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ABSTRACT. In economic studies and popular media, interest rates are routinely cited as
a major factor behind commodity price fluctuations. At the same time, the channels of
transmission are far from transparent, leading to long-running debates on the sign and
magnitude of interest rate effects. Purely empirical studies struggle to address these issues
because of the complex interactions between interest rates, prices, supply changes and ag-
gregate demand. To move this debate to a solid footing, we extend the competitive storage
model to include stochastically evolving interest rates. We establish general conditions for
existence and uniqueness of solutions, as well as providing a systematic theoretical and
quantitative analysis of the interactions between interest rates and prices.
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1. INTRODUCTION

Commodity prices are major determinants of exchange rates, government revenue,
the balance of payments, output fluctuations, and inflation (see, e.g., Byrne et al., 2013;
Gospodinov and Ng, 2013; Eberhardt and Presbitero, 2021; Peersman, 2022). While some
commodity price movements are driven by idiosyncratic shocks, Alquist et al. (2020) find
that up to 80% of the variance of commodity prices is explained by common factors (see
also Byrne et al., 2013). Aggregate factors are particularly important when considering
the impact of commodities on inflation and exchange rates because such factors induce
price comovement in all or many commodities.

Historically, the aggregate factor that has generated the most attention is interest rates.
For example, Frankel (2008b, 2008c, 2018) has long argued that interest rates are a major
driver of comovements in commodity prices, with rising interest rates decreasing com-
modity prices and falling interest rates increasing them. The main argument relates to
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cost of carry: higher interest rates reduce demand for inventories, which exerts down-
ward pressure on commodity prices. At the same time, it is easy to imagine scenarios
where interest rates and commodity prices are positively correlated—for example, when
high aggregate demand boosts both commodity prices and the cost of borrowing (through
credit markets and, potentially, the responses of monetary authorities).

Indeed, empirical studies of the sign and magnitude of interest rate effects on commod-
ity prices face deep challenges because of the endogeneity and equilibrium nature of the
mechanisms in question. For example, even if we fully control for changes in output
and demand, rising commodity prices might themselves trigger a tightening of monetary
policy, without any change in output (see, e.g., Cody and Mills, 1991). Conversely, pure
monetary shocks affect commodity markets through various channels (e.g., speculation,
aggregate demand, and supply response) that are hard to disentangle empirically.1

These challenges demand a structural model built on firm theoretical foundations that
can isolate the direct effect of interest rates on commodity prices through each of the
channels listed above. The obvious candidate to provide the necessary structure is the
competitive storage model developed by Samuelson (1971), Newbery and Stiglitz (1982),
Wright and Williams (1982), Scheinkman and Schechtman (1983), Deaton and Laroque
(1992, 1996), Chambers and Bailey (1996) and Cafiero et al. (2015), among others. In this
model, commodities are assets that also have intrinsic value, separate from future cash
flows. The standard version of the model features time-varying production, storage by
forward-looking investors, arbitrage constraints, and non-negative carryover. Within the
constraints of the model, there is a clear relationship between interest rates, storage, and
commodity prices. Fama and French (1987) show that the relationship between the basis,
the spread between the futures and spot prices, and interest rates is consistent with the
structure of this model.

The main obstacle to applying the standard competitive storage model to the problem
at hand is that the discount rate is constant. The source of this shortcoming is technical:
a constant positive interest rate is central to the traditional proof of the existence and
uniqueness of equilibrium prices and the study of their properties (see, e.g., Deaton and
Laroque, 1992, 1996). In particular, positive constant rates are used to obtain contraction
mappings over a space of candidate price functions, with the discount factor being the
modulus of contraction.

At the same time, relaxing the assumption of constant discounting is necessary for anal-
ysis of interactions between interest rates and commodity prices. Without this modifica-
tion, it is not possible to study how the nature and timing of shocks to supply, demand,
and interest rates affect the sign and magnitude of changes in commodity prices. More-
over, allowing for state-dependent discounting brings the model closer to the data, since
real interest rates do exhibit large movements over time, as shown in Figure 1.

1For example, a decline in the US interest rate can stimulate both global demand (see, e.g., Ramey, 2016)
and firms’ incentive to hold inventories (see, e.g., Frankel, 1986, 2008a, 2014), which then increase commod-
ity prices. An increase in interest rates works in the opposite direction.
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FIGURE 1. The real interest rate over the long run (one-year US treasury
yield deflated by a measure of expected inflation obtained from an autore-
gressive model estimated on a 30-year rolling window). Source: FRED.

One difficulty with relaxing the assumption of constant interest rates in the competitive
storage model is that negative real interest rates cannot be ignored, as is clear from Fig-
ure 1. If interest rates can be sufficiently negative for sufficiently long periods, then the
model will have no finite equilibrium, due to unbounded demand for inventories. Thus,
developing a model that can handle realistic calibrations requires accommodating neg-
ative yields on risk-free bonds in some states of the world, while providing conditions
on these states and the size of the yields such that the model retains a well-defined and
unique solution.

In this paper, we extend the competitive storage model to include state-dependent dis-
counting and establish conditions under which a unique equilibrium price process ex-
ists. These conditions allow for both positive and negative discount rates, while also
providing a link between the asymptotic return on risk-free assets with long maturity, the
depreciation rate of the commodity in question, and the existence and uniqueness of so-
lutions. Under these conditions, we show that the equilibrium solution can be computed
via a globally convergent algorithm and provide a characterization of the continuity and
monotonicity properties of the equilibrium objects. We also develop an endogenous grid
algorithm for computing equilibrium objects efficiently.

With these results in hand, we examine the effect of interest rates on commodity prices
from a theoretical and quantitative perspective. We show that, in some settings, interest
rates and commodity prices can be positively correlated, such as when shocks shift up
both interest rates and aggregate demand. Nevertheless, we are able to identify relatively
sharp conditions under which a negative correlation is realized and analyze the impact of
interest rates on commodity prices in depth. These conditions require that the exogenous
state follows a monotone Markov process that is independent across dimensions and has
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a non-negative effect on interest rate and commodity output. The independence restric-
tion cannot be dropped: if different exogenous states are contemporaneously correlated,
then the relationship between interest rates and commodity prices can be reversed.

On the quantitative side, we study the impulse response functions (IRFs) of commodity
price, inventory, and price volatility in response to an interest rate shock for suitable struc-
tural parameters. We then use these IRFs to explore the speculative and global demand
channels. The former examines the role of speculators in the physical market, whose in-
centives to hold inventories are affected by fluctuations in interest rates. The latter studies
the impact of exogenous interest rate shocks on commodity demand through their effects
on economic activity. While both channels have been frequently suggested in the litera-
ture, their analysis remains significantly under-explored to date. To capture the nonlinear
dynamics of the competitive storage model, we follow the methodology of Koop et al.
(1996), wherein IRFs are defined as state-and-history-dependent random variables.

The simulated IRFs show that prices fall immediately after a positive interest rate shock
and slowly converge to their long-run value, with a more pronounced decline and a
slower convergence when the demand channel is active. The behavior of inventory dy-
namics is nuanced. While inventories typically decrease post-shock due to higher cost of
carry, they may later rise when the demand channel is active. This is because reduced
demand lowers spot prices, creating profit opportunities for storage. Overall, invento-
ries tend to return to their long-run average more slowly than prices. Furthermore, price
volatility exhibits sensitivity to inventory dynamics: a larger response in inventory tends
to generate an inversely larger response in price volatility. Finally, the magnitude and
overall pattern of the IRFs depend substantially on the market supply and interest rate
regimes.2

Our work has some implications concerning commodity futures. For example, follow-
ing the methodology of Gardner (1976), it has become common to use futures prices as
a proxy for expected prices (see, e.g., Gouel and Legrand, 2022). However, our findings
indicate that this substitution is invalid within the framework outlined in this study. As
elucidated by Cox et al. (1981), forward and futures prices diverge in the presence of sto-
chastic interest rates. Considering the potential for a strong correlation between interest
rates and commodity prices—particularly under the global demand channel—stochastic
interest rates are likely to affect the costs associated with margin requirements in futures
markets. This, in turn, can lead to distinct behaviors in forward and futures price dynam-
ics.

Regarding existing literature on interest rates and commodity prices, Jeffrey Frankel
has made numerous empirical and theoretical contributions to this topic, focusing on
how commodity prices overshoot their long-run target after a shock due to their inherent
price flexibility (Frankel and Hardouvelis, 1985; Frankel, 1986, 2008a, 2014). This literature
tends to find a negative effect of interest rate increases on commodity prices in the short

2These findings suggest that postulating a uniform effect of monetary shocks across different market
supply and interest rate scenarios could bias empirical analysis.
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(Rosa, 2014; Scrimgeour, 2015) and medium run (Anzuini et al., 2013; Harvey et al., 2017).3

A negative relationship between interest rates and commodity prices has also been found
by Christiano et al. (1999) and Bernanke et al. (2005). Moreover, interest rates affect not
only the level of commodity prices, but also their cross-correlation and their volatility
(Gruber and Vigfusson, 2018). Compared to these studies, the methodology developed
here allows for a more systematic analysis of transmission mechanisms, clarifying the
respective role of speculative and demand channels.

