ⩾ 1 and the last is by Markov’s inequality.
Collecting terms and using the supermartingale property yields

P{𝜏 > 𝑡, 𝑁𝑡−1 < 𝑗} ⩽ 𝐵 𝑗−1

𝛿−𝑡 (1)E[𝑀0].

Since E[𝑀0] =
∫
𝑊 d𝜋, the claim in Lemma 4.2 is proved. □

Lemma 4.3. If 𝑗, 𝑡 ∈ N with 𝑗 ⩽ 𝑡, then

P{𝜏 > 𝑡, 𝑁𝑡−1 ⩾ 𝑗} ⩽ (1 − 𝜀) 𝑗. (15)

Proof. Fix 𝑗, 𝑡 ∈ N with 𝑗 ⩽ 𝑡. Let (𝐽𝑖)𝑖⩾1 be the times of the successive visits of
(𝑋𝑡, 𝑋′

𝑡 ) to 𝐶 × 𝐶. That is, 𝐽1 is the time of the first visit and

𝐽𝑖+1 = inf{𝑚 ⩾ 𝐽𝑖 + 1 : (𝑋𝑚, 𝑋
′
𝑚) ∈ 𝐶 × 𝐶}.

Note that 𝑁𝑡−1 > 𝑗 implies 𝐽 𝑗 < 𝑡 − 1. As a result,

P{𝜏 > 𝑡, 𝑁𝑡−1 > 𝑗} ⩽ P{𝜏 > 𝑡, 𝐽 𝑗 + 1 < 𝑡}. (16)

Fix 𝑖 ⩽ 𝑗 and consider all paths in the set {𝜏 > 𝑡, 𝐽 𝑗 + 1 < 𝑡}. Since 𝑖 ⩽ 𝑗 ⩽ 𝑡 < 𝜏,
we have 𝐽𝑖 + 1 ⩽ 𝐽 𝑗 + 1 < 𝑡 < 𝜏 and hence 𝑋𝐽𝑖+1 ⪯̸ 𝑋′

𝐽𝑖+1.

∴ P{𝜏 > 𝑡, 𝐽 𝑗 + 1 < 𝑡} ⩽ P ∩ 𝑗
𝑖=1 {𝑋𝐽𝑖+1 ⪯̸ 𝑋′

𝐽𝑖+1}. (17)

Observe that, with 𝐿𝑖 ≔ 1{𝑋𝐽𝑖+1 ⪯̸ 𝑋′
𝐽𝑖+1}, we have

P ∩ 𝑗
𝑖=1 {𝑋𝐽𝑖+1 ⪯̸ 𝑋′

𝐽𝑖+1} = E
𝑗∏

𝑖=1
𝐿𝑖 = E

[
𝑗−1∏
𝑖=1

𝐿𝑖 · E
[
𝐿 𝑗 |F𝐽 𝑗

] ]
.

By the definition of 𝐽 𝑗 we have (𝑋𝐽 𝑗 , 𝑋
′
𝐽 𝑗
) ∈ 𝐶 × 𝐶. Using this fact, the strong

Markov property and the definition of 𝑄̂ (see (5)), we find that

P[𝑋𝐽 𝑗+1 ⪯ 𝑋′
𝐽 𝑗+1 |F𝐽 𝑗] = 𝑄̂((𝑋𝐽 𝑗 , 𝑋

′
𝐽 𝑗
),G) = 𝛼(𝑄(𝑋𝐽 𝑗 , ·), 𝑄(𝑋′

𝐽 𝑗
, ·)).

Applying the definition of 𝜀 in (9), we obtain P[𝑋𝐽 𝑗+1 ⪯̸ 𝑋′
𝐽 𝑗+1 |F𝐽 𝑗] ⩽ 1 − 𝜀, so

P ∩ 𝑗
𝑖=1 {𝑋𝐽𝑖+1 ⪯̸ 𝑋′

𝐽𝑖+1} ⩽ (1 − 𝜀)P ∩ 𝑗−1
𝑖=1 {𝑋𝐽𝑖+1 ⪯̸ 𝑋′

𝐽𝑖+1}.

