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Abstract

We study a two-country version of Matsuyama’s (Econometrica, 72,

p. 853–84, 2004) world economy model. As in Matsuyama’s model,

symmetry-breaking can be observed, and symmetry-breaking gener-

ates endogenously determined levels of inequality. In addition, we

show that when the countries differ in population size, their interac-

tion through credit markets may lead to persistent endogenous fluc-

tuations.

Keywords: Credit market imperfection, Endogenous cycles, Symmetry-breaking,

Two-country model

JEL classification: E44, F43, O11

1 Introduction

One of the primary aims of growth theory is to explain large and persis-

tent cross-country differences in wealth. Exogenous factors mapped to

Meeting of the Econometric Society in Vienna, 2006.
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long-run outcomes via a convex growth model appear insufficient to ex-

plain this variation [3]. An alternative approach is provided by poverty

trap models, where identical economies can support multiple long-run

outcomes (cf., e.g. [1, 2, 8]). A drawback common to many of these mod-

els is that they do not provide a satisfactory theory of the cross-country

income distribution per se, given that outcomes for individual economies

are determined in isolation.

A number of researchers have confronted this deficiency by developing

models where cross-country income inequality arises endogenously, often

as a result of capital market imperfections (e.g., [5, 4, 7, 10]). For example,

in Matsuyama [7] a world economy is populated by a continuum of small

countries, each of which participates in an international market for credit.

A wealth-dependent borrowing constraint implies that poorer economies

are more restricted in their ability to raise credit, which, in turn, impacts

on domestic wealth. The opposite is true in richer economies. As a re-

sult, small initial differences may be magnified, with the world economy

polarizing into rich and poor.

Matsuyama analyzes this endogenous inequality within the framework

of symmetry-breaking. Symmetry-breaking is a mechanism whereby di-
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versity is endogenously generated through the economic interactions of

entities such as households, firms or countries. Typically, the setting is

one where the entities of interest have inherently identical characteristics.

This symmetry across agents or other entities leads to the existence of a

symmetric equilibrium. In some settings, the dynamics associated with

economic interaction causes the symmetric equilibrium to lose stability,

and small initial variations are amplified over time.1

This symmetry-breaking phenomenon is particularly clear in Matsuyama’s

world economy model. The steady state for the world economy when

all countries operate in autarky remains a (symmetric) steady state af-

ter credit markets are integrated. Under certain parameterizations, this

steady state is unstable, and stable asymmetric steady states exist. Any

small deviation from the symmetric steady state leads to a process whereby

countries are endogenously divided into rich and poor.

While Matsuyama’s continuum model is remarkably tractable, the infinite-

dimensional state space does not lend itself to analysis of dynamics out-

side of the steady states. In this paper, we consider an alternative form

of the model, where the world economy consists of two large countries.

1For a more complete definition of symmetry-breaking, see [9].
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Although the spillover effects generated by their interactions in the credit

market make the analysis less tractable, one can still observe symmetry-

breaking phenomena similar to those in Matsuyama’s model. In addition,

we show that when population sizes differ, the interactions between the

two economies may create persistent endogenous cycles.

The structure of the paper is as follows. Section 2 formulates the model

and derives equilibrium conditions. Section 3 studies dynamics when

population size is equal in the two countries, while section 4 analyzes dy-

namics for the case of unequal population size. Remaining proofs can be

found in the appendix.

2 Set Up

We now formulate and analyze a two-country version of the continuum

world economy model in Matsuyama [7]. Aside from the individual coun-

tries having positive measure, the economic environment is the same. As

a first step, we describe the environment faced by an individual country

when the interest rate is given. We then connect the two countries via the

interest rate, which is determined according to world supply and demand
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for credit.

In each country, successive generations have unit mass. Every agent lives

for two periods, supplying one unit of labor in the first period and con-

suming in the second. At time t, production combines the current stock of

capital kt supplied by the old with the unit quantity of labor supplied by

the young.2 The resulting per-capita output is f (kt), where f : R+ → R+

is C2 and satisfies f (0) = 0, f ′′(k) < 0 < f ′(k), limk↑∞ f ′(k) = 0, and

limk↓0 f ′(k) = ∞.

