
Chapter 14

Regularization

In several sections of this book we touched on the topic of regularization (see, e.g.,
§8.2.1.2 and §8.2.3). A variety of statistical procedures and machine learning algo-
rithms employ regularization (under different names) to improve out-of-sample fit.
Good out-of-sample fit means generalization from observed data, which, as we’ve
stressed before, is the key problem of statistics. This chapter introduces a number of
methods that use regularization and discusses their statistical properties.

14.1 Nonparametric Density Estimation

Nonparametric density estimation is an application of regularization to the problem
of recovering distributions from data. It combines the data with a prior belief that
probability mass most likely falls in places other than just the sample points observed
so far. As well as being of interest from a theoretical perspective, nonparametric den-
sity estimation is used in a great variety of applied studies. We begin our analysis
with a review of parametric density estimation and then proceed to nonparametric
methods.

14.1.1 Introduction

Suppose our data consist of IID observations x1, . . . , xN from unknown distribution P
onRd. We assume throughout this section that P is absolutely continuous. Our aim is
to estimate the density of P, denoted below by f .

We know how to do this in a parametric setting. For example, let’s add the as-
sumption that f belongs to the class of normal densities onR, so that f = f (· ; µ, σ) =
the normal density for distribution N(µ, σ2). The MLEs of the parameters are µ̂N :=
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x̄N and σ̂N := sN (see page 235). Plugging these back into f gives density esti-
mate f (· ; x̄N , sN). Since x̄N and sN are consistent (see §9.2.4), the random density
f (· ; x̄N , sN) will be close to f (· ; µ, σ) with high probability for large N.

We can clarify convergence of the densities themselves if we extend the notion of
consistency from vectors to densities. To extend consistency to densities we need a
notion of global deviation between densities. Perhaps the most important measures
of global distance are the Lp distances. Let’s now define and discuss them.

For any B-measurable function f : Rd → R and p > 1, we set

‖ f ‖p :=
{∫
| f |p

}1/p
:=
{∫
| f (s)|p ds

}1/p
(14.1)

where integration is over all of Rd. If this expression is finite, then we write f ∈ Lp.
For densities f and g onRd the Lp distance between these densities is then defined as

dp( f , g) := ‖ f − g‖p (14.2)

The norm ‖ · ‖p satisfies most of the properties of the norms we’ve met so far. For
example, we have the triangle inequality

‖ f − g‖p 6 ‖ f − h‖p + ‖h− g‖p (14.3)

for all p > 1 and f , g, h ∈ Lp. See, for example, theorem 5.1.5 of Dudley (2002).
Specializing to p = 1 gives the L1 distance, which sums over absolute deviation.

Specializing to p = 2 gives the popular L2 distance, which is a variation of the L2 dis-
tance we used in §5.2.2. See, in particular, (5.28) on page 142, where distance between
random variables is evaluated based on expected deviation.

The L2 distance is popular largely because it’s so tractable, and because it’s sim-
ilarity to Euclidean vector distance means that we have L2 analogies for a variety of
fundamental results on vector space. Nevertheless, the L1 distance is arguably a bet-
ter choice for studying deviation between densities. For example, the L1 distance be-
tween densities is always well-defined (see ex. 14.4.1), which is essential if one hopes
to provide universal consistency results.

Fact 14.1.1 Scheffés lemma: If { fn} and f are densities on Rd, then

fn(s)→ f (s) for all s in Rd =⇒ ‖ fn − f ‖1 → 0

Fact 14.1.2 For any densities f , g and h on Rd we have

(i) ‖ f − g‖1 6
√

2D( f , g), where D( f , g) is the KL deviation defined in (8.34), and
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(ii) ‖ f − g‖1 = 2 supB∈B(Rd)

∣∣∫
B f −

∫
B g
∣∣.

The bound in (i) is called Pinsker’s inequality, while (ii) is called Scheffé’s iden-
tity. Scheffé’s identity tells us that L1 distance measures something that we directly
care about: when L1 deviation is small, so is the maximal deviation between probabil-
ities assigned to events.1

In what follows, we will say that a sequence { f̂N} of random densities on Rd is
Lp-consistent for a density f on Rd if

‖ f̂N − f ‖p
p→ 0 as N → ∞

Example 14.1.1 Let f̂N = f (· ; x̄N , sN) be the Nth element of the sequence of normal
densities described above, where x1, . . . , xN are independent draws from a normal
density f = f (· ; µ, σ) and x̄N and sN the sample mean and standard deviation respec-
tively. This sequence of densities is L1-consistent for f . See exercise 14.4.3.

14.1.1.1 Failure of Consistency

The risk with the parametric approach is that the parametric assumption is incorrect,
in the sense that the parametric class doesn’t contain the density generating the data
or any good approximation. If this is the case, a parametric approach is typically not
consistent. More precisely, if we estimate f with parametric class { fθ}θ∈Θ, then the Lp
deviation between our estimate and f is bounded below by

δ( f ) := inf
θ∈Θ
‖ f − fθ‖p (14.4)

This value will be zero only when f can be attained as the limit of elements of { fθ}θ∈Θ.

Example 14.1.2 Consider again the setting of 14.1.1 but now suppose that the true
density f is not Gaussian. Then either the sequence f̂N is not L1-consistent for any
density, or, if it is L1-consistent for some density, then that density is not f . The reason
is that δ( f ) in (14.4) is always positive when the parametric class is Gaussian and f is
not, since the set of normal densities is closed under the taking of limits in L1.

14.1.2 Kernel Density Estimation

Sometimes we can make good choices for parametric classes by using descriptive
statistics or by appealing to some theory with sharp quantitative implications. At
other times this is difficult. In such settings it is best to use a nonparametric approach
that is consistent under weaker assumptions.