This work also intersects with other studies that examine the theoretical relationship
between interest rate fluctuations and commodity prices, including Arseneau and Leduc
(2013), Basak and Pavlova (2016), Tumen et al. (2016), and Bodart et al. (2021). How-
ever, Basak and Pavlova (2016) omit the nonnegativity constraint on storage, while Tu-
men et al. (2016) and Bodart et al. (2021) overlook the nonlinearity of storage and impact
of large shocks by approximating their model around a steady state with positive stocks.
Although Arseneau and Leduc (2013) admit nonlinearity, they adopt a limited stochastic
structure where commodity production shocks are the only source of uncertainty. In con-
trast to these studies, we establish a comprehensive theory that avoids these simplifica-
tions and, in addition, allows us to jointly handle realistic depreciation rates and interest
rate processes, which are crucial for accurately representing commodity price dynamics.4

Moreover, we furnish a general theory on the existence and uniqueness of equilibrium
solutions in this framework, with our assumptions being almost necessary.5

On the empirical side, a large literature has analyzed the empirical validity of the stor-
age model (e.g., Deaton and Laroque, 1996; Cafiero et al., 2011, 2015; Gouel and Legrand,
2022). This literature focuses on idiosyncratic shocks and neglects shocks to storage costs.
In contrast, we study the role of aggregate shocks on storage costs, providing a theoreti-
cal analysis of conditions under which interest rates have a negative effect on commodity
prices and a quantitative analysis on the impact of interest rate shocks through specula-
tive and global demand channels.

From a technical perspective, our work has some overlap with recent work on house-
hold and consumption problems with state-dependent discounting. For example, Ma et

3An exception is Kilian and Zhou (2022), who find no effect of real interest rate movements on oil prices.
4Our framework admits occasionally negative interest rates, in line with real-world outcomes. While

some earlier models also allow negative interest rates, the relevant parameterizations are not empirically
plausible, since, in these models, negative interest rates must be offset by excessively large depreciation
rates in order to obtain an equilibrium.

5While stochastic interest rates are relatively novel in the storage model framework, work in the finance
literature has shown that commodity pricing models benefit from incorporating stochastic convenience
yields or stochastic interest rates (see, e.g., Gibson and Schwartz, 1990; Schwartz, 1997; Casassus and Collin-
Dufresne, 2005). This literature focuses on questions somewhat orthogonal to our interests, such as term
structure. One bridge between the approaches is the study by Routledge et al. (2000), which suggests that
within a storage framework akin to the one we are exploring, convenience yields naturally arise from the
interaction of supply, demand, and storage dynamics. We also note recent studies that examine commod-
ity financialization and speculation through financial derivatives, including works by Basak and Pavlova
(2016), Baker (2021), Goldstein and Yang (2022), although we do not pursue these topics in our paper.
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al. (2020) use Euler equation methods to obtain existence and uniqueness of solutions
to an optimal savings problem in a setting where the subjective discount rate is state-
dependent. Stachurski and Zhang (2021) and Toda (2021) study similar problems. Like
those papers, we tie stochastic discounting to long-run “eventual” contraction methods.
Unlike those papers, we apply eventual contraction methods to commodity pricing prob-
lems.

The rest of the paper is organized as follows. Section 2 formulates a rational expec-
tations competitive storage model with time-varying discounting and discusses the ex-
istence, uniqueness, and computability of the equilibrium solutions. Sections 3 and 4
examine the role of interest rates on commodity prices from a theoretical and quantitative
perspective, respectively. Section 5 concludes. Proofs, descriptions of algorithms, and
counterexamples can be found in the appendices.

2. EQUILIBRIUM PRICES

This section formulates the competitive storage model with time-varying discounting
and discusses conditions under which existence and uniqueness of the equilibrium pric-
ing rule hold.

2.1. The Model. Let It ≥ 0 be the inventory of a given commodity at time t, and let
δ ≥ 0 be the instantaneous rate of stock deterioration. The cost of storing It units of
goods from time t to time t + 1, paid at time t, is kIt, where k ≥ 0. Let Yt be the output
of the commodity. Let Xt be the total available supply at time t, which takes values in
X := [b, ∞), where b ∈ R, and is defined by

Xt := e−δ It−1 + Yt. (1)

Let p : X → R be the inverse demand function. We assume that p is continuous, strictly
decreasing, and bounded above.6 Let Pt be the market price at time t. Without inventory,
Pt = p(Yt). In general, market equilibrium requires that total supply equals total demand
(sum of the consumption and the speculation demand), equivalently,

Xt = p−1(Pt) + It. (2)

An immediate implication of (2) is that Pt ≤ p(b) and

Pt ≥ p(Xt), with equality holding when It = 0. (3)

Let Mt+1 be the real one-period stochastic discount factor applied by investors at time t.
The price process {Pt} is restricted by

Pt ≥ e−δ
Et Mt+1Pt+1 − k, with equality holding if It > 0 and Pt < p(b). (4)

In other words, per-unit expected discounted returns from storing the commodity over
one period cannot exceed the per-unit cost of taking that position.

6We impose an upper bound to simplify exposition. In Appendix A we show that unbounded demand
functions can also be treated, and the theory below still holds.
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Combining (3) and (4) yields7

Pt = min
{

max
{

e−δ
Et Mt+1Pt+1 − k, p(Xt)

}
, p(b)

}
. (5)

Both {Mt} and {Yt} are exogenous, obeying

Mt = m(Zt, εt) and Yt = y(Zt, ηt), (6)

where m and y are Borel measurable functions satisfying m ≥ 0 and y ≥ b, {Zt} is a
time-homogeneous irreducible Markov chain (possibly multi-dimensional) taking values
in a finite set Z, and the innovations {εt} and {ηt} are IID and mutually independent.

Example 2.1. The setup in (6) is very general and allows us to model both correlated and
uncorrelated {Mt, Yt} processes. In particular, it does not impose that {Mt} and {Yt} are
driven by a common Markov process, nor does it restrict that they are mutually dependent.
Consider for example Zt = (Z1t, Z2t), where {Z1t} and {Z2t} are mutually independent,
possibly multi-dimensional Markov processes, and Mt = m(Z1t, εt) and Yt = y(Z2t, ηt).
In this case, {Mt} and {Yt} are mutually independent, although they are autocorrelated.
If in addition {Z1t} (resp., {Z2t}) is IID or does not exist, then {Mt} (resp., {Yt}) is IID.
Obviously, these are all special cases of (6). More examples are given in Section 3 below.

Below, the next-period value of a random variable X is denoted by X̂. In addition, we
define Ez := E ( · | Z = z) and assume throughout that

e−δ
Ez M̂p(Ŷ)− k > 0 for all z ∈ Z. (7)

In other words, the present market value of future output covers the cost of storage.

2.2. Discounting. To discuss conditions under which price equilibria exist, we need to
jointly restrict discounting and depreciation. To this end, we introduce the quantity8

κ(M) := lim
n→∞

− ln qn

n
where qn := E

n

∏
t=1

Mt. (8)

To interpret κ(M), note that, in this economy, qn(z) := Ez ∏n
t=1 Mt is the state z price of a

strip bond with maturity n. Since {Zt} is irreducible, initial conditions do not determine
long-run outcomes, so qn(z) is approximately constant at qn defined in (8) when n is large.

7The minimization over p(b) in (5) is required due to the generic stochastic discounting setup. As can
be seen below, our theory allows for large and highly persistent discounting process (e.g., arbitrarily long
sequences of negative low interest rates under risk neutrality), in which case e−δ

Et Mt+1 > 1 with positive
probability, thus the marginal reward of speculation, e−δ

Et Mt+1Pt+1 − k, can be larger than p(b). The extra
minimization operation is then required to meet the equilibrium condition Pt ≤ p(b).

If e−δ
Et Mt+1Pt+1 − k > p(b), the equilibrium condition implies that Pt ≡ p(b) < e−δ

Et Mt+1Pt+1 − k.
In essence, price reaches its upper bound, and the non-arbitrage condition is violated. As a consequence,
investors are incentivized to maintain inventories to exploit arbitrage opportunities. If this pattern persists,
investments in inventory could grow arbitrarily large.

8Here and below, expectation without a subscript refers to the stationary process, where Z0 follows the
(necessarily unique) stationary distribution.
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As a result, we can interpret κ(M) as the asymptotic yield on risk-free zero-coupon bonds
as maturity increases without limit.

In Lemma A.1 of Appendix A, we provide a numerical method for calculating κ(M) by
connecting it to the spectral radius of a discount operator.

Assumption 2.1. κ(M) + δ > 0.

Assumption 2.1 is analogous to the classical condition r + δ > 0 found in constant inter-
est rate environment of Deaton and Laroque (1996) and many other studies.9 In the more
general setting we consider, Assumption 2.1 ensures sufficient discounting, adjusted by
the depreciation rate, to generate finite prices in the forward-looking recursion (5), while
still allowing for arbitrarily long sequences of negative yields in realized time series.