Factor markets are competitive, paying young workers the wage W(kt) :=

f (kt)− kt f ′(kt), and old workers a gross return on capital given by f ′(kt).

After production and the distribution of factor payments, the old consume

and exit the model, while the young take their wage earnings and invest

them.
2“Capital” may be either human or physical. It depreciates fully between periods,

so capital stock is equal to investment. Given the unit mass of agents, per-capita and

aggregate values coincide. Later we consider other population sizes, and in this case kt

should be thought of as a per-capita quantity.
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2.1 Investment Behavior

When investing, young agents can either lend in the credit market at (gross)

interest rate rt+1, or run a discrete indivisible project, which takes one unit

of the consumption good and returns R units of the capital good.3 If all

young agents start projects, then the capital stock at t + 1 is R. This leads

to the resource constraint

0 ≤ kt+1 ≤ R. (1)

The gross rate of return on the project, measured in units of the consump-

tion good, is R f ′(kt+1). Thus, investors are willing to start the project

whenever

rt+1 ≤ R f ′(kt+1). (2)

We refer to this inequality as the profitability constraint.

Let R+ be the solution to W(R+) = 1. Following Matsuyama, we assume

that W(R) < 1. In other words, we consider only R ∈ (0, R+). Given the

resource constraint (1), we then have W(kt) < 1 for all t, and young agents

who start projects must borrow 1−W(kt) at rate rt+1. As a result, their

3Factors of production are not internationally mobile, and projects can only be run

domestically.

7



obligation at t + 1 is given by rt+1(1 −W(kt)). Against this obligation,

borrowers can only credibly pledge a fraction λ ∈ [0, 1] of their expected

earnings R f ′(kt+1). The borrowing constraint is therefore

rt+1(1−W(kt)) ≤ λR f ′(kt+1). (3)

The parameter λ can be interpreted as a measure of credit market imper-

fection, with higher values corresponding to lower imperfection.

2.2 Equilibrium

Let us now consider determination of the interest rate and next period

capital stock, given the current stock kt. As in Matsuyama [7], when in-

ternational financial markets are absent and each economy operates in au-

tarky, the interest rate adjusts so that domestic savings is equal to domestic

investment, and hence domestic capital stock evolves according to

kt+1 = RW(kt) (4)

independent of the credit market imperfection.4

4Assuming that k0 ≤ R, the assumption W(R) < 1 implies that the resource constraint

(1) is never binding in autarky.
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When international credit markets are present, the world interest rate is

determined by international supply and demand for credit. Suppose first

that the interest rate is fixed at r. In either of the two countries, equilib-

rium implies that the mass of agents who start projects (and hence kt+1)

increases until one of the constraints (1)–(3) binds. From this reasoning we

obtain

kt+1 = Ψ(kt, r) := min
{

R, Φ
( r

R

)
, Φ
(

1−W(kt)
λ

· r
R

)}
(5)

where Φ(k) := ( f ′)−1(k). This leads to the two-country law of motion

k1
t+1 = Ψ(k1

t , r(k1
t , k2

t )) and k2
t+1 = Ψ(k2

t , r(k1
t , k2

t )) (6)

where r(k1
t , k2

t ) is the equilibrium interest rate. Specifically, r(k1
t , k2

t ) is the

r that solves

Ψ(k1
t , r) + Ψ(k2

t , r) = R(W(k1
t ) + W(k2

t )). (7)

The right-hand side of this expression is the world supply of physical cap-

ital in each period, and the left-hand side is demand for that capital.

Suppose that the resource constraint (1) is not binding (i.e., kt+1 < R). In

this situation, the minimizer on the right-hand side of (5) is one of the last

two terms. Let K(λ) be the solution to 1−W(K(λ)) = λ. If kt > K(λ),
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then 1−W(kt) < λ, and kt+1 is equal to Φ(r/R). If, on the other hand,

kt ≤ K(λ), then kt+1 is equal to the last term, and the borrowing constraint

is binding. Evidently λ 7→ K(λ) is strictly decreasing on (0, 1).