1. For a proof, see p. 39 of Devroye and Lugosi (2001).
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Let’s start with an intuitive discussion and then turn to theory. Suppose that we
have IID data x1, . . . , xN generated from unknown density f on Rd. To estimate f
using the data we will employ a kernel density estimator (KDE), which takes the
form

f̂N(s) :=
1

Nhd

N

∑
n=1

K
(

s− xn

h

)
(14.5)

Here K is called the kernel function of the estimator, and h is called the bandwidth.
The kernel function K is required to be a density on Rd but is otherwise unrestricted.
The bandwidth h is any positive number. Exercise 14.4.4 asks you to confirm that f̂N
is always a density.

To get a feeling for the estimate f̂N in (14.5), let’s look at a simple instance created
from just three data points x1, x2, x3 onR. For K we take the standard normal density.
Since N = 3, the function f̂N is the sum of three individual functions, the nth of which
can be written as

gn(s) =
1

Nh
K
(

s− xn

h

)
=

1
Nh

1√
2π

exp
{
− (s− xn)2

2h2

}
This is 1

N times the density of a N(xn, h2) random variable. So the three functions
gn are smooth bumps, each centered on one of the data points and with the degree of
concentration around xn governed by h. The top panel of figure 14.1 shows these three
functions along with the data points for when h = 1. The black line is the pointwise
sum of these functions, which is the density estimate f̂N . By construction, it is large
near the data points and small away from data points.

The lower panel of figure 14.1 shows the same functions when the bandwidth is
increased to 1.4. Each gn becomes more spread out, and the sum f̂N is smoother.

As discussed in more detail below, the role of the bandwidth is to add smoothing
to the empirical distribution, so we can generalize from a finite sample. But what is
the right amount of smoothing? Figure 14.2 illustrates the trade-off associated with
smoothing. The shaded distribution is the density f , which we imagine to be un-
known. 40 observations are drawn from this distribution and represented as dots.
The black line in each panel is the KDE f̂N built from these observations. The kernel
is the standard normal density again, while the bandwidth varies across the panels.

As the bandwidth goes to zero, the kernel density becomes similar to the empirical
distribution, with all probability mass in very small regions around the sample points.
Hence, when we use a very small bandwidth , we make the mistake of treating the
empirical distribution as the true distribution. This is overfitting. At the same time,
excessive smoothing adds too much bias, hiding the features of the true distribution.2

2. Figure 14.2 is produced using scikit-learn. See johnstachurski.net/emet.html for code. In R, KDEs
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Figure 14.1 Nonparametric KDE, different bandwidths

The optimal bandwidth in terms of minimizing Lp deviation depends on the the
unknown density f . For example, if f is smooth, then a relatively large bandwidth
should be used. Of course f is unknown. As such there are two standard approaches.
One is to make assumptions on f and choose the bandwidth accordingly. Another is
to use cross-validation. For a review of both procedures see Scott (2015). We’ll say
more about cross-validation in the context of ridge regression below.

14.1.3 Theory

A natural way to study kernel density estimates is via the notion of convolutions. The
convolution of an arbitrary distribution Q and a density K onRd is the density onRd

defined by

(K ? Q)(s′) =
∫

K(s′ − s)Q(ds) (s′ ∈ Rd) (14.6)

We already encountered this concept in the discrete case in exercise 5.4.10 on page 155,
where you were asked to prove a version of

can be constructed from the density function. Try, for example, plot(density(runif(200))).
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Figure 14.2 Effect of changing the bandwidth

Fact 14.1.3 For any density K and arbitrary distribution Q on Rd, the density K ? Q
equals L(x + y) when x and y are independent with L(x) = K and L(y) = Q.

Example 14.1.3 If K = N(0, σ2) for some σ > 0 and Q is a distribution on R that puts
mass qn on points s1, . . . , sN , then by (14.6) and the rule for integrating over discrete
distributions (see (5.14) on page 134),

(K ? Q)(s′) =
N

∑
n=1

K(s′ − sn)qn (14.7)

This distribution is a mixture of normals. Exercise 14.4.5 illustrates the connection
between (14.7) and fact 14.1.3.

We will be particularly interested in a certain class of convolutions, induced by
densities of the form

Kh(s) :=
1
hd K

( s
h

)
(14.8)

where K is any density and h > 0 is a parameter. The density Kh in (14.8) is the density
of hx when x is a random vector on Rd with density K. (See ex. 14.4.6.)
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Figure 14.3 Smoothing induced by convolutions

Example 14.1.4 Figure 14.3 shows the convolution of a tent-shaped distribution Q
and Kh when K is the standard normal density and h takes different values.

Note how in figure 14.3 the distribution of Kh ? Q is close to Q when h is near zero.
This makes sense, since Kh ? Q is the distribution of x + hy where x is drawn from Q
and y is standard normal. As we take h ↓ 0, the distribution of x + hy converges to the
distribution of x. In fact this is always true:

Fact 14.1.4 Let f and K be any densities onRd, and let Kh be defined from K via (14.8).
If f ∈ Lp, then Kh ? f ∈ Lp, and

lim
h↓0
‖Kh ? f − f ‖p = 0

For a proof, see theorem 9.1 of Devroye and Lugosi (2001).

