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Today’s Lecture

• Dynamical systems

• Order

• Monotone dynamical systems

• From monotonicity to stability
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We previously studied dynamics through 45 degree diagrams

Informal discussions of

• stability

• steady states

• convergence

• etc.

Let’s formalize ideas and state some general results
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A dynamical system is a pair (M, g), where

1. M is a metric space and

2. g is a self-mapping on M

In this context, M is called the state space

Example. In the Solow–Swan model we saw that

kt+1 = g(kt) where g(k) := s f (k) + (1 − δ)k

Since g maps R+ to itself, the pair (R+, g) is a dynamical system
when R+ has its usual topology

If g : u 7→ 2u, then ([0, 1], g) is not a dynamical system because?
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Let (M, g) be a dynamical system and consider

ut+1 = g(ut), where u0 = some given point in M

For this sequence we have

u2 = g(u1) = g(g(u0)) =: g2(u0)

and, more generally,

ut = gt(u0) where gt = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
t compositions of g

The sequence {gt(u0)}t⩾0 is called the trajectory of u0 ∈ M

We will also call it a time series
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u M

g(u)

g2(u)

g3(u)

Figure: The trajectory of u under g
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Fact. If g is increasing on M and M ⊂ R, then every trajectory is
monotone (either increasing or decreasing)

Proof: Pick any u ∈ M

Either u ⩽ g(u) or g(u) ⩽ u — let’s treat the first case

Since g is increasing and u ⩽ g(u) we have g(u) ⩽ g2(u)

Putting these inequalities together gives

u ⩽ g(u) ⩽ g2(u)

Continuing in this way gives

u ⩽ g(u) ⩽ g2(u) ⩽ g3(u) ⩽ · · ·
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0 x0 x1 x2 x3 2
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Hence, in 1D, increasing functions generate simple dynamics

If g is not increasing then the dynamics can be far more erratic

Example. Let M := [0, 1] and g be the quadratic map

g(x) = 4x(1 − x) (1)

Almost all starting points generate “complicated” trajectories
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0 x0 x1x2 1
0

x0

x1

x2

1

g 45

Figure: Logistic map g(x) = 4x(1 − x) with x0 = 0.3
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Figure: The corresponding time series
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Figure: A longer time series
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Steady States

Let (M, g) be a dynamical system

Suppose that u∗ is a fixed point of g, so that

g(u∗) = u∗

Then, for any trajectory {ut} generated by g,

ut = u∗ =⇒ ut+1 = g(ut) = g(u∗) = u∗

In other words, if we ever get to u∗ we stay there

Hence, a fixed point of g in M is also called a steady state
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Figure: Steady states of g(x) = 2.125/(1 + x−4) and g(0) = 0
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Let (M, g) be a dynamical system

Fact. If gt(u) → u∗ for some u, u∗ ∈ M and g is continuous at
u∗, then u∗ is a fixed point of g

Proof: Assume the hypotheses, let ut := gt(u)

By continuity and ut → u∗ we have g(ut) → g(u∗)

But {g(ut)} is just {ut} without the first element and ut → u∗

Hence g(ut) → u∗

We now have

g(ut) → g(u∗) and g(ut) → u∗

Limits are unique, so u∗ = g(u∗)
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Local Stability

Let u∗ be a steady state of (M, g)

The stable set of u∗ is

O(u∗) := {u ∈ M : gt(u) → u∗ as t → ∞}

This set is nonempty (why?)

The steady state u∗ is called locally stable or an attractor if
there exists an ϵ > 0 such that

Bϵ(u∗) ⊂ O(u∗)
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Figure: Steady states of g(x) = 2.125/(1 + x−4) and g(0) = 0
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Figure: O(xℓ)
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Figure: O(xh)
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Global Stability

Dynamical system (M, g) is called globally stable if

1. g has a fixed point u∗ in M

2. u∗ is the only fixed point of g in M

3. gt(u) → u∗ as t → ∞ for all u ∈ M

Equivalent: g has a fixed point u∗ in M and O(u∗) = M
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Figure: Visualizing global stability in R2
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Example. Recall the Solow-Swan growth model where

g(k) = sAkα + (1 − δ)k

with

1. M = (0, ∞)

2. A > 0 and 0 < s, α, δ < 1

The system (M, g) is globally stable with unique fixed point

k∗ :=
(

sA
δ

)1/(1−α)
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Proof: Simple algebra shows that for k > 0 we have

k = sAkα + (1 − δ)k ⇐⇒ k =

(
sA
δ

)1/(1−α)