3 Dynamics: Equal Population Size

In this section we investigate the dynamics of the autarkic and integrated

world economies, as determined by (4) and (6) respectively. We show

that in many respects the two-country economy studied here has dynam-

ics similar to the continuum model of Matsuyama [7], with symmetry-

breaking occurring over an identical range of parameter values. In other

words, symmetry-breaking is robust with respect to the introduction of

countries having positive mass.

3.1 Autarky

Consider first the joint dynamics of the pair (k1
t , k2

t )t≥0 when financial mar-

kets are not integrated, and each economy operates in autarky. In this

case k1
t and k2

t both individually follow the law of motion (4). The state
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space is taken to be X := (0, R] × (0, R].5 As observed by Matsuyama

[7, p. 863] and earlier authors, the OLG dynamics in (4) can exhibit mul-

tiple steady states even with neoclassical technology, which serves only

to distract from analysis of symmetry-breaking. Hence we assume that

limk↓0 W ′(k) = ∞ and W ′′ < 0, thereby assuring the existence of a unique

steady state K∗(R) for each R ∈ (0, R+).6 The map R 7→ K∗(R) is strictly

increasing and satisfies K∗(R) < R for all R. Under these assumptions we

have the following elementary result.

Proposition 3.1. If the two countries operate in autarky, then for any value of

R ∈ (0, R+), any λ ∈ (0, 1), and any initial condition (k1
0, k2

0) ∈ X, the bivariate

process (k1
t , k2

t )t≥0 converges to the unique steady state (K∗(R), K∗(R)).

3.2 Integrated Credit Markets

Consider now the dynamics when financial markets are integrated. In this

case k1
t and k2

t follow the law of motion (6). To analyze these dynamics we

introduce some new notation. Let Rc be defined by f (K∗(Rc)) = 1, and

Rλ by K∗(Rλ) = K(λ). Let λc ∈ (0, 1) be the solution to f (K(λc)) = 1. We

5We exclude zero from the state space in order to rule out trivial steady states.
6Specifically, K∗(R) is the solution to k = RW(k) for each R.
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will make use of the following result.

Lemma 3.1. If λ < λc, then Rc < Rλ. If λ > λc, then Rc > Rλ.

Proof. If λ < λc, then f (K∗(Rc)) = 1 = f (K(λc)) < f (K(λ)). Hence

K∗(Rc) < K(λ), and Rc < Rλ. The proof of the second claim is similar.

We can now state the main result of this section.7

Proposition 3.2. Let R ∈ (0, R+) and let λ ∈ (0, 1). When financial markets

are integrated, there exists one and only one symmetric steady state, which is

given by (K∗(R), K∗(R)). Moreover, this symmetric steady state is

1. locally stable whenever 0 < R < Rc,

2. saddle path stable whenever Rc < R < Rλ, and

3. locally stable whenever Rλ < R < R+.

Combining propositions 3.1 and 3.2, we see that the financially integrated

two-country model possesses a unique symmetric steady state, which co-

incides with the long-run equilibrium when the two economies coexist in

7The result is analogous to proposition 3 in Matsuyama [7], with instability (i.e., saddle

path stability) of the symmetric steady state occurring for the same set of R in (0, R+).
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K∗(R) K(λ)

K∗(R)

K(λ)

(a) R = 1.5

K∗(R)K(λ)

K∗(R)

K(λ)

(b) R = 3.0

Figure 1: Weak borrowing constraint (λ > λc)

autarky. In the latter (i.e., autarkic) case, this steady state is always stable.