14.1.3.1 Convolution and KDEs

Let h be a positive number and let Kh be as defined in (14.8). Using this notation, we
can rewrite the KDE in (14.5) as f̂N(s) = 1

N ∑N
n=1 Kh(s − xn). Letting P̂N denote the

empirical distribution of the sample and recalling the expression for integrals with
respect to P̂N (see page 219), we can also write this as f̂N(s′) =

∫
Kh(s′ − s)P̂N(ds),

or, more simply,
f̂N = Kh ? P̂N (14.9)

This equation says something interesting. In §8.2.1.2 we first tried to estimate the
density by a naive application of the sample analogue principle. The method failed.
In (14.9) we have an alternative method that employs smoothing, or regularization.
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We apply the “smoothing operator" Kh? in addition to replacing the target distribu-
tion with the empirical distribution. As the next section shows, this method can be
successful under very mild assumptions.

14.1.3.2 Consistency

It can be proved that, for any density f and kernel K, the nonparametric kernel density
estimator f̂N is L1-consistent for f . See theorem 9.2 of Devroye and Lugosi (2001). The
L1 proof involves a large amount of measure-theoretic machinery. Here we’ll state
and prove the corresponding L2 result instead.

Theorem 14.1.1 Let f and K be densities on Rd and elements of L2. If

(i) {xn}n>1 is an IID sequence of draws from f , and

(ii) the bandwidth sequence {hN} satisfies hN → 0 and Nhd
N → ∞ as N → ∞,

then the sequence of density estimates { f̂N} defined in (14.5) is L2-consistent for f .

Let’s break this claim down into smaller pieces. For the remainder of this section,
‖ · ‖ is the L2 norm and h := hN . Using the expression for f̂N in (14.9) and the triangle
inequality in (14.3), we have

‖ f̂N − f ‖ 6 ‖Kh ? P̂N − Kh ? f ‖+ ‖Kh ? f − f ‖ (14.10)

The first term is called the estimation error, and the second is called the approxima-
tion error or bias. The first error is caused by the fact that we only observe the empir-
ical distribution P̂N rather than the true distribution f . The second error is caused by
the smoothing we deliberately added to control the estimation error. (Compare with
the error decomposition on page 304.)

The fact that hN → 0 in condition (ii) of theorem 14.1.1 means that we shrink the
amount of smoothing as the sample size increases, thereby reducing the approxima-
tion error. The requirement Nhd

N → ∞ ensures that smoothing is not reduced too
quickly, allowing us to control estimation error.

One way to think about the relationship between inference and the sample is that,
when viewed as a “generalized density" with all its mass on data points, the empirical
distribution is too rough. To generalize we need to add smoothing. At the same time,
the need for smoothing decreases as the sample size gets large.

Proof of theorem 14.1.1. By fact 14.1.4, the approximation error converges to zero under
the conditions of theorem 14.1.1. Hence it suffices to show that the estimation error
converges in probability to zero. Fix δ > 0. By Chebyshev’s inequality (see page 96),
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we have

P
{
‖Kh ? P̂N − Kh ? f ‖ > δ

}
= P

{
‖Kh ? P̂N − Kh ? f ‖2 > δ2

}
6

ξN

δ2

where
ξN := E

{
‖Kh ? P̂N − Kh ? f ‖2

}
To complete the proof, we need only show that ξN converges to zero. Let

K̄N(s) := (Kh ? P̂N)(s)− (Kh ? f )(s) =
1
N

N

∑
n=1
{Kh(s− xn)−E [Kh(s− xn)]}

We can then write

ξN = E

{∫
[K̄N(s)]

2 ds
}

=
∫
E
{
[K̄N(s)]

2
}

ds (14.11)

(The interchange of order of expectation and integration is valid for nonnegative
integrands—see theorem 4.4.5 of Dudley (2002).) Since K̄N(s) is the sample mean
of N IID zero-mean random variables, we have

E
{
[K̄N(s)]

2
}
= var [K̄N(s)] =

1
N

var[Kh(s− xn)]

Moreover

var[Kh(s− xn)] = E
{
[Kh(s− xn)]

2
}
− {E [Kh(s− xn)]}2 6 E

{
[Kh(s− xn)]

2
}

In summary,

ξN 6
1
N

∫
E
{
[Kh(s− xn)]

2
}

ds (14.12)

Now observe that, switching the order of integration once more,∫
E
{
[Kh(s− xn)]

2
}

ds =
∫ {∫

[Kh(s− s′)]2 ds
}

f (s′)ds′

From the definition of Kh and a change of variable argument,

∫
[Kh(s− s′)]2 ds =

1
h2d

∫ [
K
(

s− s′

h

)]2

ds =
1
hd

∫
[K(u)]2 du
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Putting this together with (14.12) gives the bound

ξN 6
∫ 1

Nhd ‖K‖
2 f (s′)ds′ =

1
Nhd ‖K‖

2

The term ‖K‖2 := ‖K‖2
2 is finite by assumption. Recalling that Nhd = Nhd

N → ∞, we
see that ξN → 0 as required.

14.1.4 Commentary

In some fields of science, researchers have considerable knowledge about parametric
classes and specific functional forms. For example, the theory of Brownian motion
describes how the location of a tiny particle in liquid is approximately normally dis-
tributed. Thus the underlying theory provides an exact parametric class. In this kind
of setting the parametric approach excels. It allows us to generalize by combining
data with information we have on functional forms.

Unfortunately, the quantitative foundations of economics and other social sciences
are looser and more prone to shifting over time. Econometricians usually come to the
table with less knowledge of parametric classes and functional forms. These facts
make nonparametric techniques attractive.

At the same time, nonparametric methods do not solve all our problems. The
theoretical results presented above are purely asymptotic. Finite sample results are
available, but it isn’t possible to obtain strong results in this direction without cor-
respondingly strict assumptions on the target density. There is no uniform rate of
convergence for all target densities (Devroye and Lugosi 2001, p. 85). This is because
nonparametric methods have relatively little structure in the form of prior knowledge
and hence require abundant data.