2.3. Equilibrium. We take (Xt, Zt) as the state vector, taking values in S := X× Z. We
assume free disposal as in Cafiero et al. (2015) to ensure that the equilibrium prices are
non-negative. Conjecturing that a stationary rational expectations equilibrium exists and
satisfies (5), an equilibrium pricing rule is defined as a function f ∗ : S → R+ satisfying

f ∗(Xt, Zt) = min
{

max
{

e−δ
Et Mt+1 f ∗(Xt+1, Zt+1)− k, p(Xt)

}
, p(b)

}
with probability one for all t, where Xt+1 is defined by (1) and, recognizing free disposal,
storage therein is determined by It = i∗(Xt, Zt), where i∗ : S → R+ is the equilibrium
storage rule10

i∗(x, z) :=

{
x − p−1[ f ∗(x, z)], if x < x∗(z)
x∗(z)− p−1(0), if x ≥ x∗(z)

(9)

with
x∗(z) := inf {x ∈ X : f ∗(x, z) = 0} .

Let C be the space of bounded, continuous, and non-negative functions f on S such
that f (x, z) is decreasing in x, and f (x, z) ≥ p(x) for all (x, z) in S. Given an equilibrium
pricing rule f ∗, let

p̄(z) := min
{

e−δ
Ez M̂ f ∗(Ŷ, Ẑ)− k, p(b)

}
.

The next theorem provides conditions under which the equilibrium pricing rule exists, is
uniquely defined, and gives a sharp characterization of its analytical properties.

Theorem 2.1 (Existence and Uniqueness of Equilibrium Price). If Assumption 2.1 holds,
then a unique equilibrium pricing rule f ∗ exists in C . Furthermore,

(i) f ∗(x, z) = p(x) if and only if x ≤ p−1[ p̄(z)],
(ii) f ∗(x, z) > max{p(x), 0} if and only if p−1[ p̄(z)] < x < x∗(z),

(iii) f ∗(x, z) = 0 if and only if x ≥ x∗(z), and

9In the model with constant risk-free rate r, the discount rate Mt is 1/(1+ r) at each t, so, by the definition
in (8), we have κ(M) = limn→∞ n ln(1 + r)/n = ln(1 + r) ≈ r.

10Throughout, we adopt the usual convention that inf ∅ = ∞.
8



FIGURE 2. Illustration of the equilibrium price f ∗ and the equilibrium stor-
age i∗. Here p is the inverse demand function, p̄ is the decision threshold for
speculators to start holding inventories, and x∗ is the free-disposal thresh-
old.

(iv) f ∗(x, z) is strictly decreasing in x when it is strictly positive and e−δ
Ez M̂ < 1.

In Appendix A, we show that the equilibrium pricing rule is the unique fixed point of
an operator defined by the equilibrium conditions (named as the equilibrium price oper-
ator) and can be solved for via successive approximation. In particular, the equilibrium
price operator is an eventual contraction mapping on a suitably constructed candidate space
(which reduces to C when the demand function is bounded). This guarantees existence,
uniqueness, and computability of the equilibrium solutions.11 In Online Appendix ??, we
provide an endogenous grid algorithm that solves for the equilibrium objects efficiently.
In Online Appendix ??, we show that, in some rather standard settings, Assumption 2.1
is necessary as well as sufficient: no equilibrium price sequence exists if Assumption 2.1
fails.12

The next result states the properties of the equilibrium storage rule.

11Since we allow for arbitrarily long sequences of negative yields, it is challenging to construct operators
that contract in one step, since the one-period yield, which is typically required to construct the modulus of
contraction, can be overly small, violating Blackwell (1965)’s sufficient conditions for contraction. To solve
this problem, Assumption 2.1 bounds the asymptotic yield instead of the one-period yield, allowing us to
construct an n-step contraction.

12See Proposition ?? in Online Appendix ??. Note that Theorem 2.1 establishes existence and uniqueness
of stationary equilibria. However, this does not preclude the possibility of nonstationary equilibria, includ-
ing nonstationary price sequences and bubbles. For some recent literature on bubbles in asset markets, see
Barlevy (2012), Guerron-Quintana et al. (2023), Plantin (2023), and Hirano and Toda (2024).
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Proposition 2.1 (Existence and Uniqueness of Equilibrium Storage). If Assumption 2.1
holds, then the equilibrium storage rule i∗(x, z) is increasing in x and continuous. Furthermore,

(i) i∗(x, z) = 0 if and only if x ≤ p−1[ p̄(z)],
(ii) 0 < i∗(x, z) < x∗(z)− p−1(0) if and only if p−1[ p̄(z)] < x < x∗(z),

(iii) i∗(x, z) = x∗(z)− p−1(0) if and only if x ≥ x∗(z), and
(iv) i∗(x, z) is strictly increasing in x if p−1[ p̄(z)] < x < x∗(z) and e−δ

Ez M̂ < 1.

Proposition 2.1 indicates that speculators hold inventories if and only if the market
value of the total available supply p(x) is below the decision threshold p̄(z). Other-
wise, selling all commodities at hand is optimal, in which case the equilibrium price is
f ∗(x, z) = p(x). The equilibrium price and storage properties are illustrated in Figure 2
under a linear demand function. The equilibrium rules are sketched for a given exoge-
nous state z.

3. INTEREST RATES AND PRICES: THEORETICAL RESULTS

Next we inspect the relationship between interest rates and commodity prices implied
by the model. To this end, we assume that speculators discount future payoffs according
to market prices:

Mt =
1
Rt

, where Rt := r(Zt, εt).

Hence r is a real-valued non-negative Borel measurable function of the state process and
innovation ε. The process {Rt} is interpreted as the gross real interest rate on risk-free
bonds. We therefore preserve the risk-neutrality assumption of the standard competitive
storage model, while allowing the risk-free rate to be state-dependent. Throughout this
section, we impose the assumptions of Section 2.

3.1. Correlations. We first explore general conditions under which interest rates and
commodity prices are negatively correlated. As a first step, we state a finding concern-
ing monotonicity of equilibrium objects with respect to the exogenous states.

Proposition 3.1 (Monotonicity of Equilibrium Objects w.r.t. the Exogenous State). If
r(z, ε) and y(z, η) are nondecreasing in z, and {Zt} is a monotone Markov process,13 then the
equilibrium pricing rule f ∗(x, z), the equilibrium inventory i∗(x, z), and the decision threshold
p̄(z) are all decreasing in z.

The intuition is as follows: If (i) a higher Zt shifts up the distribution of Zt+1 in terms of
first-order stochastic dominance and (ii) interest rates and output are both nondecreasing
in this state variable, then a high Zt today tends to generate both sustained high output
and more impatient speculators in the future. The former boosts supply, while the latter
diminishes the incentive for holding inventories, reducing speculative demand. As a
result, both inventories and prices are lower.

13Here monotonicity is defined in terms of first-order stochastic dominance. See Appendix B for its
formal definition.

10



The assumptions of Proposition 3.1 do not restrict Rt and Yt to be strictly increasing in
Zt, nor do they impose that Rt and Yt are driven by a common factor. In particular, the
second assumption concerning monotone Markov process is standard (see Appendix B
for sufficient conditions). Below, we discuss the first assumption through examples.

Example 3.1. If {Rt} and {Yt} are IID and mutually independent, then we can set Zt ≡ 0,
εt = Rt and ηt = Yt, in which case r(z, ε) = ε and y(z, η) = η. Hence, the first two
assumptions of Proposition 3.1 hold.

Example 3.2. If {Rt} and {Yt} are autocorrelated and mutually independent, then we can
write Zt as Zt = (Z1t, Z2t), where {Z1t} and {Z2t} are mutually independent, possibly
multi-dimensional Markov chains, and Rt = r(Z1t, εt) and Yt = y(Z2t, ηt). In this case,
the first assumption of Proposition 3.1 holds as long as r is nondecreasing in Z1t and y is
nondecreasing in Z2t.

Example 3.3. If {Rt} and {Yt} are finite Markov processes, then we can set εt = ηt ≡ 0
and define Zt = (Rt, Yt), in which case the first assumption of Proposition 3.1 holds
automatically, while the second assumption holds as long as {Rt} and {Yt} are monotone
and non-negatively correlated Markov processes.

We can now state our main result concerning correlation. In doing so, we suppose that
Zt = (Z1t, . . . , Znt) takes values in Rn.

Proposition 3.2 (Negative Correlation of Interest Rates and Prices). If the conditions of
Proposition 3.1 hold and {Z1t, . . . , Znt} are independent for each fixed t, then

Covt−1(Pt, Rt) ≤ 0 for all t ∈ N.

As Proposition 3.1 illustrates, when interest rates and output are both positively af-
fected by the monotone exogenous state process, commodity prices will be negatively
affected by the exogenous state. Therefore, there is a trend of comovement (in opposite
directions) between commodity price and interest rate, resulting in a negative correlation.
The proof of Proposition 3.2 relies on the Fortuin–Kasteleyn–Ginibre inequality.