In the financially integrated case, the same steady state (K∗(R), K∗(R))

may be stable or unstable, depending on parameters. Moreover, asym-

metric steady states may exist.8

In view of lemma 3.1, if λ > λc, then (Rc, Rλ) = ∅, and the symmetric

steady state of the financially integrated two-country model is stable for

all R. Thus, when the credit constraint is sufficiently weak, financial inte-

8It is not difficult to show that for the integrated two-country model, if (k, k′) is a

steady state, then so is (k, k′). In consequence, the number of asymmetric steady states is

always even, and the total number of steady states is always odd.
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gration cannot be a source of symmetry-breaking. Figure 1 illustrates this

scenario when f (k) = kα. In both figures, the dynamics of the integrated

two-country model defined in (6) and (7) are represented by a phase di-

agram (curve intersections are steady states) superimposed on the vector

field.9 In (a) the borrowing constraint is binding at the steady state. In (b)

R is larger, and the constraint is not binding.10

Now consider the case where λ < λc. From lemma 3.1 we have Rc <

Rλ, and hence the set of R ∈ (0, R+) for which the saddle path stable

equilibrium obtains is nonempty. An illustration of this case is given in

figure 2. The parameters are α = 0.6 and λ = 0.3, implying Rc = 2.5

and Rλ = 3.62. In (a) we have R = 2.3 < Rc, and the symmetric steady

state is stable. In (b), on the other hand, R = 2.65 ∈ (Rc, Rλ), and the

symmetric steady state is saddle-path stable. Observe that instability of

(K∗(R), K∗(R)) coincides with existence of stable asymmetric steady states.

9In these and all other state space figures, k1 is plotted on the x-axis, and k2 is on the

y-axis. Each plot is of the state spaceX = (0, R]× (0, R].
10The other parameters are α = 0.6 and λ = 0.65. In the Cobb–Douglas case, λc = α,

so the inequality λ > λc holds for these parameter values.
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K∗(R)

K∗(R)

(a) R < Rc

K∗(R) K(λ)

K∗(R)

K(λ)

(b) Rc < R < Rλ

Figure 2: Stability and instability at (K∗(R), K∗(R))

3.3 Symmetry Breaking

We now consider more closely how integration of financial markets af-

fects the dynamics of a previously autarkic world economy, given a fixed

parameterization of the model. We show that the symmetry-breaking ob-

served in Matsuyama’s [7] continuum world economy model is also a fea-

ture of the two-country world system.

Consider figure 3. Sub-figure (a) shows the dynamics of the autarkic world

economy, while (b) shows the dynamics under the same parameters when
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K∗(R) K(λ)

K∗(R)

K(λ)

(a) Autarkic world economy

K∗(R) K(λ)

K∗(R)

K(λ)

(b) Integrated world economy

Figure 3: Symmetry-breaking

credit markets are integrated.11. Introduction of a global credit market in-

duces symmetry-breaking, with the symmetric steady state (K∗(R), K∗(R))

losing stability, combined with the emergence of stable asymmetric steady

states. A slight perturbation of the current state (k1
t , k2

t ) from the symmet-

ric steady state leads to the endogenous formation of a polarized world

economy, where one country has a higher steady state than K∗(R) and the

other country has a lower steady state.

It is worth noting that while the mechanism behind symmetry-breaking

in this model is essentially the same as that of Matsuyama [7], some stable

11Here R = 2.65 ∈ (Rc, Rλ), as in figure 2 (b)
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asymmetric steady states have properties that are not shared by those in

his model. For example, the borrowing constraint can be binding at the

asymmetric steady state in both countries (see figure 3 (b)). These differ-

ences in dynamics can be attributed to spillover effects between the two

countries that are not present in model having a continuum of small open

economies.

4 Dynamics: Unequal Population Size

The previous section showed how the introduction of a global market for

credit can lead to emergence of diversity in a world economy consisting of

two identical countries. It is also interesting to consider how exogenous di-

versity can impact on outcomes in the two-country model. A natural form

of heterogeneity to introduce is that of population size. In this section we

investigate how variations in relative population size affect equilibrium

dynamics.