14.2 Controlling Complexity

In the last section we discussed flexible estimation methods that perform well asymp-
totically. In this section we turn our attention to finite sample properties. A com-
mon thread will be ridge regression, which is a popular method of estimation in both
econometrics and machine learning (see, e.g., Peysakhovich and Naecker 2015, Kim
and Swanson 2014, or Varian 2014). Ridge regression also connects to some deep
ideas at the heart of finite sample theory, including complexity, prior knowledge and
the bias–variance trade-off.
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14.2.1 Ridge Regression

Let’s start off in the classical OLS setting of §12.1.1, with assumptions 12.1.2–12.1.4 all
in force. The usual OLS estimator is β̂ as given in (12.3). It can also be expressed as

β̂ = argmin
b∈RK

N

∑
n=1

(yn − xᵀnb)2

As shown in §11.1.2, the OLS estimator minimizes the empirical risk under quadratic
loss when the hypothesis space is the set of linear functions. Under our current
assumptions, it is also unbiased for β (theorem 12.1.1) and, by the Gauss–Markov
theorem, it has the lowest variance among all linear unbiased estimators of β (theo-
rem 12.1.3).

While the Gauss–Markov theorem has historical importance, a more natural way
to evaluate estimators is to consider their mean squared error, which tells us directly
how much probability mass the estimator puts around the object it is trying to estimate
(see §9.2.3). Recalling (9.9) on page 259, the MSE of an estimator b̂ of β is defined as

mse(b̂, β) := E
{
‖b̂− β‖2

}
As exercise 14.4.8 asks you to show, the following representation is also valid:

mse(b̂, β) = E
{
‖ b̂−E [b̂] ‖2

}
+ ‖E [b̂]− β ‖2 (14.13)

This equation extends (9.10) on page 259, and tells us that MSE is the sum of a variance
and a bias term. Minimization of MSE involves a trade-off between these two terms.
Typically, the optimal choice is not at either extreme: MSE is minimized when some
amount of bias is admitted.

Applying this idea to the OLS setting, Hoerl and Kennard (1970) showed that there
exists a biased linear estimator that has lower mean squared error than β̂. The estima-
tor is defined as the solution to the modified least squares problem

min
b∈RK

{
N

∑
n=1

(yn − xᵀnb)2 + λ‖b‖2

}
(14.14)

where λ > 0 is called the regularization parameter. In solving (14.14), we are mini-
mizing the empirical risk plus a term that penalizes large values of ‖b‖. The effect is
to “shrink” the solution relative to the unpenalized solution β̂. Some calculus shows
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that the solution to (14.14) is

β̂λ := (XᵀX + λI)−1Xᵀy (14.15)

The estimator β̂λ is called the ridge regression estimator. Note that

(i) β̂λ is the OLS estimator when λ = 0 and

(ii) β̂λ is biased whenever λ > 0 (ex. 14.4.9).

The following result is proved in Hoerl and Kennard (1970).

Theorem 14.2.1 Under the OLS assumptions 12.1.2–12.1.4, there exists a λ > 0 such that

mse
(

β̂λ, β
)
< mse

(
β̂, β

)
The reduction in MSE over the least squares estimator occurs because, for some

intermediate value of λ, the variance of β̂λ falls by more than enough to offset the bias
induced by regularization.

Note that, for suitable choice of λ, the ridge regression estimator β̂λ outperforms β̂
even though all of the classical OLS assumptions are valid. At the same time the right
choice of λ is a nontrivial problem. This problem falls under the heading of model
selection, which is the topic treated in the next few sections.

14.2.1.1 Interpretation

The traditional view of ridge regression runs as follows: The standard OLS assump-
tions are treated as valid. There may, however, be instances where XᵀX is almost
singular due to strong correlation between regressors. In this case the process of in-
verting XᵀX is numerically unstable. We can stabilize the inversion by adding some
positive value of λ in (14.15).

Here’s another view: The standard OLS assumptions are implausible. Since our
loss function is quadratic, we would ideally like to obtain the regression function f ∗

but recovering this infinite dimensional object with a finite amount of data is ill-posed.
We need to control the complexity of the candidate functions we use to approximate
the regression function. The regularization term in ridge regression provides a means
of managing complexity.

14.2.1.2 Tikhonov Regularization

Let’s build some more intuition for the result in theorem 14.2.1 by running simula-
tions. We’ll frame the simulations in a general setting, of which ridge regression is a
special case.
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We know that the least squares estimator is the solution to an overdetermined
system of equations. There is an existing theory for solving ill-posed linear systems
in high dimensions. The basic idea is that any attempt to back out or infer a complex
object by solving a system about which we have limited information requires a degree
of regularization.

To illustrate, suppose that

(i) Ab = c is an overdetermined system, where A is N × K with N > K.

(ii) Due to measurement error, we only observe an approximation c0 of c.

(iii) b∗ is the (unobservable) least squares solution argminb ‖Ab− c‖2.

In the absence of additional information, a natural approach to approximating b∗ is to
solve Ab = c0 by least squares. An alternative, less obvious approach, is to minimize

m(λ) := ‖Ab− c0‖2 + λ‖b‖2 (14.16)

for some small but positive λ. This second approach is called Tikhonov regulariza-
tion. We are minimizing least squares plus a penalty term.

Let’s look at a simulation where A is chosen stochastically but with a tendency
towards multicollinearity.3 To aid clarity, we first set b∗ := (10, 10, . . . , 10)ᵀ, and then
set c := Ab∗. By construction, b∗ is a solution to the system Ab∗ = c, and also the
least squares solution.