Iterating backwards in this way yields P∩ 𝑗
𝑖=1 {𝑋𝐽𝑖+1 ⪯̸ 𝑋′

𝐽𝑖+1} ⩽ (1−𝜀) 𝑗. Combining
this inequality with (16) and (17) verifies (15). □

Now we complete the proof of Theorem 3.1. The proof uses an order-theoretic
version of a standard total variation coupling argument [18, 24].
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Proof of Theorem 3.1. We continue to take ((𝑋𝑡, 𝑋′
𝑡 ))𝑡⩾0, the stopping time 𝜏, and

the process (𝑁𝑡)𝑡⩾0 as defined at the start of Section 4. In addition, we specialize
to the case where the initial distribution 𝜋 has the form 𝜇×𝜇′ for fixed 𝜇, 𝜇′ ∈ 𝑝B.
Fix ℎ in 𝑖𝑏B with 0 ⩽ ℎ ⩽ 1. Since ((𝑋𝑡, 𝑋′

𝑡 ))𝑡⩾0 is Markov-(𝑄̂, 𝜇 × 𝜇′) and 𝑄̂ (𝑥,𝑥′) is
a coupling of 𝑄𝑥 and 𝑄𝑥′ , the random element 𝑋𝑡 has distribution 𝜇𝑄𝑡 and 𝑋′

𝑡 has
distribution 𝜇′𝑄𝑡. As a result,

(𝜇𝑄𝑡) (ℎ) − (𝜇′𝑄𝑡) (ℎ) = Eℎ(𝑋𝑡) −Eℎ(𝑋′
𝑡 )

= E
[
(ℎ(𝑋𝑡) − ℎ(𝑋′

𝑡 ))1{𝑋𝑡 ⪯ 𝑋′
𝑡 }
]
+E

[
(ℎ(𝑋𝑡) − ℎ(𝑋′

𝑡 ))1{𝑋𝑡 ⪯̸ 𝑋′
𝑡 }
]
.

Since ℎ is increasing and 0 ⩽ ℎ ⩽ 1, the previous display leads to

(𝜇𝑄𝑡)(ℎ) − (𝜇′𝑄𝑡)(ℎ) ⩽ E
[
(ℎ(𝑋𝑡) − ℎ(𝑋′

𝑡 ))1{𝑋𝑡 ⪯̸ 𝑋′
𝑡 }
]
⩽ P{𝑋′

𝑡 ⪯̸ 𝑋𝑡}.

Applying (12) produces

(𝜇𝑄𝑡) (ℎ) − (𝜇′𝑄𝑡)(ℎ) ⩽ P{𝜏 > 𝑡} for all 𝑡 ⩾ 0. (18)

Fixing 𝑗 ∈ N with 𝑗 ⩽ 𝑡, we decompose the right-hand side of (18) to get

P{𝜏 > 𝑡} = P{𝜏 > 𝑡, 𝑁𝑡−1 < 𝑗} +P{𝜏 > 𝑡, 𝑁𝑡−1 ⩾ 𝑗}.

Using Lemmas 4.2 and 4.3 allows us to obtain

P{𝜏 > 𝑡} ⩽ (1 − 𝜀) 𝑗 + 𝐵 𝑗−1

𝛿−𝑡 (1) (𝜇 × 𝜇′)(𝑊). (19)

Combining (18) and (19) yields

sup
𝐼∈𝑖B

{
(𝜇𝑄𝑡) (𝐼) − (𝜇′𝑄𝑡)(𝐼)

}
⩽ (1 − 𝜀) 𝑗 + 𝐵 𝑗−1

𝛿−𝑡 (1) (𝜇 × 𝜇′) (𝑊). (20)

Reversing the roles of 𝜇 and 𝜇′ produces

sup
𝐼∈𝑖B

{
(𝜇′𝑄𝑡) (𝐼) − (𝜇𝑄𝑡)(𝐼)