To this end, we now consider a setting where the mass of agents per gen-

eration in country 1 is given by L ∈ (0, 1), while in country 2 the mass is

1− L. The equilibrium conditions (1)–(3) are stated in terms of per capita
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K∗(R)

K∗(R)

(a) L = 0.5

K∗(R)

K∗(R)

(b) L = 0.18

Figure 4: Broken symmetric structure

values, and hence are unaffected. However, the interest rate condition (7)

is stated in terms of aggregates, and now becomes

LΨ(k1
t , r) + (1− L)Ψ(k2

t , r) = R(LW(k1
t ) + (1− L)W(k2

t )). (8)

As before, this equation determines r as the interest rate that equates ag-

gregates world demand for credit with aggregate world supply.

For some parameterizations, the impact of population size on long-run

outcomes is substantial. For example, consider figure 4. The figure on

the left is a replication of figure 2 (a). (Here R < Rc, and, by proposi-

tion 3.2, the symmetric steady state is stable. Figure 4 (a) also shows that
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no asymmetric steady states exist.) In figure 4 (b), on the other hand, we

set L = 0.18, so that the mass of agents in country 1 is substantially smaller

than that of country 2.

A preliminary observation regarding the dynamics in figure 4 (b) is that

the symmetric steady state is unchanged, and it retains local stability. This

follows from (8), because if k1
t = k2

t in that equation, then L vanishes,

and the local laws of motion are homeomorphic to those for the case of

equal population size. A second observation is that, in addition to the

stable symmetric steady state, two asymmetric steady states exist. The

asymmetric steady state closest to the symmetric steady state is unstable,

and the other asymmetric steady state is stable. A further reduction of L

leads to a bifurcation, whereby the stable asymmetric steady state becomes

unstable, and cycles arise.

This outcome is illustrated as a bifurcation diagram in figure 5. In the fig-

ure, the x-axis represents different values of the parameter L, while the

y-axis is the state space. The points plotted in the figure are long-run

outcomes for each value of L, starting from initial condition (k1
0, k2

0) =

(2, 0.2).12 Each value (k1
t , k2

t ) is represented as two points in the figure.

12Other parameters are fixed. As in figure 4, α = 0.6, λ = 0.3 and R = 2.3.
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Figure 5: Bifurcation diagram

As discussed below, k1
t > k2

t generally holds, so that the higher cluster of

values represents k1 values, while the lower represents k2 values.

When L = 0.185, orbits converge to the symmetric steady state K∗(R) '

0.81. Around L = 0.18, the basin of the stable asymmetric steady state

expands to include our initial condition (k1
0, k2

0), and the orbit converges

to this steady state.13 Country 1, which has the lower population size

(i.e, mass), has the higher capital stock per-capita in this equilibrium.At

L ' 0.176, the asymmetric steady state undergoes a bifurcation that leads

to endogenous cycles.14

13This is the right-most steady state in figure 4 (b).
14The bifurcation that occurs at this value of L is of the Neimark-Sacker type, as can

be verified by examining the trace and determinant of the Jacobian at the asymmetric
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Figure 6: Time series

The presence of endogenous cycles is further illustrated in figures 6 and

7. Here the value of L is taken to be 0.176, which is close to the bifurca-

tion value, and the initial conditions are as in figure 5. Figure 6 plots the

evolution of capital stock in the two countries over time. Each time series

converges to a stable cycle, with the low population economy fluctuat-

ing at a higher value than the high population economy. Figure 7 shows

these dynamics in (a subset of) the state space X. The plot is of a single

steady state. For details see Kikuchi [6]. If L goes below L ' 0.161, cycles disappear

and the orbits converge to an asymmetric steady state where the resource constraint is

binding in country 1 (i.e., limt k1
t = R). Moreover, as L ↓ 0, the limiting value of k2

t tends

to K∗(R), which is its value at the symmetric steady state.
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Figure 7: Attractor plot

orbit (k1
t , k2

t )t≥0, which converges to a closed invariant curve, and the two-

country world economy exhibits persistent fluctuations over time.15

Since R < Rc, the symmetric steady state is stable when we observe these

fluctuations. The unequal population size generates a stable asymmetric

steady state, which undergoes the bifurcation. Moreover, the borrowing

constraint is binding in both countries along the endogenous cycles. To-

gether, unequal population size and spillover effects drive the cycles.

15The model of Boyd and Smith [4] also generates cycles, but the cycles are damped,

and disappear asymptotically.
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5 Appendix

The proof of proposition 3.1 is trivial, and hence omitted.

Proof of proposition 3.2. First we verify the claim that there exists one and

only one symmetric steady state, which is equal to (K∗(R), K∗(R)). To see

this, observe that if (k, k) is a symmetric steady state, then k = Ψ(k, r),

where r is defined by (7). From (7) it then follows that k = RW(k), or

k = K∗(R). Conversely, k∗ := K∗(R) is always a symmetric steady state,

because if we set k1 = k2 = k∗ in (7) we obtain Ψ(k∗, r) = RW(k∗), where r

is the unique solution to this equation. But RW(k∗) = k∗ by definition, so

Ψ(k∗, r) = k∗. In other words, (k∗, k∗) := (K∗(R), K∗(R)) is a fixed point

of the system.

Regarding stability of the symmetric steady state (K∗(R), K∗(R)), let

J(x, y) =

a b

c d

 =

Ψx(x, r(x, y)) Ψy(x, r(x, y))

Ψx(y, r(x, y)) Ψy(y, r(x, y))


be the Jacobian associated with the dynamical system (6). Recall that

K∗(R) < R always holds, so Ψ is determined by one of the last two ex-

pressions in the minimum on the right-hand side of (5).
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In order to assess stability, we wish to evaluate the eigenvalues of this

matrix at x = y = K∗(R). Observe that a = d and b = c when x = y. In this

case, the characteristic polynomial is given by p(µ) = µ2 − 2aµ + a2 − b2,

and the eigenvalues of the system are µ1 = a + b and µ2 = a− b.

Generically, there are two cases to consider: Either K∗(R) < K(λ) or

K∗(R) > K(λ).

Case 1: In the first case (i.e. K∗(R) < K(λ)), we consider the dynami-

cal system for x, y < K(λ), which is given by the third expression in the

minimum on the right-hand side of (5). Some long but straightforward

calculations show that

a =
1
2

[
RW ′(x) +

x f ′(x)
1−W(x)

]
, b =

1
2

[
RW ′(x)− x f ′(x)

1−W(x)

]
(9)

where we are using x = y when the Jacobian is evaluated at the symmetric

steady state. Thus

µ1(x) =
xW ′(x)
W(x)

and µ2(x) =
x f ′(x)

1−W(x)

In view of our assumptions on W (in particular, W ′′ < 0) we have 0 <

µ1(x) < 1 for every x. Moreover µ2(x) > 0. Hence stability or instability

depends on the sign of µ2(x)− 1 when x = K∗(R).
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Case 2: The other case to consider is K∗(R) > K(λ). If x, y ≥ K(λ), then

dynamics are given by the second expression in the minimum on the right-

hand side of (5). In this case a = b, and µ1(x) is as above, while µ2(x) = 0.

Since both eigenvalues lie inside the unit disk, the symmetric steady state

is always stable.

Now suppose that 0 < R < Rc. If the second case prevails (i.e., K∗(R) >

K(λ)), then stability obtains. Suppose instead that K∗(R) < K(λ), so that

the first case holds. Since µ2(x) is strictly increasing in x and f (K∗(Rc)) =

1, evaluating at x = K∗(R) and using R < Rc yields µ2(K∗(R)) < 1. Hence

stability obtains.

Next, suppose that Rc < R < Rλ. Then K∗(R) < K(λ) by the definition of

Rλ, and the first case holds. Since R > Rc we have µ2(K∗(R)) > 1, and the

symmetric steady state is saddle path stable.

Finally, suppose that Rλ < R < R+. Then K∗(R) > K(λ) by the definition

of Rλ. Hence the second case holds, and the symmetric steady state is

stable.
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