Measurement of c is corrupted with a Gaussian shock. In particular, c0 is drawn
from N(c, σ2I) where σ is a small positive number. We then plot the OLS solution
based on c0, which minimizes ‖Ab− c0‖2, and the regularized solution, which min-
imizes m(λ) in (14.16). The former are plotted against their index in green, while
the latter are plotted in blue. The true solution b∗ is plotted in black. The result is
figure 14.4.

The figure shows 10 solutions each for the ordinary and regularized solutions,
corresponding to 10 draws of c0. The regularized solutions are much closer to the true
solution on average.

Note that this result is dependent on a reasonable choice for λ. If you experiment
with the code on the text website, you will see that for very small values of λ, the
regularized solutions are almost the same as the unregularized solutions. Conversely,
very large values of λ pull the regularized solutions too close to the zero vector.

14.2.2 Subset Selection and Ridge Regression

One problem frequently faced in regression problems is which variables to include.
For example, if we are comparing crime rates across different cites, we can think of

3. Full details on the choice of A are given in the code for this chapter at johnstachurski.net/emet.html.
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Figure 14.4 Effect of Tikhonov regularization, λ = 1

any number of variables that might be relevant (median wage, unemployment, police
density, etc.). The same is true if we are trying to model credit default rates for some
group of individuals, or educational attainment across schools. A similar problem
arises in time series models, where we want to know how many lags of the state
variables to include. The general problem is known as subset selection, since we are
trying to choose the right subset of all candidate regressors.

Further dimensions appear when we consider basis functions. Given a set of co-
variates x, we have the option to map this into a larger vector φ(x) using basis func-
tions, as discussed in §11.2.1. For example, given a single covariate x, we may consider
mapping it into φ(x) = (1, x, x2, . . . , xd) and regressing y on φ(x). As we saw in fig-
ures 8.5–8.8 (page 231), a good choice of d is crucial. Choosing d is another example of
the subset selection problem because we are trying to decide whether to include the
regressor xj for some given j.

Subset selection is a version of the empirical risk minimization problem. Suppose
that we have output y and inputs x ∈ RK, in the sense that x contains K candidate
regressors. If we want to include all regressors, then we can minimize empirical risk
overH` in (11.4), the hypothesis space of linear functions fromRK toR. If we wish to
exclude some subset of regressors, we can set I ⊂ {1, . . . , K} to be the set of indices of
the regressors we want to exclude and regress y on the remainder, which is equivalent
to minimizing the empirical risk over the hypothesis space

H−I :=
{

all functions f (x) = bᵀx with bk = 0 for all k ∈ I
}
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We are back to the problem of choosing a suitable hypothesis space over which to
minimize empirical risk.

The subset selection problem has been tackled by many researchers. Well-known
approaches include the Akaike Information Criterion (AIC), the Bayesian Information
Criterion (BIC), and Mallow’s Cp statistic. For example, Mallow’s Cp statistic consists
of two terms, one increasing in the size of the empirical risk, and the other increasing
in |I|, the size of the subset selected. The objective is to minimize the statistic, which
involves trading off poor fit (large empirical risk) against excess complexity of the
hypothesis space (large |I|).

One of the problems with subset selection is that K regressors means 2K subsets to
step through.4 To avoid this computational problem, one alternative is to use ridge
regression. With ridge regression, the regularization term leads us to choose an esti-
mate with smaller norm. What this means, in practice, is that the coefficients of less
helpful regressors are driven towards zero, thereby “almost excluding” those regres-
sors. While the model selection problem is not solved, it has been reduced to tuning a
single parameter.

We can illustrate the idea by reconsidering the regression problem discussed in
§8.2.3. Figures 8.5–8.8 (see page 231) showed the fit we obtained by minimizing em-
pirical risk over larger and larger hypothesis spaces. The hypothesis spaces were the
sets Pd of degree d polynomials for different values of d. For each d we minimized
the empirical risk over Pd, which translates into solving

min
b

N

∑
n=1

[
yn − bᵀ

φ(xn)
]2 where φ(x) = (x0, x1, . . . , xd)

As discussed above, choosing the right d is isomorphic to subset selection, since we
are deciding what powers of x to include as regressors. Figure 8.4 (page 230) showed
that intermediate values of d did best at minimizing risk.

We can do a similar thing using ridge regression. First, let’s take P14 as our
hypothesis space. This space is certainly large enough to provide a good fit to the
data, but with empirical risk minimization the result is overfitting (see figure 8.8 on
page 233). Here, instead of using empirical risk minimization, we solve the regular-
ized problem

min
b

N

∑
n=1

{[
yn − bᵀ

φ(xn)
]2

+ λ‖b‖2
}

for different values of λ. The data used here are exactly the same data used in the
original figures 8.5–8.8 from §8.2.3. The solution for each λ we denote by β̂λ, which is
the ridge regression estimator, and the resulting prediction function we denote by f̂λ,

4. Remember Sala-i-Martin (1997) and his two million growth regressions?
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Figure 14.5 Fitted polynomial, λ ≈ 0

so that f̂λ(x) = β̂
ᵀ
λφ(x).

The function f̂λ is plotted in red for increasingly larger values of λ over figures 14.5–
14.7. The black line is the risk-minimizing function. In figure 14.5, the value of λ is
too small to impose any real restriction, and the procedure overfits. In figure 14.6, the
value of λ is larger and the fit is good. In figure 14.7 the value of λ is too large and the
estimate is poor.

As in §8.2.3, we can compute the risk of each function f̂λ, since we know the un-
derlying model (see (8.25) on page 229). The risk is plotted against λ in figure 14.8.
The x-axis is on log-scale. The risk is smallest for small but nonzero values of λ.