Note that the independence-across-dimensions condition in Proposition 3.2 cannot be
omitted. In Appendix C, we provide examples showing that if {Z1t, . . . , Znt} are pos-
itively or negatively correlated for some t ∈ N, then interest rates and prices can be
positively correlated. This is because contemporaneous correlation across dimensions of
Zt can alter comovement of interest rates and commodity prices. (Such correlation can
either strengthen or weaken the impact of interest rates on commodity prices, yielding
rich model dynamics.)

Remark 3.1. In Appendix B, we show that Proposition 3.2 can be extended to the setting of
Section 2, where agents are not necessarily risk neutral. In particular, Covt−1(Pt, Mt) ≥ 0
holds.

Example 3.4. (The Speculative Channel). In applications {Rt} typically follows a Markov
process, while {Yt} represents a sequence of supply shocks (e.g., harvest failures, conflicts
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around oil production sites, so on), which is IID and less likely to be affected by the mo-
netary conditions (see, e.g., Deaton and Laroque, 1992; Cafiero et al., 2015). Hence, {Rt}
and {Yt} are mutually independent. In this case, all the effects of interest rates on com-
modity prices transit through commodity speculation. By letting Zt = Rt, εt ≡ 0 and
ηt = Yt, we have r(z, ε) = z and y(z, η) = η. Hence, all the assumptions of Proposition 3.2
hold as long as {Rt} is a finite monotone Markov process (e.g., a discrete version of a pos-
itively correlated AR(1) process) and Assumption 2.1 holds (see the next section). In this
case, Proposition 3.2 implies that interest rates are negatively correlated with commodity
prices, which matches the empirical results of Frankel (1986, 2008a, 2014).

Example 3.5. (The Global Demand Channel). Since the output of the commodity, Yt,
enters linearly in total availability, it can be redefined as a linear combination of two
shocks: Yt = YS

t − YD
t , where YS

t is the supply shock and YD
t is the demand shock. Hence

Yt can be interpreted as a net supply shock. There is widespread evidence that both
types of shocks matter in commodity markets, albeit with relative importance depend-
ing on the commodities (see, e.g., Kilian, 2009; Gouel and Legrand, 2022). Unlike sup-
ply shocks, demand shocks are likely to be affected by monetary policies. Since interest
rates affect global demand (Ramey, 2016), an interest rate shock leads to an aggregate
demand shock that affects all commodities.14 If interest rates follow a Markov process, it
implies that Zt = (Rt, Z2t) and Yt = y(Z2t, ηt), where {Z2t} is a Markov process that is
correlated with {Rt}. Hence, Zt is contemporaneously correlated and the independence-
across-dimensions condition of Proposition 3.2 fails. However, the theory of Section 2 still
applies and can be used to quantify the impact of interest rates on commodity prices.

3.2. Causality. We now study the causal relationship between interest rates and com-
modity prices. As a first step, we state an elementary monotonicity property concerning
interest rates and prices. To this end, we take {Ri

t} to be the interest rate process for econ-
omy i ∈ {1, 2}. In addition, let f ∗i and {Pi

t} be the equilibrium pricing rule and the price
process corresponding to {Ri

t}.

Proposition 3.3 (Causal Effect of Ordered Interest Rates on Prices). If R2
t ≤ R1

t with
probability one for all t ≥ 0, then f ∗1 ≤ f ∗2 and P1

t ≤ P2
t with probability one for all t.

The intuition is straightforward. Seen from the speculative channel, lower interest rates
reduce the opportunity cost of storage. Lower storage costs encourage a build-up of in-
ventories. Higher demand for inventories induces higher prices.

Proposition 3.3 has limited implications because it concerns variations in interest rates
that are uniformly ordered over time. Next, we aim to relax this assumption.

14Even if the demand shock is an aggregate shock affecting all commodities, its impact is likely to vary
across different commodities. For instance, demand for food commodities may exhibit lower sensitivity to
GDP shocks due to their low income elasticity, whereas metals and energy commodities may respond more
significantly due to their utilization as intermediate inputs.
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Let {Xi
t} and {Zi

t} be respectively the endogenous and exogenous state processes for
economy i ∈ {1, 2}. Unless otherwise specified, we assume that both economies experi-
ence the same innovation process {ηt} to output.

Proposition 3.4 (Causal Effect of Interest Rates on Prices). Suppose {Rt} is a monotone
finite-state Markov process and Yt = y(Rt, ηt), where y is nondecreasing in R. If X2

t−1 ≤ X1
t−1,

R1
t−1 ≤ R2

t−1 and R2
t ≤ R1

t with probability one, then P1
t ≤ P2

t with probability one.

Proposition 3.4 indicates that if the interest rate is a monotone finite Markov process
that has a nonnegative effect on output, then, conditional on the same previous state, a
higher interest rate today reduces commodity price in the same period.

Proposition 3.5 (Causal Effect of Interest Rates on Prices Over Time). Suppose {Rt} is a
monotone finite-state Markov process and Yt = y(Rt), where y is nondecreasing. If Xt−1 ≤ Xt,
Rt−1 ≥ Rt and Rt ≤ Rt+1 with probability one, then Pt ≥ Pt+1 with probability one.

Proposition 3.5 above indicates that, if Rt is a monotone finite Markov process and has
a nonnegative effect on Yt, Xt is no less than its previous period level, and Rt is no higher
than its previous period level, then an increase in interest rates next period causes falling
commodity prices.

4. QUANTITATIVE ANALYSIS

To illustrate the quantitative implications of our theory, we study the impact of interest
rates on commodity prices through two channels: the speculative and the aggregate de-
mand channels. To this end, we use a stylized model that requires a minimum number of
parameters to characterize its behavior.15 We calibrate the model to a quarterly setting to
limit the number of state variables.16

The main takeaways from this section are fourfold. First, impulse response functions
(IRFs) show that prices decrease immediately following a positive interest rate shock and
slowly converge to their long-run average, with a stronger decrease and a slower conver-
gence when the global demand channel is active. Second, inventory dynamics are am-
biguous: while inventories tend to decline after an interest rate shock due to reduced
stockpiling incentives from higher interest rates, they increase after an initial decline
when the demand channel is active. This is because reduced demand lowers prices, creat-
ing profit opportunities for storage. Overall, inventories tend to return to their long-run
average at an even slower pace than prices. Third, price volatility exhibits sensitivity to
inventory dynamics: a larger response in inventory tends to generate an inversely larger
response in price volatility. Fourth, the strength of these IRFs is highly state-dependent,
being more pronounced for high availabilities.

15Gouel and Legrand (2022) show that fitting most moments of a commodity market necessitates a rich
storage model with supply reaction, autocorrelated shocks, and news shocks. Since most of these elements
are specific to each commodity market and are orthogonal to the question studied here, we abstract for
them and focus on a model with minimal free parameters.

16A monthly real interest rate process requires a rich autoregressive structure, introducing many lags.
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4.1. Specification. For simulating the model, we adopt a linear demand function

p (x) = p̄ [1 + (x/µY − 1) /λ] , (10)

where p̄ > 0 is the steady-state price,17 µY > 0 is the mean of the commodity output
process (so also the steady-state consumption level), and λ < 0 is the price elasticity of
demand.18 We assume that all storage costs are related to depreciation (i.e., k = 0 and δ ≥
0). As Gouel and Legrand (2022) show, when calibrated to represent the same proportion
of the steady-state price, these two types of storage costs have indistinguishable effects
on price moments, so focusing only on one involves no loss of generality.

We assume that the annual interest rate, measured at a quarterly frequency, follows the
first-order autoregressive process

Ra
t = µR(1 − ρR) + ρRRa

t−1 + σR

√
1 − ρ2

R εR
t , {εR

t }
IID∼ N(0, 1). (11)

We follow Example 3.5 and consider that {Yt} represents a net supply shock: Yt = YS
t −

YD
t . Commodity output, {YS

t }, follows a truncated normal distribution with mean µY,
standard deviation µYσY, truncated at 5 standard deviations. The truncation of the dis-
tribution (also adopted, inter alia, in Deaton and Laroque, 1992) ensures a lower bound
for commodity output and total available supply. Commodity demand is proportional to
economic activity: YD

t = αAt. Economic activity is represented by the following simple
IS curve:

At = ρA At−1 − γ(Ra
t − µR), (12)

where |ρA| < 1 parameterizes the persistence of economic activity and γ ≥ 0 the effect
of interest rate deviation from the mean on it. For constant interest rates at the mean,
economic activity is just 0.19

To simplify the problem, we have assumed that At is driven only by interest rates and
by its own persistence. These assumptions avoid the need to identify the innovation
process of economic activity and, more importantly, to represent the effect of economic
activity on interest rates. The joint dynamic of (Ra

t , At) is represented by a SVAR(1) model:[
1 0
γ 1

] [
Ra

t
At

]
=

[
µR(1 − ρR)

γµR

]
+

[
ρR 0
0 ρA

] [
Ra

t−1
At−1

]
+

[
σR

√
1 − ρ2

R
0

]
εR

t . (13)

To make this process compatible with our assumptions, we discretize it.
This setup is a special case of the theoretical framework established in Section 3, with

Zt = (Ra
t , At), εt ≡ 0, ηt = YS

t , and y(Zt, ηt) = YS
t − αAt. We use an annual interest rate

process to obtain results that are directly comparable to others in the literature, but the
model calls for an interest rate at the quarterly frequency, so we define Rt = r(Zt, εt) =
(Ra

t )
1/4. Below we estimate the interest rate process and show that ρR > 0 (implying that

17If not otherwise specified, we designate by steady state the equilibrium in the absence of any shocks.
18An isoelastic inverse demand function has also been tested and the results are robust to this change.
19We assume a contemporaneous effect of interest rate on economic activity to be consistent with recent

VAR results that point to such effects (Bauer and Swanson, 2023).
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{Ra
t } is a monotone Markov process) and that the discount condition in Assumption 2.1

holds. Hence, all the statements of Theorem 2.1 and Proposition 2.1 are valid.
In a first step, we will analyze the speculative channel without the global demand chan-

nel (so assuming α = 0). In this setting, r(z, ε) and y(z, η) are increasing in z. So, Proposi-
tion 3.1 is valid, and since in this case {Rt} is independent of {Yt}, the assumptions (and
thus conclusions) of Proposition 3.2 also hold. Propositions 3.1 and 3.2 do not hold in
general with the global demand channel.