}
⩽ (1 − 𝜀) 𝑗 + 𝐵 𝑗−1

𝛿−𝑡 (1) (𝜇
′ × 𝜇) (𝑊). (21)

Adding the last two inequalities and using the definition of 𝜌 in (2) generates the
bound in Theorem 3.1. □

5. Related Convergence Results

In this section we discuss connections between Theorem 3.1 and convergence re-
sults in other metrics.
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5.1. Connection to Total Variation Results. One interesting special case of
Theorem 3.1 is obtained by setting ⪯ to the identity order, so that 𝑥 ⪯ 𝑦 if and
only if 𝑥 = 𝑦. For this order we have 𝑖𝑏B = 𝑏B, so every transition kernel is
increasing, and, moreover, the total ordered variation distance becomes the total
variation distance. In this setting, Theorem 3.1 becomes a version of well-known
geometric bounds for total variation distance, such as Theorem 1 in [24].

In the total variation setting, 𝜀 in (9) is at least as large as the analogous term 𝜀

in Theorem 1 in [24]. Indeed, in [24], the value 𝜀, which we now write as 𝜀 to avoid
confusion, comes from an assumed minorization condition: there exists a 𝜈 ∈ 𝑝B
such that

𝜀𝜈(𝐵) ⩽ 𝑄(𝑥, 𝐵) for all 𝐵 ∈ B and 𝑥 ∈ 𝐶. (22)
To compare 𝜀 with 𝜀 defined in (9), suppose that this minorization condition holds
and set 𝑅(𝑥, 𝐵) = (𝑄(𝑥, 𝐵)−𝜀𝜈(𝐵))/(1−𝜀). Fixing (𝑥, 𝑥′) ∈ 𝐶×𝐶, we draw (𝑋, 𝑋′) as
follows: With probability 𝜀, we draw 𝑋 ∼ 𝜈 and set 𝑋′ = 𝑋 . With probability 1−𝜀,
we independently draw 𝑋 ∼ 𝑅(𝑥, ·) and 𝑋′ ∼ 𝑅(𝑥′, ·). Simple arguments confirm
that 𝑋 is a draw from 𝑄(𝑥, ·) and 𝑋′ is a draw from 𝑄(𝑥′, ·). Recalling that ⪯ is
the identity order, this leads to 𝜀 ⩽ P{𝑋 = 𝑋′} = P{𝑋 ⪯ 𝑋′} ⩽ 𝛼(𝑄(𝑥, ·), 𝑄(𝑥′, ·)).
Since, in this discussion, the point (𝑥, 𝑥′) was arbitrarily chosen from 𝐶 × 𝐶, we
conclude that 𝜀 ⩽ 𝜀, where 𝜀 is as defined in (9).

5.2. Connection to Wasserstein Bounds. Theorem 3.1 is also connected to
research on convergence rates for distributions in Wasserstein distance. To see
this, recall that if 𝑑 is a metric on X, then the induced Wasserstein distance
between probability measures 𝜇 and 𝜈 is

𝑊𝑑 (𝜇, 𝜈) ≔ inf
𝜋∈C (𝜇,𝜈)

∫
𝑑(𝑥, 𝑥′)𝜋(d𝑥, d𝑥′). (23)

To connect this distance to the total ordered variation metric, we use Theorem 3.1
of [16] to write

sup
𝐼∈𝑖B

(𝜇(𝐼) − 𝜈(𝐼)) = inf
𝜋∈C (𝜇,𝜈)

∫
1{𝑥 ⪯̸ 𝑥′}𝜋(d𝑥, d𝑥′).

Thus, if

𝑠(𝑥, 𝑥′) = 1{𝑥 ⪯̸ 𝑥′} and 𝑊𝑠(𝜆, 𝜅) = inf
𝜋∈C (𝜆,𝜅)

∫
𝑠(𝑥, 𝑥′)𝜋(d𝑥, d𝑥′), (24)

then, by the definition of 𝜌 in (2), we have

𝜌(𝜇, 𝜈) =𝑊𝑠(𝜇, 𝜈) +𝑊𝑠(𝜈, 𝜇). (25)

We can understand 𝑠 as a “directed semimetric” that fails symmetry and posi-
tive definiteness but obeys 𝑠(𝑥, 𝑥) = 0 and the triangle inequality. The “directed
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Wasserstein semimetric” 𝑊𝑠 inherits these properties. The sum of this directed
Wasserstein semimetric and its reversed deviation creates a metric, as in (25).
The inequalities (20) and (21) that we combined to prove Theorem 3.1 are just
bounds on 𝑊𝑠(𝜇, 𝜈) and 𝑊𝑠(𝜈, 𝜇). For example, (20) tells us that

𝑊𝑠(𝜇𝑄𝑡, 𝜇′𝑄𝑡) ⩽ (1 − 𝜀) 𝑗 + 𝐵 𝑗−1

𝛿−𝑡 (1) (𝜇 × 𝜇′)(𝑊). (26)

The discussion above helps us understand the relationship between the order-
theoretic mixing condition used in this paper and the Wasserstein distance mix-
ing condition in [4]. In the latter, the notion of 𝑑-small sets is introduced in
order to study Wasserstein distance convergence rates for distributions: for tran-
sition kernel 𝑄, a Borel set 𝐶 is called 𝑑-small if there exists an 𝜀 > 0 such that
𝑊𝑑 (𝑄𝑥 , 𝑄𝑥′) ⩽ (1 − 𝜀)𝑑(𝑥, 𝑥′) for all (𝑥, 𝑥′) ∈ 𝐶 × 𝐶. Here 𝑑 is an arbitrary ground
metric on X and 𝑊𝑑 is defined as in (23). By analogy, we replace 𝑑 with 𝑠 from
(24) and call 𝐶 𝑠-small if there exists an 𝜀 > 0 such that

𝑊𝑠(𝑄𝑥 , 𝑄𝑥′) ⩽ (1 − 𝜀)𝑠(𝑥, 𝑥′) for all (𝑥, 𝑥′) ∈ 𝐶 × 𝐶.

Fixing 𝑥, 𝑥′ ∈ 𝐶 and using the definition of 𝑠, we can equivalently write this as

inf
𝜋

𝜋(G𝑐) ⩽ (1 − 𝜀)1{𝑥 ⪯̸ 𝑥′}, (27)

where G is as defined in (1) and the infimum is over all 𝜋 ∈ C (𝑄𝑥 , 𝑄𝑥′). Rear-
ranging and using the definition of 𝛼 in (3), we can also write (27) as

𝛼(𝑄𝑥 , 𝑄𝑥′) ⩾ 1{𝑥 ⪯ 𝑥′} + 𝜀1{𝑥 ⪯̸ 𝑥′} for all (𝑥, 𝑥′) ∈ 𝐶 × 𝐶. (28)

When 𝑄 is increasing, as required in Theorem 3.1, we can use (4) to obtain
𝛼(𝑄𝑥 , 𝑄𝑥′) = 1 whenever 𝑥 ⪯ 𝑥′. In this case, (28) is equivalent to 𝛼(𝑄𝑥 , 𝑄𝑥′) ⩾ 𝜀

whenever (𝑥, 𝑥′) ∈ 𝐶 × 𝐶. Thus, the requirement that 𝐶 is 𝑠-small is equivalent to
the condition that we can extract a positive 𝜀 in (9).

6. Examples and Applications

In this section we discuss several examples, focusing in particular on how to obtain
an estimate of the value 𝜀 in (9).

6.1. Stochastic Recursive Sequences. The preceding section showed that The-
orem 3.1 reduces to existing results for bounds on total variation distance when
the partial order ⪯ is the identity order. Next we illustrate how Theorem 3.1 can
lead to new results in other settings. To this end, consider the process

𝑋𝑡+1 = 𝐹(𝑋𝑡, 𝜉𝑡+1) (29)
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where (𝜉𝑡)𝑡⩾1 is an iid shock process taking values in some space Y, and 𝐹 is a
measurable function from X × Y to X. The common distribution of each 𝜉𝑡 is
denoted by 𝜑. We suppose that 𝐹 is increasing, in the sense that 𝑥 ⪯ 𝑥′ implies
𝐹(𝑥, 𝑦) ⪯ 𝐹(𝑥′, 𝑦) for any fixed 𝑦 ∈ Y. We let 𝑄 represent the transition kernel
corresponding to (29), so that 𝑄(𝑥, 𝐵) = 𝜑{𝑦 ∈ Y : 𝐹(𝑥, 𝑦) ∈ 𝐵} for all 𝑥 ∈ X
and 𝐵 ∈ B. Since 𝐹 is increasing, the kernel 𝑄 is increasing. Hence Theorem 3.1
applies. We can obtain a lower bound on 𝜀 in (9) by calculating

𝑒 ≔ inf
{∫ ∫

1{𝐹(𝑥′, 𝑦′) ⪯ 𝐹(𝑥, 𝑦)}𝜑(d𝑦)𝜑(d𝑦′) : (𝑥, 𝑥′) ∈ 𝐶 × 𝐶

}
. (30)

To see this, fix (𝑥, 𝑥′) ∈ 𝐶 × 𝐶 and let 𝜉 and 𝜉′ be drawn independently from 𝜑.
Since 𝑋 = 𝐹(𝑥, 𝜉) is a draw from 𝑄(𝑥, ·) and 𝑋′ = 𝐹(𝑥′, 𝜉) is a draw from 𝑄(𝑥′, ·),
we have 𝑒 ⩽ P{𝑋′ ⪯ 𝑋} ⩽ 𝛼(𝑄(𝑥, ·), 𝑄(𝑥′, ·)). As this inequality holds for all
(𝑥, 𝑥′) ∈ 𝐶 × 𝐶, we obtain 𝑒 ⩽ 𝜀.

To illustrate how these calculations can be used, consider the TCP window size
process (see, e.g., [2]) with embedded jump chain 𝑋𝑡+1 = 𝑎(𝑋2

𝑡 + 2𝐸𝑡+1)1/2. Here
𝑎 ∈ (0, 1) and (𝐸𝑡) is iid exponential with unit rate. If 𝐶 = [0, 𝑐], then drawing
𝐸, 𝐸′ as independent standard exponentials and using (30) yields

𝑒 = inf
0⩽𝑥,𝑦⩽𝑐

P
{
𝑎(𝑦2 + 2𝐸′)1/2 ⩽ 𝑎(𝑥2 + 2𝐸)1/2} = P{𝑐2 + 2𝐸′ ⩽ 2𝐸}.

Since 𝐸′ − 𝐸 has the Laplace-(0, 1) distribution, we can use 𝑒 ⩽ 𝜀 to get

1 − 𝜀 ⩽ 1 − 𝑒 = P{𝑐2 + 2𝐸′ > 2𝐸} = P{𝐸′ − 𝐸 > 𝑐2/2} = 1
2

exp(−𝑐2/2).

6.2. Example: When Minorization Fails. We provide an elementary scenario
where Theorem 3.1 provides a usable bound while the minorization based methods
described in Section 5.1 do not. Let Q be the rational numbers, let X = R, and
assume that

𝑋𝑡+1 =
𝑋𝑡
2
+ 𝜉𝑡+1 where 𝜉𝑡 is iid on {0, 1} and P{𝜉𝑡 = 0} = 1/2.