Hence (M, g) has unique steady state k∗

It remains to show that gt(k) → k∗ for every k ∈ M := (0, ∞)

Let’s show this for any k ⩽ k∗, leaving k∗ ⩽ k as an exercise

Since calculating gt(k) directly is messy, let’s try another strategy
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Claim: If 0 < k ⩽ k∗, then {gt(k)} is increasing and bounded

Proof increasing: Since g increasing {gt(k)} is monotone

From k ⩽ k∗ and some algebra (exercise) we get

k ⩽ k∗ =⇒ g(k) ⩾ k =⇒ {gt(k)} increasing

Proof bounded: From k ⩽ k∗ and the fact that g is increasing,

g(k) ⩽ g(k∗) = k∗

Applying g to both sides gives g2(k) ⩽ k∗ and so on

Hence both bounded and increasing
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Hence gt(k) → k̂ for some k̂ ∈ M

Because g is continuous, k̂ is a fixed point

But k∗ is the only fixed point of g on M, as discussed above

Hence k̂ = k∗

In other words, gt(k) → k∗ as claimed
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Figure: Global stability in the Solow–Swan model



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
28/75

Example. Consider again the Solow-Swan growth model

g(k) = sAkα + (1 − δ)k

where parameters are as before

If M = [0, ∞) then (M, g) is not globally stable

• We showed above that g has a fixed point k∗ in (0, ∞)

• However, 0 is also a fixed point of g on [0, ∞)

• Hence (M, g) has two steady states in M = [0, ∞)

Moral: The state space matters for dynamic properties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
29/75

Global Stability of Powers

The next result will be used in our study of Markov chains

Fact. Let (M, g) be a dynamical system

If

1. (M, gi) is globally stable for some i ∈ N and

2. g is continuous at the steady state u∗ of gi,

then (M, g) is globally stable with unique steady state u∗

Proof: See course notes
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Closed Invariant Sets

Let (M, g) be a globally stable dynamical system with fixed point
u∗ and let F be a closed subset of M

We say that g is invariant on F if u ∈ F implies g(u) ∈ F

Fact. If F is nonempty and g is invariant on F, then u∗ ∈ F

Ex. Check it

We use this many times in what follows

Examples.

• Concavity of the value function in savings problems

• Monotonicity of reservation wages, etc.
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Application: Asset Pricing

When are asset prices increasing in x?

Recall that the equilibrium risk neutral price function satisfies

p∗(x) = β
∫

[d(F(x, z)) + p∗(F(x, z))] φ(dz) (x ∈ R)

Under what conditions does p∗ increase in x?

Additional assumptions:

• d is increasing on R
• F(x, z) is increasing in x for each z

Does this sound like enough?
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Recall that p is the unique fixed point in bcX of

Tp(x) = β
∫

[d(F(x, z)) + p(F(x, z))] φ(dz)

The pair (bcR, T) forms a dynamical system!

Let ibcR be the increasing functions in bcR

Ex. Show that this set is closed in (bcR, d∞)

Hence, if T is invariant on ibcR, then

• its fixed point lies in ibcR

• in particular, p∗ is increasing
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Under the stated assumptions, T is invariant on ibcR

Proof: Pick any p in ibcR and fix x, x′ in R with x ⩽ x′

For any z,

d(F(x, z)) ⩽ d(F(x′, z)) and p(F(x′, z)) ⩽ p(F(x′, z))

∴ Tp(x) = β
∫

[d(F(x, z)) + p(F(x, z))] φ(dz)

⩽ β
∫ [

d(F(x′, z)) + p(F(x′, z))
]

φ(dz)

= Tp(x′)

In particular, Tp ∈ ibcR
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Sufficient Conditions for Global Stability

When is dynamical system (M, g) globally stable?

One sufficient condition is the Banach CMT

Requires that

• M is complete

• g is a contraction map on M

But this theorem doesn’t always apply...
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Example. Consider g(k) = s f (k) + (1 − δ)k with general f

• Typically not a contraction mapping...

• Moreover, the state (0, ∞) is not complete

We require some alternative fixed point / stability results

Some of them use order theory

These results will be useful for many other problems so let’s state
them in an abstract order-theoretic setting
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Order Structure

To study order in an abstract setting we introduce abstract notions
of

• (partial) order

• suprema and infima

• lattices and sublattices

• isotonicity (increasing functions)
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A partial order on nonempty set M is a relation ⪯ on M × M
satisfying, for any u, v, w in M,

1. u ⪯ u,

2. u ⪯ v and v ⪯ u implies u = v and

3. u ⪯ v and v ⪯ w implies u ⪯ w

Paired with ⪯, the set M is called a partially ordered set

Example. A subset M of Rd with the pointwise order ⩽
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Example. Let X be any set and let ℘(X) be the set of all subsets

Then ⊂ is a partial order on ℘(X), since

1. A ⊂ A
2. A ⊂ B and B ⊂ A implies A = B
3. A ⊂ B and B ⊂ C implies A ⊂ C

Example. Let X be any set and, given f , g ∈ RX, write

f ⩽ g if f (x) ⩽ g(x) for all x ∈ X

This is the pointwise partial order on RX

Ex. Check it satisfies the definition of a partial order
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Given a subset E of a partially ordered set M, we call u ∈ M an
upper bound of E in M if e ⪯ u whenever e ∈ E

If there exists an s ∈ M such that

1. s is an upper bound of E and

2. s ⪯ u whenever u is an upper bound of E,

then s is called the supremum of E in M

Note: Equivalent to the traditional definition when M ⊂ R

Ex. Show that a subset E of M can have at most one supremum
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Given a subset E of a partially ordered set M, we call ℓ ∈ M a
lower bound of E in M if ℓ ⪯ e for all e ∈ E

If there exists an i ∈ M such that

1. i is a lower bound of E and

2. ℓ ⪯ i whenever ℓ is a lower bound of E,

then i is called the infimum of E in M

Note: Equivalent to the traditional definition when M ⊂ R

Ex. Show that a subset E of M can have at most one infimum
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Example. Let ⩽ be the pointwise partial order on RX

Fix K ∈ R+ and let E ⊂ BK(0) = { f ∈ bX : ∥ f ∥∞ ⩽ K}

Fact. The supremum of E exists in (bX,⩽) and is given by

ĝ(x) := sup
g∈E

g(x) (x ∈ X) (2)

Proof: Sups of bounded sets in R exist, so ĝ exists in bX

Moreover,

1. ĝ ⩾ g for all g ∈ E

2. h ⩾ g for all g ∈ E implies h ⩾ ĝ

Similarly, ǧ(x) := infg∈E g(x) is the infimum of E
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Given u and v in M, the supremum of {u, v}, when it exists, is
also called the join of u and v, and is written u ∨ v

The infimum of {u, v}, when it exists, is also called the meet of u
and v, and is written u ∧ v

This is consistent with our earlier notation for vectors...
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u1 v1

v2

u2

u ∧ v v

u u ∨ v

Figure: The points u ∨ v and u ∧ v in R2
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f

g

f ∨ g

f ∧ g

Figure: Functions f ∨ g and f ∧ g when defined on a subset of R
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Suprema and infima do not necessarily exist

Example. Consider M = R with the usual order, where E = R+

has no upper bounds in M and hence no supremum
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If (M,⪯) has the property that every finite subset of M has both
a supremum and in infimum then (M,⪯) is called a lattice

Example. Given metric space X, the set bcX is a lattice when
endowed with the pointwise partial order ⩽
Proof: If f and g are continuous and bounded on X, then

• f ∧ g is continuous and bounded
• f ∨ g is continuous and bounded

Example. The set of continuously differentiable functions on
[−1, 1] is not a lattice under the pointwise partial order ⩽

For example, the supremum of {x 7→ x, x 7→ −x} is x 7→ |x|
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A subset L of a lattice M is called a sublattice of M if

u, v ∈ L =⇒ u ∧ v ∈ L and u ∨ v ∈ L

Examples. Given metric space X,

• bcX is a sublattice of the lattice bX

• The set of nonnegative functions in bcX is a sublattice of bcX

• The set strictly positive functions in bcX is a sublattice of bcX
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Suppose we have a metric space (M, ρ) and ⪯ is a partial order on
M

• Often we want outcomes to replicate what we see in Rd

• In Euclidean space, weak orders are preserved under limits

For this reason, we often require that ⪯ is closed with respect to ρ

This means that

un → u, vn → v and un ⪯ vn for all n ∈ N =⇒ u ⪯ v
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Example. The pointwise partial order ⩽ is closed on (bX, d∞)

Proof: Suppose that

• fn → f and gn → g in d∞

• fn ⩽ gn for all n

For any fixed x ∈ X,

• fn(x) → f (x) and gn(x) → g(x) in R (why?)
• fn(x) ⩽ gn(x) for all n

Since orders are preserved by limits in R, we have f (x) ⩽ g(x)

Since x was arbitrary, we have f ⩽ g in (bX,⩽)
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Given two partially ordered sets (M,⪯) and (L,⊴), a function g
from M to L is called isotone if

u ⪯ v =⇒ g(u) ⊴ g(v) (3)

If M = L = R and ⪯ and ⊴ are both equal to ⩽, the standard
order on R, then isotone means increasing (i.e., nondecreasing)

Other terms for isotone

• monotone increasing

• monotone

• order-preserving
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Example. Recall the equilibrium price operator T on bcR defined
by

Tp(x) = β
∫

[d(F(x, z)) + p(F(x, z))] φ(dz) (x ∈ R)

Endow bcR with the pointwise partial order ⩽
For p, q in bcR with p ⩽ q and arbitrary x ∈ R, we have

Tp(x) = β
∫

[d(F(x, z)) + p(F(x, z))] φ(dz)

⩽ β
∫

[d(F(x, z)) + q(F(x, z))] φ(dz)

= Tq(x)

Hence Tp ⩽ Tq and T is isotone
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Let S and T be isotone self-mappings on partially ordered set M

Ex. Show that S ◦ T is also an isotone self-mapping on M

Ex. Show that if u is a point in M with u ⪯ Tu, then the
sequence defined by un := Tnu is monotone increasing

(Meaning: un ⪯ un+1 for all n)
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Parametric Monotonicity

A major concern in economic modeling is whether or not
endogenous objects are shifted up (or down) by a change in some
underlying parameter

Examples.

• Does a given policy intervention decrease steady state
inflation?

• Does faster productivity growth increase firm profits?

• Does higher unemployment compensation increase average
unemployment duration?
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Let’s see what we can say about such parametric monotonicity
when the endogenous objects are fixed points

Let ⪯ be a closed partial order on metric space M

Given two self-maps g and h on M, we write

g ⪯ h if g(u) ⪯ h(u) for every u ∈ M

• Sometimes h is said to dominate the function g

Domination is related to ordering of fixed points but does not
guarantee it
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g

h

ug

uh

Figure: The dominating function has a higher fixed point
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gh

ug

uh

Figure: The dominating function has a lower fixed point
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Fact. If (M, g) and (M, h) are dynamical systems such that

1. h is isotone and dominates g on M
2. (M, h) is globally stable with unique fixed point uh,

then ug ⪯ uh for every fixed point ug of g

Proof: Since g ⪯ h, we have ug = g(ug) ⪯ h(ug)

Hence (by what laws?)

h(ug) ⪯ h2(ug) and therefore ug ⪯ h2(ug)

Continuing in this fashion yields ug ⪯ ht(ug) for all t

Taking the limit in t gives ug ⪯ uh
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Ex. Let g(k) = sAkα + (1 − δ)k where

• all parameters are strictly positive

• α ∈ (0, 1) and δ ⩽ 1

Let k∗(s, A, α, δ) be the unique fixed point of g in (0, ∞)

Without using the expression we derived for k∗ previously, show
that

1. k∗(s, A, α, δ) is increasing in s and A

2. k∗(s, A, α, δ) is decreasing in δ
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Figure: Deviations from the default A = 2.0, s = α = 0.3 and δ = 0.4
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Application: Patience and Asset Prices

Let’s go back to the equilibrium risk neutral price function

p(x) = β
∫

[d(F(x, z)) + p(F(x, z))] φ(dz) (x ∈ R)

How does it vary with parameters?

Consider two discount values β1 and β2

Let p1 and p2 be the corresponding equilibrium price functions

If β1 ⩽ β2, is it true that p1 ⩽ p2?

In other words, to we get higher prices for the asset in all states?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
61/75

The functions p1 and p2 are fixed points of the operators

T1 p(x) = β1

∫
[d(F(x, z)) + p(F(x, z))] φ(dz)

and
T2 p(x) = β2

∫
[d(F(x, z)) + p(F(x, z))] φ(dz)

If β1 ⩽ β2, then the following equivalent statements are true

• T1 p(x) ⩽ T2 p(x) for all p ∈ bcX, x ∈ X

• T1 p ⩽ T2 p in the pointwise partial order for all p ∈ bcX

• T1 is dominated by T2 on (bcX,⩽)
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Summarizing what we know,

1. T1 is dominated by T2 on (bcX,⩽)

2. T2 is isotone on (bcX,⩽)

3. (bcX, T2) is globally stable

Hence p1 ⩽ p2 in (bcX,⩽)

In particular, p1(xt) ⩽ p2(xt) for all realizations of xt

Thus, p2 yields higher prices in all states
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From Order to Stability

Monotonicity is also connected to fixed points and stability

To illustrate, let’s think again about the Solow–Swan growth model

kt+1 = g(kt) := s f (kt) + (1 − δ)kt

So far, we have proved stability in the case of

• Cobb–Douglas production f (k) = Akα

• some suitable parameter restrictions
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Figure: 45 degree diagram for the Solow–Swan model
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It seems that global stability will hold more generally

All we really need is a similar shape for f

Example.

• f is strictly increasing and concave
• f ′(0) = ∞ and f ′(∞) = 0

Then the 45 degree diagram will be similar too

But what proof technique can we use?

Not the Banach CMT, since

• g is not a contraction

• The set (0, ∞) is not complete
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Clearly we need another fixed point theorem

There aren’t many that give

1. existence

2. uniqueness

3. global convergence of successive approximations

But we need one...
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Our plan is to exploit

1. order structure (e.g., the Solow map is increasing)

2. algebraic structure (e.g., the Solow map is concave)

3. topological structure (e.g., small points are mapped up
strictly and large points are mapped down strictly)
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Order Structure in Rd: Reminders

We use the standard pointwise partial order ⩽ in Rd discussed
earlier: for u = (u1, . . . , ud) and v = (v1, . . . , vd) in Rd,

u ⩽ v ⇐⇒ ui ⩽ vi for all i

In addition,

• if ui ⩽ vi for all i and u ̸= v then we write u < v

• if ui < vi for all i then we write u ≪ v

As usual,

• u ∧ v := (u1 ∧ v1, . . . , ud ∧ vd)

• u ∨ v := (u1 ∨ v1, . . . , ud ∨ vd)
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Recall: A subset L of Rd is called a sublattice of Rd if, given u, v
in Rd, we have

u, v ∈ L =⇒ u ∧ v ∈ L and u ∨ v ∈ L

Examples.

• The positive cone

C := Rd
+ := {u ∈ Rd : u ⩾ 0}

is a sublattice of Rd

• The interior of the positive cone is a sublattice of Rd

• The unit ball is not a sublattice of Rd
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Recall that a map T from M ⊂ Rd to itself is called isotone if

u, v ∈ M and u ⩽ v =⇒ Tu ⩽ Tv

Example. If A = A(x, y) is a nonnegative matrix, then v 7→ Av is
isotone, since

u ⩽ v =⇒ ∑
y

A(x, y)u(y) ⩽ ∑
y

A(x, y)v(y)

Hence Au ⩽ Av pointwise on Rd
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Concavity and Convexity in Rd

A subset C of Rd is called convex if

u, v ∈ C and 0 ⩽ λ ⩽ 1 =⇒ λu + (1 − λ)v ∈ C

An self-map T on C is called convex if, for any u, v ∈ C and
λ ∈ [0, 1],

T(λu + (1 − λ)v) ⩽ λTu + (1 − λ)Tv

An self-map T on C is called concave if, for any u, v ∈ C and
λ ∈ [0, 1],

T(λu + (1 − λ)v) ⩾ λTu + (1 − λ)Tv
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Let C be a sublattice of Rd

Theorem FPT2 (finite dimensional case): Let T be an isotone
self-mapping on C such that

1. ∀ u ∈ C, there exists a point a ∈ C with a ⩽ u and Ta ≫ a

2. ∀ u ∈ C, there exists a point b ∈ C with b ⩾ u and Tb ≪ b

If, in addition, T is either concave or convex, then (C, T) is
globally stable

Proof: See the course notes (appendix)
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a

ū

b

Figure: Global stability for an increasing concave functions
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Corollary: Let g be a function from (0, ∞) to itself with the
following two properties:

1. For each x > 0, there is an a ⩽ x such that g(a) > a.

2. For each x > 0, there is a b ⩾ x such that g(b) < b.

If g is also increasing and concave, then

• g has a unique fixed point x̄ in (0, ∞) and

• gn(x) → x̄ for every x ∈ (0, ∞)
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Corollary of corollary: If

g(k) = s f (k) + (1 − δ)k

where 0 < s, δ < 1 and f is a increasing concave function on
(0, ∞) satisfying

1. f ′(k) → ∞ as k → 0 and
2. f ′(k) → 0 as k → ∞,

then g has a unique fixed point k∗ in (0, ∞) and gn(x) → x̄ for
every x ∈ (0, ∞)

Ex. Check the details