This choice of parameterization limits the free parameters that matter in the analysis of
price movements to δ, λ, α, and σY. Indeed, the interest rate process is estimated on obser-
vations, the economic activity process is calibrated based on Bauer and Swanson (2023),
and we can normalize p̄ and µY to unity, since their effect is only to set the average price
and quantity levels. To ease interpretation and limit the number of parameters to adjust,
we fix σY to 0.05.20 If only the speculative channel is active, this choice is innocuous as
we can prove that adjusting the intercept and slope of the demand function is equiva-
lent to adjusting the mean and variance of the output process (see the proof in Online
Appendix ??, which is a generalization of Proposition 1 of Deaton and Laroque, 1996).

To calibrate the real interest rate process {Ra
t }, we follow the literature on interest rates

and commodity prices (e.g., Frankel, 2008a; Gruber and Vigfusson, 2018; Kilian and Zhou,
2022) and use the nominal one-year treasury yield. We deflate this rate by a measure of
expected inflation. Note that this choice of interest rate slightly reduces the influence of
the zero lower bound compared to the 3-month treasury yield, making it a better measure
of monetary policy. Expected inflation is calculated through an autoregressive model
estimated on a 30-year window prior to the year of interest to account for changes in
the dynamics of inflation.21 This is the real interest rate represented in Figure 1. The
maximum likelihood estimation of (11) over the period 1962–2022 yields µR = 1.0062,
ρR = 0.9407, and σR = 0.03.

These results imply that the stationary mean of the real interest rate process is about
0.6%, with an unconditional standard deviation of about 3%. Note that any constant
spread above the risk-free rates can be captured in our model by δ. Therefore, when
interpreting the values of δ in what follows, it should be kept in mind that δ represents
storage costs, a premium above risk-free rates, and any long-run trend in commodity
prices.22

To calibrate the economic activity process, we use proxy SVAR estimates from Bauer
and Swanson (2023). Our economic activity process presents two free parameters: ρA
and γ. We calibrate them by matching two moments: the number of months needed to
attain the minimum level of activity after a monetary shock and the size of the decrease at

20According to Gouel and Legrand (2022), a coefficient of variation of 5% for the net supply shock is
slightly above the total shock (demand plus supply) affecting the aggregate crop market of maize, rice,
soybeans, and wheat, but below the shocks affecting each of these markets individually.

21Using lagged inflation or ex-post inflation would lead to a similar real interest rate process.
22See Bobenrieth et al. (2021) for an analysis of the role of commodity price trends in the storage model.
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the minimum. This calibration is done conditional on the interest rate process calibrated
previously. The preferred estimation of Bauer and Swanson (2023, Figure 8) indicates
9 months to reach a decrease of industrial production of −0.4% after a 25 bp monetary
shock. In our setting, this leads to ρA = 0.52 and γ = 0.95.

If only the speculative channel is active, we discretize the interest rate process (11) into
an N-state Markov chain using the method of Tauchen (1986) with N = 101. If both
channels are active, we transform the SVAR(1) model of equation (13)into a VAR(1) model
and discretize it using the approach of Schmitt-Grohé and Uribe (2014).

In our model, demand is specified as p−1(Pt) + YD
t . With the steady-state value of

p−1(Pt) normalized to unity and YD
t having a zero mean, the parameter YD

t may be
viewed as a deviation from the steady-state demand level. Within this framework, the
parameter α plays a crucial role in dictating the extent to which shocks in economic ac-
tivity influence the commodity market. For our central calibration, we choose α = 0.2 to
align with the immediate price reactions of a commodity index to positive interest rate
shocks, as identified in the IRFs reported in Bauer and Swanson (2023, Figure 8). How-
ever, to acknowledge the variability in the responsiveness of different commodities to
economic conditions and ensure robustness of our findings, we conduct a series of simu-
lations wherein we systematically vary the value of α, thoroughly investigating its impact
across various scenarios.

Our first step is to verify Assumption 2.1, which requires κ(M) > −δ. Figure 3 plots
κ(M) calculated at different (µR, ρR, σR) values.23 In the left panel, we fix ρR at its esti-
mated value and create a contour plot of κ(M) for (µR, σR). In the right panel, we fix σR
at its estimated value and plot κ(M) as a function of (ρR, µR). The figure shows that κ(M)
is increasing in µR and decreasing in σR and ρR. In general, κ(M) > −δ fails only when
µR is sufficiently low, or when ρR or σR is very large. The black solid curves represent the
thresholds at which κ(M) = −0.02,−0.01, 0, respectively. Clearly, Assumption 2.1 holds
at the estimated (µR, ρR, σR) values even when δ = 0.

Having verified Assumption 2.1, we solve for the equilibrium pricing rule using the
following methods. Expectation terms are replaced by simple sums using the exogenous
state Markov chain and a 7-point Gaussian quadrature for the output process. Starting
from a guessed initial solution, the pricing rule is found by iterating with the equilibrium
price operator, which is globally convergent by Theorem A.1 in the appendix. To max-
imize efficiency, we apply a modified version of the endogenous grid method (Carroll,
2006).24 Details of the algorithm and computation are given in Online Appendix ??.25

4.2. Experiments. We begin the quantitative analysis by examining the impact of the
speculative channel on the commodity price dynamics (so assuming α = 0). We then
investigate the role of the global demand channel. While speculative incentives remain

23The method for computing κ(M) is described in Lemma A.1 of Appendix A.
24We use a 100-point exponential grid for It in the range of [0, 2] with median value 0.5. Function approx-

imation is implemented via linear interpolation. We terminate the iteration process at precision 10−4.
25Replication materials are available at DOI: 10.57745/JV1JR6.
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FIGURE 3. κ(M) values under different (µR, ρR, σR). Here κ(M) represents
the asymptotic yield on risk-free zero-coupon bonds as maturity increases
without limit, and (µR, ρR, σR) governs the gross real interest rate process.

active under the global demand channel (for example, via autocorrelation of economic ac-
tivity, which affects the speculators’ expectations), we can isolate and analyze the effects
through each channel by comparing the IRFs.

4.2.1. Speculative channel. Unless otherwise specified, we assume δ = 0.02 and λ = −0.06.
This combination of parameters leads to the following price moments on the asymptotic
distribution: a coefficient of variation of 24%, a first-order autocorrelation of 0.61, and a
skewness of 2.9, all of which align with the empirical observations.26

Since the Markov process we adopt here is symmetric around the mean, the pricing rule
fluctuates symmetrically around the corresponding constant-discounting pricing rule. This
has implications for unconditional price moments. Notably, the standard price moments
of interest—the coefficient of variation, autocorrelation, and skewness—are nearly indis-
tinguishable between this model and a constant-discounting model with the same aver-
age discounting (differing only at 3 digits). While this outcome may seem surprising, con-
sidering that the real rate volatility could be perceived as an additional source of volatil-
ity, in practice this does not create additional standard demand or supply shocks. When
the interest rate falls below its mean, it prompts additional demand for storage, driving
prices up. However, when the interest rate rises, these additional stocks are sold, exerting
downward pressure on prices. These effects tend to offset each other. This indicates that
the speculative channel may not contribute significantly to empirical analyses based on
unconditional price moments.

However, the presence of time-varying interest rates holds significant implications for
conditional moments, which could be exploited empirically. Below, we delve into this
exploration using impulse response functions (IRFs). To capture the nonlinear dynamics

26See, e.g., Table V in Gouel and Legrand (2017) for measures of these moments for a sample of
commodities.

17



generated by the storage model, we follow Koop et al. (1996) and define IRFs as state-and-
history-dependent random variables. We calculate the IRFs to a 100 bp interest rate im-
pulse (i.e., a 1% increase in the real interest rate). All IRFs represent percentage deviation
from the benchmark simulation. A detailed discussion of the algorithm and computation
is left to Online Appendix ??.