Let 𝐶 contain at least one rational and one irrational number. Let 𝜇 be a measure
on the Borel sets of R obeying 𝜇(𝐵) ⩽ 𝑄(𝑥, 𝐵) = P{𝑥/2 + 𝜉 ∈ 𝐵} for all 𝑥 ∈ 𝐶

and Borel sets 𝐵. If 𝑥 is rational, then 𝑥/2 + 𝜉 ∈ Q with probability one, so
𝜇(Q𝑐) ⩽ 𝑄(𝑥,Q𝑐) = 0. Similarly, if 𝑥 is irrational, then 𝑥/2 + 𝜉 ∈ Q𝑐 with
probability one, so 𝜇(Q) ⩽ 𝑄(𝑥,Q) = 0. Hence 𝜇 is the zero measure on R.
Thus, we cannot take a 𝜀 > 0 and probability measure 𝜈 obeying the minorization
condition (22). On the other hand, letting 𝐶 = [0, 1], the value 𝑒 from (30) obeys
𝑒 = P{1/2 + 𝜉 ⩽ 𝜉′} = P{𝜉′ − 𝜉 ⩾ 1/2} = 1

4 . Since 𝑒 ⩽ 𝜀 (see the discussion after
(30)), the constant 𝜀 in (9) is positive.
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6.3. Example: Wealth Dynamics. Many economic models examine wealth
dynamics in the presence of credit market imperfections (see, e.g., [1]). These
often result in dynamics of the form

𝑋𝑡+1 = 𝜂𝑡+1 𝐺(𝑋𝑡) + 𝜉𝑡+1, (𝜂𝑡) iid∼ 𝜑, (𝜉𝑡) iid∼ 𝜓. (31)

Here (𝑋𝑡) is some measure of household wealth, 𝐺 is a function fromR+ to itself and
(𝜂𝑡) and (𝜉𝑡) are independent R+-valued sequences. The function 𝐺 is increasing,
since greater current wealth relaxes borrowing constraints and increases financial
income. We assume that there exists a 𝜅 < 1 such that E 𝜂𝑡𝐺(𝑥) ⩽ 𝜅𝑥 for all
𝑥 ∈ R+, and, in addition, that 𝜉 ≔ E𝜉𝑡 < ∞.

Let 𝑄 be the transition kernel corresponding to (31). With 𝑉 (𝑥) = 𝑥, we have

𝑄𝑉 (𝑥) = E[𝜂𝑡+1 𝐺(𝑥) + 𝜉𝑡+1] ⩽ 𝜅𝑥 + 𝜉 = 𝜅𝑉 (𝑥) + 𝜉. (32)

Fixing 𝑑 ∈ R+ and setting 𝐶 = {𝑉 ⩽ 𝑑} = [0, 𝑑], we can obtain 𝑒 in (30) via

𝑒 = P{𝜂′𝐺(𝑑) + 𝜉′ ⩽ 𝜂𝐺(0) + 𝜉} when (𝜂′, 𝜉′, 𝜂, 𝜉) ∼ 𝜑 × 𝜓 × 𝜑 × 𝜓.

This term, which provides a lower bound for 𝜀, will be strictly positive under suit-
able conditions, such as when 𝜓 has a sufficiently large support. By the discussion
in Section 3.3, the drift condition (11) holds with 𝑊 (𝑥, 𝑥′) = 1+𝑉 (𝑥) +𝑉 (𝑥′) and 𝛾

set to (1+ 𝜅𝑑 + 2𝜉)/(1+ 𝑑). The function 𝑊 is bounded above by 2𝑑 + 1 on 𝐶 × 𝐶,
so we can set 𝐵 = 2𝑑 + 1. With 𝛾 and 𝐵 so defined, the bound in Corollary 3.2 is
valid.

Notice that, for this model, we cannot compute useful total variation or Wasser-
stein bounds without adding more assumptions.

7. Conclusion

We exploited monotonicity properties of certain discrete time Markov models to
provide quantitative bounds on total ordered variation distance between distri-
butions over time. There are several avenues for future research on these topics.
One would be to extend the results to continuous time Markov processes. An-
other would be to investigate the connection between the conditions listed here
and sample path results, such as the central limit theorem. A third would be
to attempt to reframe, prove and generalize our results using a variation on the
analytical arguments in, say, [12], [4], and [6]. This third avenue seems promising
because, at least in the Polish space setting, the total ordered variation metric
used in this paper is complete [16].
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