14.2.3 Bayesian Methods and Regularization

The ideal case with model selection is that we have clear guidance from economic
theory on which regressors to include, which functional forms to use, which values of
our regularization parameter to choose, and so on. If theory or prior knowledge pro-
vides this information, then every effort should be made to exploit it. One technique
for injecting prior information into statistical estimation is via Bayesian analysis. Let’s
now look at Bayesian linear regression and how it compares to ridge regression.

Suppose that our regression data take the linear form y = Xβ + u. To simplify the
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Figure 14.6 Fitted polynomial, λ ≈ 0.0004
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Figure 14.7 Fitted polynomial, λ ≈ 18
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Figure 14.8 Risk of f̂λ plotted against λ

presentation we will assume that X is nonrandom. (Taking X to be random leads to the
same conclusions but with a longer derivation). As before, u is random and unobserv-
able. The new feature provided by the Bayesian perspective is that we take β to be ran-
dom and unobservable as well. In addition we are assumed to have subjective prior
beliefs regarding likely values for these variates, expressed in the form of probability
distributions. Here we take the priors to be L(u) = N(0, σ2I) and L(β) = N(0, τ2I).

Given our model y = Xβ + u, our prior on u implies that the density of y given β
is N(Xβ, σ2I). In generic notation, we can write our distributions as

p(y | β) = N(Xβ, σ2I) and p(β) = N(0, τ2I) (14.17)

Applying Bayes’ law (see (5.25)) to the pair (y, β), we obtain

p(β | y) = p(y | β)p(β)

p(y)
(14.18)

The left-hand side is the posterior density of β given the data y, and represents our
new beliefs updated from the prior on the basis of the data y.

One way to summarize the information contained in the posterior is by examining
its maximum value. The maximizer of the posterior is called the maximum a poste-
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riori (MAP) probability estimate. Taking logs of (14.18) and dropping the term that
does not contain β, it can be expressed as

β̂M := argmax
β

{ln p(y | β) + ln p(β)} (14.19)

Inserting our functional forms into (14.17), dropping constant terms and multiplying
by −1, we obtain the expression

β̂M = argmin
β

{
N

∑
n=1

(yn − xᵀnβ)2 +
σ2

τ2 ‖β‖
2

}
(14.20)

This is precisely the penalized least squares problem (14.14) on page 387, where the
regularization parameter λ is equal to (σ/τ)2. In view of (14.15), the solution is

β̂M := (XᵀX + (σ/τ)2I)−1Xᵀy

Thus Bayesian estimation provides a principled derivation of the penalized objec-
tive function from ridge regression. Bayesian analysis provides the same effect as
Tikhonov regularization, but now regularization arises out of combining prior knowl-
edge with the data. Moreover, at least in principle, the value (σ/τ)2 is part of our
prior knowledge, and hence there is no model selection problem.

In practice, one could of course question the assertion that we have so much prior
knowledge that the regularization parameter λ := (σ/τ)2 is pinned down. If such
knowledge is lacking, then we are back at the model selection problem. In the next
section we forgo the assumption that this strong prior knowledge is available, and
consider a more automated approach to choosing λ.

14.2.4 Cross-Validation

A natural way to think about model selection is to think about minimizing risk. Recall
that, given loss function L and a system producing input–output pairs (x, y) ∈ RK+1

with joint distribution P, the prediction risk of a function f : RK → R is the expected
loss

R( f ) := E [L(y, f (x))] =
∫ ∫

L(t, f (s))P(dt, ds)

that occurs when we use f (x) to predict y. Now suppose that we observe N IID input–
output pairs zD := {(x1, y1), . . . (xN , yN)}. Given a selection of models, we would like
to find the one that takes this data set and returns a predictor f̂ such that f̂ has lower
prediction risk than the predictors returned by the other models.

We have to be precise in defining risk because, if we define it asE [L(y, f̂ (x))], then
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we are taking expectation over all randomness, including that in f̂ , which depends on
the data set zD . What we want to do now is take the data set as given, and see how
well we can do in terms of predicting new values as evaluated by expected loss. Hence
we define the prediction risk of f̂ to be the expected loss taking zD (and hence f̂ ) as
given:

R( f̂ | D) := E [L(y, f̂ (x)) | D] =
∫ ∫

L(t, f̂ (s))P(dt, ds)

If we have a collection of models M indexed by m, and f̂m is the predictor produced
by fitting model m with data D, then we would like to find the model m∗ such that

R( f̂m∗ | D) 6 R( f̂m | D) for all m ∈ M

The obvious problem with this idea is that risk is unobservable. If we knew the joint
distribution P then we could calculate it; but then again, if we knew P there would be
no need to estimate anything in the first place.

Looking at this problem, you might have the following idea: Although we don’t
know P, we do have the data zD , which consists of IID draws from P. From the law of
large numbers, we know that expectations can be approximated by averages over IID

draws, so we could approximate R( f̂ | D) by

1
N

N

∑
n=1

L(yn, f̂ (xn))

where the pairs (xn, yn) are from the data set zD .
However, this is just the empirical risk, and the empirical risk is a highly biased

estimator of the risk. This point was discussed extensively in §8.2.3. See, in particular,
figure 8.4 on page 230. The point that figure made was that complex models tend to
overfit, producing low empirical risk, but high risk. In essence, the problem is that we
are using the data zD twice, for conflicting objectives. First, we are using it to fit the
model, producing f̂ . Second, we are using it to evaluate the predictive ability of f̂ on
new observations.

So what we really need is fresh data. New data will tell us how f̂ performs out-of-
sample. If we had J new observations (yv

j , xv
j ), then we could estimate the risk by

1
J

J

∑
j=1

L(yv
j , f̂ (xv

j ))

Of course, this isn’t a genuine solution because we don’t have any new data in general.
One way to work around this problem is to take zD and split it into two disjoint
subsets, called the training set and the validation set. The training set is used to fit
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f̂ and the validation set is used to estimate the risk of f̂ . We then repeat this for all
models and choose the one with lowest estimated risk.

Since data are scarce, a more common procedure is cross-validation, which at-
tempts to use the whole data set for both fitting the model and estimating the risk. To
illustrate the idea, suppose that we partition the data set into two subsets D1 and D2.
First, we useD1 as the training set andD2 as the validation set. Next we useD2 as the
training set, and D1 as the validation set. The estimate of the risk is the average of the
estimates of the risk produced in these two steps.

Of course, we could divide the data into more than two sets. The extreme is to par-
tition the data into N subsets. This procedure is called leave-one-out cross-validation.
Letting D−n := zD \ {(xn, yn)}, the data set with just the nth data point (xn, yn) omit-
ted, the leave-one-out cross validation algorithm can be expressed as follows:

1: for n = 1, . . . , N do
2: fit f̂−n using data D−n
3: set rn := L(yn, f̂−n(xn))
4: end for
5: return the risk estimate r := 1

N ∑N
n=1 rn

At each step inside the loop, we fit the model using all but the nth data point,
and then predict the nth data point using the fitted model. The prediction quality is
evaluated in terms of loss. Repeating this n times, we produces estimate of the risk
using average loss. On an intuitive level, the procedure is attractive because we are
using the available data intensively but still evaluating based on out-of-sample error.

In terms of model selection, the idea is to run each model through the cross-
validation procedure, and then select the one that produces the lowest value of r,
the estimated risk. Let’s illustrate this idea, by considering again the ridge regression
procedure used in §14.2.2. In this problem the set of models is indexed by λ, the regu-
larization parameter in the ridge regression. The data set zD is the set of points shown
in figures 14.5–14.7. For each λ, the fitted function f̂λ is

f̂λ(x) = β̂
ᵀ
λφ(x) where β̂λ := argmin

b

N

∑
n=1

{
(yn − bᵀ

φ(xn))
2 + λ‖b‖2

}
Recall here that φ(x) = (x0, x1, . . . , xd) with d fixed at 14, so we are fitting a poly-
nomial of degree 14 to the data by minimizing regularized least squares error. The
amount of regularization is increasing in λ. The resulting functions f̂λ were shown
for different values of λ in figures 14.5–14.7. Intermediate values of λ produced the
best fit in terms of minimizing risk (see figures 14.6 and 14.8).

In that discussion, we used the fact that we knew the underlying model to eval-
uate the risk, and hence the values of λ that produce low risk (figure 14.8). In real
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Figure 14.9 Fitted polynomial, λ ≈ 0.015

estimation problems, risk is unobservable, and we need to choose λ on the basis of
the data alone (assuming we don’t have prior knowledge, as in the Bayesian case—
see §14.2.3). Let’s see how a data-based procedure such as cross-validation performs
in terms of selecting a good value of λ.

In this experiment, for each λ in the grid exp(seq(-22, 10, length=10)) we per-
form leave-one-out cross-validation. The fit at each step within the loop is via ridge
regression, omitting the nth data point, and the resulting polynomial is used to pre-
dict yn from xn. The prediction error is measured by squared loss. In other words, for
each λ in the grid, we use the following algorithm to estimate the risk:

1: for n = 1, . . . , N do
2: set β̂λ,−n := argminb ∑i 6=n{(yi − bᵀφ(xi))

2 + λ‖b‖2}
3: set rλ,n := (yn − β̂

ᵀ
λ,−nφ(xn))2

4: end for
5: return rλ := 1

N ∑N
n=1 rλ,n

The value of λ producing the smallest estimated risk rλ is around 0.015. This is in
fact very close to the value that minimizes the actual risk (see figure 14.8 on page 394).
The associated function f̂λ is plotted in red in figure 14.9, and indeed the fit is close.
In this instance, our fully automated procedure is successful.5

5. The code to run this experiment can be found at johnstachurski.net/emet.html.
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14.3 Further Reading

Textbook treatments of nonparametric methods in econometrics can be found in Pa-
gan and Ullah (1999), Li and Racine (2006), Ullah (1989), Henderson and Parmeter
(2015) and Hansen (2015). Bosq (1996) covers nonparametrics for time series mod-
els. Recent studies in the econometrics literature using nonparametric or semipara-
metric methods include Chen and Hong (2012), Jeong et al. (2012), Henderson et al.
(2012), Christensen (2014), Canay et al. (2013), Su and Ullah (2013), Bajari et al. (2013),
Newey (2013), Hansen (2014a), Mastromarco and Simar (2015), Hickman and Hub-
bard (2015), Matzkin (2015), Bhattacharya (2015), and Du and Escanciano (2015). A
beautiful overview of nonparametrics and the method of sieves can be found in Ge-
man and Hwang (1982).

Good discussions of ridge regression and cross-validation can be found in Fried-
man et al. (2009) and Abu-Mostafa et al. (2012). One alternative to ridge regression is
the LASSO method (Tibshirani 1996), where the term λ ∑K

k=1 b2
k in (14.14) is replaced

with an absolute deviation penalty λ ∑K
k=1 |bk|. Also related is penalized maximum

likelihood estimation. A recent application can be found in Gentzkow et al. (2015).
An important contribution to the literature on subset selection is the least angle

regression of Efron et al. (2004). A discussion of this method in relation to other subset
techniques can be found in Hesterberg et al. (2008).