Figure 4 shows the IRFs calculated at the stationary mean of (Xt−1, Ra
t−1). We first dis-

cuss the central IRFs corresponding to δ = 0.02 and λ = −0.06, before analyzing the
sensitivity of these IRFs to the parameters and states. The left panels present the IRFs
for prices, which show an immediate price decrease followed by a gradual convergence
to the long-run average over 2 to 4 years.27 The middle panels display the IRFs for in-
ventories, which, unlike prices, reach their lowest value more than a year after the shock,
and even after 4 years, they have not returned to their long-run values. Finally, the right
panels illustrate the IRFs for price volatility, namely, the conditionally expected standard
deviation of price.28 They indicate that price volatility largely follows stock dynamics
with a peak reached after a year and an incomplete convergence after 4 years. This find-
ing is consistent with the empirical results of Gruber and Vigfusson (2018), who show
that higher interest rates imply higher price volatility.

The mechanism explaining this behavior is as follows. When the interest rate increases,
speculators tend to dispose of stocks, which have become costlier to hold. This decreases
current prices due to increased supply. However, the price decrease mitigates the extent
of stock selling compared to what would happen if prices remained constant. In subse-
quent periods, stocks remain excessive due to persistent high opportunity costs, prompt-
ing speculators to continue selling them. Again, the price decrease acts as a cushion,
preventing a complete sell-off of stocks. After more than a year of this dynamic, with
increasingly smaller quantities being sold from inventories, interest rates have declined,
alleviating the pressure to sell inventories, and prices are below their long-run values
with anticipation of eventual convergence. Consequently, stock accumulation gradually
increases as interest rates decline. In our illustration, since stock accumulation is slow,
prices converge to their long-run values from below without overshooting, although this
remains a possibility. After four years, prices have converged to their long-run values, as
the only factor influencing the increase in stock levels is the reversion of the interest rate
to its long-run average. As for price volatility, its behavior, opposite to that of inventories,
can be explained by the fact that inventories serve as a key determinant of price volatility
by providing a buffer against production shocks.

27These dynamics are very different from what would be expected from a transitory MIT shock to the
interest rate in a standard storage model with a constant interest rate. In the latter scenario, an unexpected
increase in the interest rate would also depress prices due to decreased stockholding. However, this price
decrease would be short-lived, lasting only one period. With a transitory shock, the interest rate would
revert to its baseline after one period, incentivizing stockpiling and consequently driving prices above their
non-shock levels in all subsequent periods. This point is demonstrated in Online Appendix ??, Proposi-
tion ??.

28Price volatility is the square root of the conditional variance:
√
Et−1[ f ∗(Xt, Zt)]2 − [Et−1 f ∗(Xt, Zt)]2.
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FIGURE 4. IRFs for a 100 bp real interest rate shock under different param-
eter setups without demand channel, fixing Xt−1 and Ra

t−1 at the stationary
mean. Here Xt−1 and Ra

t−1 are respectively the total available supply and
the annual gross real interest rate in the previous quarter, δ is the rate of
depreciation, and λ is the demand elasticity.

Figure 4 also includes IRFs for various sets of parameters. The impact on commodity
price increases as storage costs decrease: lower storage costs result in a higher initial
decline and a slower return to equilibrium.29 Intuitively, when storage costs are lower,
opportunity costs become more significant and, as a result, variations in the interest rate
have a greater influence on storage behavior and prices. This effect is evident in the
observation that stocks decrease more sharply with an interest rate increase when storage
costs are lower. In such scenarios, stock levels tend to be higher on average and more
susceptible to changes in opportunity costs.

The price effects are more pronounced with a more inelastic demand function, as prices
react significantly to variations in the sale of stock when demand is less elastic. Likewise,
the decrease in stocks is less substantial when demand is more inelastic. This is due to the

29Price dynamics may not consistently show a less significant decrease with a higher storage cost when
the global demand channel is activated, in which case storage costs have only a marginal and short-term
effect on price dynamics.
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FIGURE 5. IRFs for a 100 bp real interest rate shock conditional on different
states without demand channel. Here (Xp

t−1, Ra,p
t−1) denotes the percentile

points of the realized total available supply and interest rate states on the
stationary distribution, and µR and X̄ are the stationary means of the inter-
est rate and the total available supply processes, respectively.

fact that with inelastic demand, even a slight increase in sales from inventory can greatly
depress prices, thereby reducing the incentive to excessively sell off stocks.

To explore the sensitivity of IRFs to states, Figure 5 draws the IRFs calculated for dif-
ferent realized values of (Xt−1, Ra

t−1). We use (Xp
t−1, Ra,p

t−1) to denote the percentile points
of the realized (Xt−1, Ra

t−1) states on the stationary distribution. The top left panel shows
that price responses are stronger when availability becomes larger. The immediate re-
sponses of price are respectively 1.72 and 2.17 times larger when availability increases
from the 25% percentile to the 75% and 95% percentiles. This is because when availability
is lower, inventory tends to be lower (Proposition 2.1), hence there is less room for stock
adjustment and prices react much less in response to the interest rate shock. This intuition
is verified by the top middle panel, which shows that a higher availability causes stock
decumulation to last longer, yielding a larger decline in inventory in the medium to long
run (in spite of a slightly lower immediate decline).
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The bottom left panel in Figure 5 shows that price responses to a 100 bp interest rate
shock tend to be slightly larger when interest rates are relatively lower. The overall trend
of price and storage IRFs in the bottom panels of Figure 5 is consistent with our theory
(Proposition 3.1), which shows that under lower interest rates, prices and inventories are
in general higher and therefore more sensitive to variations in opportunity costs.30

Same as the previous cases, the right panels of Figure 5 show that the dynamics of
price volatility are highly consistent with the inventory dynamics, with a larger response
in speculative storage causing an oppositely larger response in price volatility.

4.2.2. Global demand channel. Next, we study the global demand channel as described in
Section 4.1. A notable difference with the speculative channel is that the unconditional
price moments are affected by the presence of the demand channel. This is due to the
fact that the demand channel involves a demand shock driven by interest rates shocks,
while the speculative channel implies offsetting demand and supply shocks. In addition,
since the demand shock follows an autocorrelated process, it adds persistence to the price
process. In the benchmark setting (α = 0.2), for example, price autocorrelation increases
from 0.61 to 0.88. Thus, unlike the speculative channel, the demand channel can play a
role in econometric analysis of the storage model using unconditional price moments.31

Nonetheless, the speculative channel, as well as the demand channel, could be empiri-
cally relevant for estimation strategies relying on conditional moments or unconditional
moments calculated on quantities.

Figure 6 shows the IRFs with the global demand channel for various parameters. The
impact of an interest rate shock on price is consistently more pronounced when the de-
mand channel is activated. This is because the demand channel amplifies the price decline
already induced by the speculative channel. In our main calibration, the dominance of
the demand channel is evident, as the price effect is three times larger than under the
speculative channel alone. Furthermore, since interest rates take a long time to converge
back to their steady state, so does economic activity. As a consequence, the price effect
also becomes more persistent.

The inventory dynamics differ notably with the inclusion of the demand channel. Ini-
tially, inventories experience a decline comparable in magnitude to that observed under
the speculative channel alone. Subsequently, they rebound and tend to surpass their
long-run level. This indicates that, after several quarters, the influence of low demand
outweighs that of high interest rates. The low demand leads to suppressed prices with an
expectation of future price recovery once demand is back to normal, incentivizing higher
inventory holdings despite the disincentives posed by elevated interest rates.

30When the global demand channel is activated, market dynamics become more complex, in which case
this monotone pattern can be disrupted due to global economic activity. We leave further investigation of
this issue for future research.

31This potential role of the demand channel aligns with the findings of Gouel and Legrand (2022), which
elucidates the empirical relevance of demand shocks and their role in explaining price autocorrelation.
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FIGURE 6. IRFs for a 100 bp real interest rate shock under different parame-
ter setups, fixing Xt−1 and Ra

t−1 at the stationary mean. Here Xt−1 and Ra
t−1

are respectively the total available supply and the annual gross real interest
rate in the previous quarter, δ is the rate of depreciation, λ is the demand
elasticity, and α governs the sensitivity of the demand shock to economic
activity.

These inventory dynamics also manifest in the behavior of price standard deviation,
which moves inversely to inventory dynamics. Notably, it is important to recognize that
the figure depicts the price standard deviation, rather than the coefficient of variation.
Consequently, the price volatility is affected by the dynamics of expected prices as well.
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Given that price volatility decreases less than the price level, the coefficient of variation
actually experiences an increase over time.

The sensitivity of the IRFs to the model’s parameters facilitates a deeper understanding
of the mechanisms behind the demand channel. Storage cost exhibits a minimal impact
on price dynamics, except within the initial quarters. A comparison with Figure 4 sug-
gests that this marginal effect is primarily driven by the speculative channel, indicating
that the bulk of the demand channel’s impact stems from a direct demand shock. Any in-
direct effect of the demand shock through storage is likely limited. The effect of demand
elasticity is straightforward: a less elastic demand corresponds to a more pronounced
price decrease and a greater increase in stock levels.

The parameter α governs the sensitivity of the demand shock to economic activity and,
as analyzed above, we calibrate its baseline value to α = 0.2 to align with the commodity
index dynamics of Bauer and Swanson (2023, Figure 8). Given the heterogeneous expo-
sure of commodities to economic activity, the importance of the demand channel varies
across different commodities. Modulating this parameter elucidates the relative signifi-
cance of the demand channel compared to the speculative channel (case α = 0).

5. CONCLUSION

This paper extends the classical competitive storage model to the setting where interest
rates are time-varying. We developed a unified theory of how interest rates and other
aggregate factors affect commodity prices. We proposed readily verifiable conditions un-
der which a unique equilibrium solution exists and can be efficiently computed. These
conditions have a natural interpretation in terms of the asymptotic yield on long-maturity
risk-free assets. We also provided a sharp characterization of the analytical properties of
the equilibrium objects and developed an efficient solution algorithm.

Within this framework, we investigated the dynamic causal effect of interest rates on
commodity prices from a theoretical and quantitative perspective. On the theoretical side,
we established conditions under which interest rates exert a negative effect on commod-
ity prices or are negatively correlated with them. On the quantitative side, we applied
our theory to explore the impact through the speculative and global demand channels.
Impulse response analysis demonstrated a substantial and persistent negative effect of in-
terest rates on commodity prices in most empirically relevant scenarios. Furthermore, the
magnitude of this effect varies substantially depending on the prevailing market supply
and interest rate regime.

Our quantitative application focuses on the speculative and the global demand chan-
nels. However, exploring (i) the impact of interest rates on commodity prices through var-
ious other channels, and (ii) the impact of more sophisticated stochastic discount factors
(as found, for example, in Schorfheide et al., 2018) and risky returns are equally important.
Although these topics lie beyond the scope of the current paper, the theory we develop
lays a solid foundation for new work along these lines.
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APPENDIX A. PROOF OF SECTION 2 RESULTS

Here and in the remainder of the appendix, we let Φ be the probability transition matrix
of {Zt}. In particular, Φ(z, ẑ) denotes the probability of transitioning from z to ẑ in one
step. Recall Mt defined in (6). We denote Ez := E(· | Z = z) and Eẑ := E(· | Ẑ = ẑ), and
introduce the matrix L defined by

L(z, ẑ) := Φ (z, ẑ)Eẑ m(ẑ, ε̂). (A.1)

Here L is expressed as a function on Z× Z but can be represented in traditional matrix
notation by enumerating Z. Specifically, if Z = {z1, . . . , zN}, then L = ΦD, where D :=
diag {Ez1 M, . . . ,EzN M}.

For a square matrix A, let s(A) denote its spectral radius. In other words, s(A) :=
maxα∈Λ |α|, where Λ is the set of eigenvalues of A.

Lemma A.1. Given L defined in (A.1), the asymptotic yield satisfies κ(M) = − ln s(L).

Proof. By induction, we can show that, for any function h : Z → R and n ∈ N,

Lnh(z) = Ez

(
n

∏
t=1

Mt

)
h(Zn), (A.2)

where Ln is the n-th composition of the operator L with itself or, equivalently, the n-th
power of the matrix L. By Theorem 9.1 of Krasnosel’skii et al. (2012) and the positivity of
L, we have

s(L) = lim
n→∞

‖Lnh‖1/n, (A.3)

where h is any function on Z that takes positive values, and ‖ · ‖ is any norm on the set of
real-valued functions defined on Z. Letting h ≡ 1 and ‖ f ‖ := E | f (Z0)|, we obtain

s(L) = lim
n→∞

(
E

∣∣∣∣∣EZ0

n

∏
t=1

Mt

∣∣∣∣∣
)1/n

= lim
n→∞

(
E

n

∏
t=1

Mt

)1/n

= lim
n→∞

q1/n
n ,

where the first and the last equalities are by definition, and the second equality is due
to the Markov property. Since the log function is continuous, we then have ln s(L) =
limn→∞ ln qn/n = −κ(M) and the claim follows. □

Corollary A.1. Assumption 2.1 holds if and only if s(L) < eδ.

This follows directly from κ(M) = − ln s(L). Below we routinely use the alternative
version s(L) < eδ for Assumption 2.1.

In the main text we imposed p(b) < ∞ to simplify analysis. Here and below, we relax
this assumption. We assume instead p(b) ≤ ∞, and prove that all the theoretical results
in Sections 2–3 still hold in this generalized setup. To that end, we assume that

Ez max{p(Y), 0} < ∞ for all z ∈ Z. (A.4)
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(This mild assumption confines the expected market value of commodity output to be
finite and holds trivially in the setting of Section 2, where p is bounded above.) We then
update the endogenous state space X and define it as

X :=

{
(b, ∞), if p(b) = ∞,

[b, ∞), if p(b) < ∞.

There is no loss of generality to truncate the endogenous state space when p(b) = ∞, be-
cause in this case, (A.4) implies that Yt > b almost surely, and thus Xt > b with probability
one for all t.

Let p0(x) := max{p(x), 0} and let C be all continuous f : S → R such that f is decreas-
ing in its first argument, f (x, z) ≥ p0(x) for all (x, z) ∈ S, and

sup
(x,z)∈S

| f (x, z)− p0(x)| < ∞.

Obviously, C reduces to the candidate space in Theorem 2.1 when the demand function
p is bounded above, i.e., when p(b) < ∞. To compare pricing policies, we metrize C via

ρ( f , g) := ‖ f − g‖ := sup
(x,z)∈S

| f (x, z)− g(x, z)|.

Although f and g are not required to be bounded, one can show that ρ is a valid metric
on C and that (C , ρ) is a complete metric space (see, e.g., Ma et al., 2020).

We aim to characterize the equilibrium pricing rule as the unique fixed point of the
equilibrium price operator described as follows: For fixed f ∈ C and (x, z) ∈ S, the value of
T f at (x, z) is defined as the ξ ≥ p0(x) that solves

ξ = ψ(ξ, x, z) := min
{

max
{

e−δ
Ez M̂ f

(
e−δ I(ξ, x, z) + Ŷ, Ẑ

)
− k, p(x)

}
, p(b)

}
, (A.5)

where, considering free disposal,

I(ξ, x, z) :=

{
x − p−1(ξ), if x < x∗f (z)

x∗f (z)− p−1(ξ), if x ≥ x∗f (z)
(A.6)

with

x∗f (z) := inf
{

x ≥ p−1(0) : e−δ
Ez M̂ f

(
e−δ[x − p−1(0)] + Ŷ, Ẑ

)
− k = 0

}
.

The domain of ψ is
G := {(ξ, x, z) ∈ R+ × S : ξ ∈ B(x)} , (A.7)

where B(x) is defined for each x as

B(x) :=

{
[p0(x), ∞), if p(b) = ∞,

[p0(x), p(b)], if p(b) < ∞.
(A.8)

Proposition A.1. If f ∈ C and (x, z) ∈ S, then T f (x, z) is uniquely defined.
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Proof. Fix f ∈ C and (x, z) ∈ S. Since f is decreasing in its first argument and p−1

is decreasing (by the inverse function theorem), the map ξ 7→ ψ(ξ, x, z) is decreasing.
Since the left-hand-side of equation (A.5) is strictly increasing in ξ, (A.5) can have at most
one solution. Hence, uniqueness holds. Existence follows from the intermediate value
theorem provided we can show that

(a) ξ 7→ ψ(ξ, x, z) is a continuous function,
(b) there exists ξ ∈ B(x) such that ξ ≤ ψ(ξ, x, z), and
(c) there exists ξ ∈ B(x) such that ξ ≥ ψ(ξ, x, z).

For part (a), it suffices to show that

g(ξ) := Ez M̂ f
(

Ŷ + e−δ I(ξ, x, z), Ẑ
)

is continuous on B(x). To see this, fix ξ ∈ B(x) and ξn → ξ. Since f ∈ C , there exists
D ∈ R+ such that

0 ≤ M̂ f
(

Ŷ + e−δ I(ξn, x, z), Ẑ
)
≤ M̂ f (Ŷ, Ẑ) ≤ M̂ [p0(Ŷ) + D].

Since Ez M̂p0(Ŷ) = Ez
[
Eẑ M̂ Eẑ p0(Ŷ)

]
, the last term is integrable by (A.4). Hence, the

dominated convergence theorem applies. From this fact and the continuity of f , p−1, and
I, we obtain g(ξn) → g(ξ). Hence, ξ 7→ ψ(ξ, x, z) is continuous.

Regarding part (b), consider ξ = p0(x). If p(x) ≥ 0, then ξ = p(x) and thus

ψ(ξ, x, z) ≥ min{p(x), p(b)} = p(x) = ξ.

If p(x) < 0, then ξ = 0. In this case, I(ξ, x, z) = I(0, x, z) ≤ x∗f (z)− p−1(0). The mono-
tonicity of f and the definition of x∗f then imply that

e−δ
Ez M̂ f

(
e−δ I(ξ, x, z) + Ŷ, Ẑ

)
− k ≥ e−δ

Ez M̂ f
(

e−δ[x∗f (z)− p−1(0)] + Ŷ, Ẑ
)
− k = 0.

By the definition of ψ,

ψ(ξ, x, z) ≥ min{max{0, p(x)}, p(b)} = min{0, p(b)} = 0 = ξ.

We have now verified part (b).
If p(b) < ∞, then part (c) holds by letting ξ = p(b). If p(b) = ∞, then part (c) holds as

ξ gets large since ξ 7→ ψ(ξ, x, z) is decreasing and bounded.
In summary, we have verified both existence and uniqueness. □

Proposition A.2. T f ∈ C for all f ∈ C .

Proof. Fix f ∈ C and define g(ξ, x, z) := Ez M̂ f
(
Ŷ + e−δ I(ξ, x, z), Ẑ

)
.

First, we show that T f is continuous. To this end, we first show that ψ in (A.5) is jointly
continuous on the set G defined in (A.7). This will be true if g is jointly continuous on G.
For any {(ξn, xn, zn)} and (ξ, x, z) in G with (ξn, xn, zn) → (ξ, x, z), we need to show that
g(ξn, xn, zn) → g(ξ, x, z). Define

h1(ξ, x, z, Ẑ, ε̂, η̂), h2(ξ, x, z, Ẑ, ε̂, η̂) := M̂ f (Ŷ, Ẑ)± M̂ f
(

Ŷ + e−δ I(ξ, x, z), Ẑ
)

,
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where M̂ := m(Ẑ, ε̂) and Ŷ = y(Ẑ, η̂). Then h1 and h2 are continuous in (ξ, x, z, Ẑ) by
the continuity of f , p−1, and I, and non-negative by the monotonicity of f in its first
argument.

Let πε and πη denote respectively the probability measure of {εt} and {ηt}. Fatou’s
lemma and Theorem 1.1 of Feinberg et al. (2014) imply that∫ ∫

∑̂
z∈Z

hi(ξ, x, z, ẑ, ε̂, η̂)Φ(z, ẑ)πε d(ε̂)πη d(η̂)

≤
∫ ∫

lim inf
n→∞ ∑̂

z∈Z
hi(ξn, xn, zn, ẑ, ε̂, η̂)Φ(zn, ẑ)πε(d ε̂)πη(d η̂)

≤ lim inf
n→∞

∫ ∫
∑̂
z∈Z

hi(ξn, xn, zn, ẑ, ε̂, η̂)Φ(zn, ẑ)πε(d ε̂)πη(d η̂).

Since in addition z 7→ Ez M̂ f (Ŷ, Ẑ) is continuous, we have

±Ez M̂ f
(

Ŷ + e−δ I(ξ, x, z), Ẑ
)
≤ lim inf

n→∞

(
±Ezn M̂ f

(
Ŷ + e−δ I(ξn, xn, zn), Ẑ

))
.

Then g is continuous, since the above inequality is equivalent to

lim sup
n→∞

g(ξn, xn, zn) ≤ g(ξ, x, z) ≤ lim inf
n→∞

g(ξn, xn, zn).

Hence, ψ is continuous on G, as was to be shown. Since ξ 7→ ψ(ξ, x, z) takes values in

Γ(x, z) :=
[

p0(x), min
{

p(b), p0(x) + e−δ
Ez M̂(p0(Ŷ) + D)

}]
for some D ∈ R+, and the correspondence (x, z) 7→ Γ(x, z) is nonempty, compact-valued
and continuous, Theorem B.1.4 of Stachurski (2009) implies that T f is continuous on S.

Second, we show that T f is decreasing in x. Suppose for some z ∈ Z and x1, x2 ∈ X

with x1 < x2, we have ξ1 := T f (x1, z) < T f (x2, z) =: ξ2. Since f is decreasing in its first
argument by assumption and I defined in (A.6) is increasing in ξ and x, ψ is decreasing
in ξ and x. Then ξ2 > ξ1 = ψ(ξ1, x1, z) ≥ ψ(ξ2, x2, z) = ξ2, which is a contradiction.

Third, we show that sup(x,z)∈S |T f (x, z)− p0(x)| < ∞. This obviously holds since

|T f (x, z)− p0(x)| = T f (x, z)− p0(x)

≤ e−δ
Ez M̂ f

(
Ŷ + e−δ I (T f (x, z), x, z) , Ẑ

)
≤ e−δ

Ez M̂[p0(Ŷ) + D]

for all (x, z) ∈ S and some D ∈ R+, and the last term is finite by (A.4).
Finally, Proposition A.1 implies that T f (x, z) ∈ B(x) for all (x, z) ∈ S. In conclusion,

we have shown that T f (x, z) ∈ C . □

Lemma A.2. T is order preserving on C . That is, T f1 ≤ T f2 for all f1, f2 ∈ C with f1 ≤ f2.

Proof. Let f1, f2 be functions in C with f1 ≤ f2. Recall ψ defined in (A.5). With a slight
abuse of notation, we define ψ f such that ψ f (T f (x, z), x, z) = T f (x, z) for f ∈ { f1, f2}.
Then f1 ≤ f2 implies that ψ f1 ≤ ψ f2 . Suppose to the contrary that there exits (x, z) ∈ S

such that ξ1 := T f1(x, z) > T f2(x, z) = ξ2.
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Since we have shown that ξ 7→ ψ(ξ, x, z) is decreasing for each f ∈ C and (x, z) ∈ S,
we have ξ1 = ψ f1(ξ1, x, z) ≤ ψ f2(ξ1, x, z) ≤ ψ f2(ξ2, x, z) = ξ2, which is a contradiction.
Therefore, T is order preserving. □

Lemma A.3. There exist N ∈ N and α ∈ (0, 1) such that, for all n ≥ N,

max
z∈Z

Ez

n

∏
t=1

e−δMt < αn.

Moreover, D1 := ∑∞
t=0 maxz∈ZEz ∏t

i=1 e−δMi < ∞.

Proof. The second inequality follows immediately from the first inequality. To verify the
first inequality, note that letting h ≡ 1 and ‖ f ‖ = maxz∈Z | f (z)| in (A.3) yields

s(L) = lim
n→∞

(
max
z∈Z

Ez

n

∏
t=1

Mt

)1/n

.

Since e−δs(L) < 1 by Corollary A.1, there exists N ∈ N and α < 1 such that for all n ≥ N,

e−δ

(
max
z∈Z

Ez

n

∏
t=1

Mt

)1/n

=

(
max
z∈Z

Ez

n

∏
t=1

e−δMt

)1/n

< α.

Hence, the first inequality holds, and the proof is now complete. □

To simplify notation, for given Ŷ, we denote

h(ξ, x, z) := Ŷ + e−δ I(ξ, x, z) and g(ζ, x) := min {max{ζ − k, p(x)}, p(b)} . (A.9)

By definition, ξ 7→ h(ξ, x, z) and ζ 7→ g(ζ, x) are increasing given (x, z).

Lemma A.4. For all m ∈ N, (x, z) ∈ S, and γ ≥ 0, we have

Tm( f + γ)(x, z) ≤ Tm f (x, z) + γ Ez

m

∏
t=1

e−δMt. (A.10)

Proof. Fix f ∈ C , γ ≥ 0, and let fγ(x, z) := f (x, z) + γ. By the definition of T,

T fγ(x, z) = g
[
e−δ

Ez M̂ fγ

(
h[T fγ(x, z), x, z], Ẑ

)
, x
]

≤ g
[
e−δ

Ez M̂ f
(
h[T fγ(x, z), x, z], Ẑ

)
, x
]
+ γ Ez e−δM̂

≤ g
[
e−δ

Ez M̂ f
(
h[T f (x, z), x, z], Ẑ

)
, x
]
+ γ Ez e−δM̂,

where the second inequality is due to the fact that f ≤ fγ and T is order preserving.
Hence, T( f + γ)(x, z) ≤ T f (x, z) + γ Ez e−δM̂ and (A.10) holds for m = 1. Suppose
(A.10) holds for arbitrary m. It remains to show that it holds for m + 1. For z ∈ Z, let
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ℓ(z) := γ Ez ∏m
t=1 e−δMt. By the induction hypothesis, Lemma A.2, and the Markov

property,

Tm+1 fγ(x, z) = g
[
e−δ

Ez M̂(Tm fγ)
(

h[Tm+1 fγ(x, z), x, z], Ẑ
)

, x
]

≤ g
[
e−δ

Ez M̂(Tm f + ℓ)
(

h[Tm+1 fγ(x, z), x, z], Ẑ
)

, x
]

≤ g
[
e−δ

Ez M̂(Tm f )
(

h[Tm+1 fγ(x, z), x, z], Ẑ
)

, x
]
+Ez e−δM1ℓ(Z1)

≤ Tm+1 f (x, z) + γ Ez e−δM1EZ1 e−δM1 · · · e−δMm

= Tm+1 f (x, z) + γ Ez

m+1

∏
t=1

e−δMt.

Hence (A.10) holds by induction. □

Lemma A.5. There exist n ∈ N and θ ∈ (0, 1) such that

Tn( f + γ) ≤ Tn f + θγ for all f ∈ C and γ ≥ 0.

Proof. By the first part of Lemma A.3, there exist n ∈ N and α ∈ (0, 1) such that

Ez

n

∏
t=1

e−δMt < αn for all z ