
Log-Linearization of Stochastic Economic

Models ?

John Stachurski

Institute of Economic Research, Kyoto University, Yoshida-honmachi, Sakyo-ku,

Kyoto 606-8501, Japan

and

Department of Economics, The University of Melbourne, VIC 3010, Australia

Abstract

This paper studies formally the common practice of log-linearizing stochastic eco-

nomic models, making precise the conditions under which stability of the original

model can be inferred from that of the linearized model. A transformation to recover

the stochastic equilibrium of the former from that of the latter is provided.
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1 Introduction

Consider a stochastic economic system with the stylized representation

xt+1 = f(xt, εt), t = 0, 1, . . . , (OR)

where x is a vector of state variables taking values in space X, f is an arbitrary

function with rng f ⊂ X, and (εt) is a sequence of shocks. Given (OR), the
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researcher seeks to characterize dynamics of the sequence (xt). Ideally, the

distribution of xt will converge to a unique limiting distribution independent

of x0 as t→∞. This distribution is called the dynamic equilibrium (in what

follows, equilibrium), or stochastic steady state. 1

In the economic literature, a common approach to the analysis of stochastic

dynamics is via linearization. However, it must be remembered that the lin-

earized system is auxiliary to the analysis: it is valuable only to the extent that

it provides insight into the dynamic properties of the true model (OR).

In this connection, we emphasize that for stochastic systems such as (OR), it

is not in general legitimate to infer such properties as existence, uniqueness

and stability of equilibrium from similar properties as they may or may not

occur in the linear version. For example, the presence of noise makes local

analysis used to justify linearization problematic.

In the log-linear case it seems likely that the stochastic dynamics will be

similar, given that the log transformation is bijective and continuous. Here

that intuition is verified, with some caveats regarding assumptions on the

distribution of the shock. A formula for translating the equilibrium of the

linearized system back into the equilibrium of the original system is provided.

A caveat regarding our results is that many linearization techniques differ from

log-linearization in that they are not in general representable as bijective trans-

formations from one state space to another. A typical example is linearization

by Taylor expansion. Such linearizations do not meet the conditions of our

theorem.

Section 2 states the problem. Section 3 states results. Section 4 gives an appli-

cation to the multisector macroeconomic model of Long and Plosser (1983).

Section 5 gives proofs.

1 The problem of existence and stability for such equilibria has been studied by

many authors, including Brock and Mirman (1972), Futia (1982), Hopenhayn and

Prescott (1992), Bhattacharya and Majumdar (2001) and Stachurski (2002).
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2 Outline of the Problem

If (U,A ) is some measurable space, then P(U) = P(U,A ) denotes the

probabilistic measures on (U,A ). If U has a topology, then bC(U) is the

continuous bounded real functions on U , and A is always identified with BU ,

the Borel sets on U . In this case, P(U) is endowed with one of two topologies.

The first is the probabilists topology of weak convergence, which is the smallest

topology on P(U) making the set of real functions {µ 7→
∫
gdµ : g ∈ bC(U)}

continuous. The other is the norm topology induced by the total variation

norm ‖ · ‖TV . 2

The model (OR) obeys the following assumptions. Time is discrete. The state

space X is any topological space. The shocks εt take values in measurable

space (W,W ). The map f : X ×W → X is (BX ⊗W ,BX)-measurable. The

sequence (εt)t≥0 is independent and identically distributed on probability space

(Ω,F ,P), with common distribution ψ ∈ P(W ).

The model generates a Markov process (xt)t≥0 on (Ω,F ,P). Let the distribu-

tion of xt be denoted µt ∈ P(X). Following Brock and Mirman (1972), Futia

(1982, p. 377), Stokey et al. (1989) and others, a (dynamic) equilibrium for

the economy (OR) is a µ∗ ∈ P(X) satisfying

µ∗(B) =
∫

X

[∫
W
1B[f(x, z)]ψ(dz)

]
µ∗(dx), ∀B ∈ BX . (1)

The equality (1) implies that if xt has distribution µ∗, then so does xt+1,

as indeed do all subsequent xt+j. The equilibrium is unique if there exists

no other element of P(X) satisfying (1). The equilibrium is called globally

stable in the weak (respectively, norm) topology if µt converges to µ∗ weakly

(respectively, in norm) as t→∞ for every initial condition x0.

3 Results

Log-linearization involves a bijective transformation applied to both sides of

(OR). One hopes that stability of the transformed system will be easier to

2 See, for example, Stokey et al. (1989), Aliprantis and Border (1999, Ch. 14) or

any other standard text for definitions.
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establish. However it still remains to show that the transformed system and

the original system have the “same” dynamics.

We prove a version of this result using a general bijective transformation,

of which the log function is a special case. Precisely, let L be a (BX ,BX̂)-

measurable one-to-one map from X onto topological space X̂. Applying L to

both sides of (OR) gives the transformed system

x̂t+1 = L[f(L−1(x̂t), εt)], x̂s := L(xs). (TR)

Equilibria (elements of P(X̂)) and stability for (TR) are defined analogously

to the case of (OR).

Corresponding to L there is a map L from P(X) to P(X̂) defined by

Lµ(B) = µ ◦ L−1(B) = µ(L−1(B)), B ∈ BX . (2)

In other words, L maps µ ∈ PX into its image measure under L. Clearly L is

itself a bijection.

Our main result follows. The proof is in Section 5.

Proposition 3.1 If µ∗ ∈ P(X) is an equilibrium for (OR), then Lµ∗ ∈
P(X̂) is an equilibrium for the transformed economy (TR). Conversely, if

µ̂∗ ∈ P(X̂) is an equilibrium for (TR), then L−1µ̂∗ ∈ P(X) is an equilibrium

for (OR). Furthermore, if µ̂∗ ∈ P(X̂) is globally stable for (TR) in the norm

topology, then L−1µ̂∗ is globally stable for (OR) in the norm topology. If, in

addition to the above hypotheses, L is continuous with continuous inverse, then

L−1µ̂∗ is globally stable for (OR) in the weak topology whenever µ̂∗ is globally

stable for (TR) in the weak topology.

4 Application

A well-known study using log-linearization is the Real Business Cycle model

of Long and Plosser (1983). They study an infinite horizon, representative

agent economy with n sectors. Production is according to the Cobb-Douglas

technology

yi,t+1 = λit`
bi
itx

ai1
i1t × · · · × xain

int , i = 1, . . . n, (3)
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where yi is output of commodity i, `i is labor allocated to sector i, xij is the

amount of commodity j used in the production of good i, aij is the input-

output elasticity, and λit is the time t value of the i-th sector-specific shock.

The vector of shocks λt is uncorrelated and identically distributed over time. 3

Production is assumed to be constant returns to scale. In particular,

bi, aij > 0; bi +
n∑

j=1

aij = 1, i = 1, . . . , n. (4)

After specifying preferences and constraints, the model is solved by dynamic

programming to yield the system

y1,t+1 = γ1ty
a11
1t × · · · × ya1n

nt

...
... (LP)

yn,t+1 = γnty
an1
1t × · · · × yann

nt ,

where γt = (γit)
n
i=1 is a vector of strictly positive shocks depending on λt and

the parameters.

Following Long and Plosser, we can convert (LP) into a linear form and study

stability of the latter. By virtue of Proposition 3.1, this will imply conditions

under which (LP) is itself stable. Specifically,

Proposition 4.1 Let γt be the vector of sectoral shocks in (LP). If the ex-

pectation E ‖(ln γ1t, . . . , ln γnt)‖ is finite, then the economy (LP) has a unique

equilibrium in P(Rn
++) which is globally stable in the norm topology.

Remark The restriction E ‖(ln γ1t, . . . , ln γnt)‖ < ∞ in Proposition 4.1 en-

forces small left- and right-hand tails on the distributions of the sectoral

shocks. Without a small left-hand tail assumption the economy may collapse

to zero output. For this reason, a simple finite mean assumption such as E ‖γt‖
is not in general sufficient.

3 The objective of Long and Plosser was to generate fluctuations in time series

consistent with the business cycle from a general equilibrium framework and without

assuming correlated noise.
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PROOF. The linearized version of (LP) is

ŷt+1 = Aŷt + L(γt), ŷ ∈ Rn, (5)

where ŷ ∈ R
n is log income, A := (aij) is the matrix of input-output elas-

ticities, and L : Rn
++ → R

n is defined by L(x) := (ln xi)
n
i=1. Linear stochas-

tic difference equations such as (5) are well understood. It is known that if

E ‖L(γt)‖ < ∞ and sup‖x‖=1 ‖Ax‖/‖x‖ =: % < 1, then (5) has a unique and

(norm) globally stable equilibrium distribution µ̂∗ in P(Rn). 4

That % < 1 follows from (4). The finiteness of E ‖L(γt)‖ is given in the state-

ment of the proposition. It now follows from Proposition 3.1 that the original

model (LP) has a unique, globally stable equilibrium L−1µ̂∗ ∈ P(Rn
++).

5 Proofs

It remains to prove Proposition 3.1. The method is as follows. First, we recall

the notion of topological conjugacy between dynamical systems. Conjugate

systems have identical dynamics. Since the notion of conjugacy is defined for

deterministic rather than stochastic systems, our next step is to convert (OR)

and (TR) into deterministic self-mappings on spaces of probability measures.

We then show that these deterministic versions are topologically conjugate.

Let U and Û be topological spaces. Consider the two dynamical systems

xt+1 = g(xt), g : U → U, (6)

x̂t+1 = ĝ(x̂t), ĝ : Û → Û . (7)

Suppose that, corresponding to g and ĝ, there exists a homeomorphism (con-

tinuous bijection with continuous inverse) L from U into Û such that g and ĝ

commute with L in the sense that ĝ = L ◦ g ◦L−1 on U . Then (6) and (7) are

said to be topologically conjugate.

In this case, x∗ ∈ U is a fixed point of g on U if and only if L(x∗) ∈ Û is

a fixed point of ĝ on Û , and limt→∞ g
t(x) = x∗ for all x ∈ U if and only if

4 See, for example, Meyn and Tweedie (1993).
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limt→∞ ĝ
t(x̂) = L(x∗) for all x̂ ∈ Û . 5 These results are well-known and easy

to verify.

Thus to prove Proposition 3.1, it is necessary to rewrite (OR) and (TR) in the

form of (6) and (7), whereby equilibria will be fixed points of some suitable

mapping, and show that they commute with a homeomorphism.

Regarding the first task, consider again the system (OR). As before, let µt ∈
P(X) be the marginal distribution of the random variable xt. Define an op-

erator Q from P(X) into itself by

(Qµ)(B) =
∫

X

[∫
W
1B[f(x, z)]ψ(dz)

]
µ(dx), B ∈ BX . (8)

Given Q, it is well-known (c.f., e.g., Stokey et al., 1989, p. 219) that µt and

µt+1 are connected by µt+1 = Qµt. In the present context Q is called the Foias

operator corresponding to (OR). 6

From µt+1 = Qµt it must be that µt = Qtµ0, where µ0 is the distribution of x0,

and Qt is defined by Qt := Q ◦Qt−1 and Q1 := Q. In light of (1), probability

µ∗ ∈ P is an equilibrium for the system (OR) if and only if Qµ∗ = µ∗. The

equilibrium is globally stable if and only if Qtµ0 → µ∗ as t → ∞ for all

µ0 ∈ P(X).

All of the above extends analogously to (TR). We let Q̂ be the Foias operator

corresponding to this law of motion. That is, Q̂ : P(X̂) → P(X̂), where

(Q̂µ)(B) =
∫

X̂

[∫
W
1B{L[f(L−1(x̂), z)]}ψ(dz)

]
µ(dx̂), B ∈ BX̂ .

The two systems (OR) and (TR) can now be represented as

µt+1 = Qµt, Q : P(X) → P(X), (9)

µ̂t+1 = Q̂µ̂t, Q̂ : P(X̂) → P(X̂). (10)

Note that (9) and (10) are in the same form as (6) and (7). Thus to complete

the proof of Proposition 3.1 we need to exhibit a homeomorphism L : P(X) →
P(X̂) such that Q = L−1 ◦ Q̂ ◦ L on P(X).

5 For map h, ht denotes the t-th composition of h with itself.
6 See, for example, Lasota and Mackey (1994, Chapter 12).
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A suitable candidate for L is the map defined in (2). Before continuing, we

recall that (see, e.g., Aliprantis and Border, 1999, Theorem 12.46) if µ ∈
P(X), and h is any bounded BX̂-measurable real function on X̂, then h ◦
L : X → R is BX-measurable, and∫

X̂
h dLµ =

∫
X
h ◦ Ldµ. (11)

Lemma 5.1 The map L is a bijection and a homeomorphism in the norm

topology. If L is a homeomorphism, then L is also a homeomorphism in the

weak topology.

PROOF. Norm continuity of L is immediate from the bound ‖Lµ−Lν‖TV ≤
‖µ− ν‖TV , ∀µ, ν ∈ P(X), which is easy to establish. Regarding weak conti-

nuity of L, let (µα) be a net in P(X) converging to µ ∈ P(X). Pick any h

in bC(X̂). If L is continuous, then∫
X̂
h dLµα =

∫
X
h ◦ Ldµα →

∫
X
h ◦ Ldµ =

∫
X̂
h dLµ,

since h ◦ L ∈ bC(X). The proof of continuity of L−1 is similar.

To complete the proof of Proposition 3.1 we need only show that

Lemma 5.2 The relation Q = L−1 ◦ Q̂ ◦ L holds on P(X).

PROOF. We prove the equivalent statement (Q̂◦Lµ)(B) = (L◦Qµ)(B) for

all µ ∈ P(X) and all B ∈ BX̂ . From the definitions of the Foias operators,

(Q̂Lµ)(B) =
∫

X̂

[∫
W
1B{L[f(L−1(x̂), z)]}ψ(dz)

]
Lµ(dx̂)

=
∫

X

[∫
W
1B{L[f(x, z)]}ψ(dz)

]
µ(dx) (∵ by (11))

=
∫

X

[∫
W
1L−1(B)[f(x, z)]ψ(dz)

]
µ(dx) = (LQµ)(B).

This establishes the lemma and hence of Proposition 3.1.
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