Recent papers treating regularization and related topics within the econometrics
literature include Florens (2003), Carrasco et al. (2007), Chen and Reiss (2011), Florens
and Simoni (2014), Darolles et al. (2011), Hoderlein and Holzmann (2011), Horowitz
(2014), Hautsch et al. (2012), Li et al. (2015), Lunde et al. (forthcoming), Chernozhukov
et al. (2015), and Ando and Bai (forthcoming).

Regarding implementations, one powerful and increasingly popular package for
Bayesian learning is Stan. See http://mc-stan.org/. A popular and high-quality
routine for cross validation in the context of ridge regression can be found in the
sklearn.linear_model.RidgeCV method in Python’s scikit-learn package.

14.4 Exercises

Ex. 14.4.1 Let ‖ · ‖1 denote the L1 norm as defined in (14.2). Show that ‖ f − g‖1 is
bounded over the set of all densities.6

Ex. 14.4.2 Prove the triangle inequality in the case of L1 (see (14.3)).

Ex. 14.4.3 Prove the claim in example 14.1.1 on page 379.7

6. Hint: It is a basic property of integration that g 6 h pointwise implies
∫

g 6
∫

h.
7. Hint: Use fact 14.1.2 and exercise 8.5.9 on page 245.
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Ex. 14.4.4 For the case d = 1, show that f̂ in (14.5) is a density for every N, every
h > 0 and every realization of the sample.8

Ex. 14.4.5 Let x be a finite random variable taking value sn in {sn}N
n=1 with probability

pn. Let y be independent of x with density g on R. Show that z = x + y has density
f (s′) = ∑N

n=1 g(s′ − sn)pn.

Ex. 14.4.6 Let x be multivariate Gaussian, with distribution N(µ, Σ) and let h > 0.
Suppose that Σ is nonsingular. Let K be the density of x (see page 130) and let Kh be
the density of hx. Show that K and Kh satisfy the relationship shown in (14.8). (The
result is true more generally but the Gaussian case is a nice exercise.)

Ex. 14.4.7 Let x1, . . . , xN be IID scalar random variables with common density f and
let f̂ be as defined in (14.5). Show that if K(t) = 1{−1/2 < t < 1/2}, then, for any
number s, we have

E [ f̂ (s)] =
1
h

∫ s+h/2

s−h/2
f (t)dt

Ex. 14.4.8 Verify the claim in (14.13).

Ex. 14.4.9 By taking derivatives in (14.14) to find stationary points, derive the expres-
sion for the ridge regression estimator β̂λ. Show that β̂λ is a biased estimator of β
whenever λ > 0.

Ex. 14.4.10 In deriving β̂λ in (14.15), we do not require the full rank assumption (see
assumption 11.1.1 on page 302) whenever λ > 0. Explain why.

Ex. 14.4.11 Verify (14.20) on page 395 using (14.17) and (14.19).

14.4.1 Solutions to Selected Exercises

Solution to Ex. 14.4.1. Let f and g be any two densities on RJ . By the triangle in-
equality, for any given s ∈ RJ , we have

| f (s)− g(s)| 6 | f (s)|+ |g(s)| = f (s) + g(s)

Integrating both sides of this inequality gives ‖ f − g‖1 6 2.

Solution to Ex. 14.4.2. Fix densities f , g and h on Rd. Pick any s ∈ Rd. By the scalar
triangle inequality, we have | f (s) − g(s)| 6 | f (s) − h(s)| + |h(s) − g(s)|. As per
the hint in exercise 14.4.1, integration preserves this bound. This gives the triangle
inequality in L1.

8. Hint: Try a change-of-variables argument.
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Solution to Ex. 14.4.3. By Pinsker’s inequality and exercise 8.5.9, we have

‖ f (· ; µ, σ)− f (· ; x̄N , sN)‖1 6

√
δN
2

where δN := ln
sN
σ

+
σ2 + (µ− x̄N)

2

2s2
N

− 1
2

Since x̄N
p→ µ and sN

p→ σ (see §9.2.4), applying the rules in fact 6.1.1 on page 161, we

have δN
p→ 0. The claim follows.

Solution to Ex. 14.4.4. The nonnegativity of f̂ is obvious. To show that
∫

f̂ (s)ds = 1,
it is enough to show that

∫
K
( s−a

h
)

ds = h for any given number a. This equality can
be obtained by the change of variable u := (s− a)/h, which leads to∫

K
(

s− a
h

)
ds =

∫
K(u)h du = h

∫
K(u)du

Since K is a density, the proof is done.

Solution to Ex. 14.4.5. Fix s′ ∈ R. By the law of total probability we have

P{z 6 s′} =
N

∑
n=1

P{x + y 6 s′ | x = sn}P{x = sn} =
N

∑
n=1

P{y 6 s′ − sn}pn

Differentiating with respect to s′ gives the stated form for the density of z.

Solution to Ex. 14.4.6. Adopting the setting and notation of ex. 14.4.6, our aim is to
show that K and Kh satisfy (14.8). By our rules for linear transforms of Gaussians (see
page 133), the distribution of hx is N(hµ, h2Σ). That is,

Kh(s) = (2π)−d/2 det(h2Σ)−1/2 exp
{
−1

2
(s− hµ)

ᵀ
(h2Σ)−1(s− hµ)

}
Applying scalar multiple rules for inverses and determinants (see page 52 and page 52),
we can also write this as

Kh(s) =
1
hd (2π)−d/2 det(Σ)−1/2 exp

{
−1

2
(s/h− µ)

ᵀ
Σ−1(s/h− µ)

}
That is, Kh(s) := 1

hd K( s
h ), where K is the density of N(µ, Σ).

Solution to Ex. 14.4.10. The full rank assumption is not necessary because the matrix
Z := XᵀX + λI is always invertible. To show this it suffices to show that Z is positive
definite. This is not difficult to verify using the definition.


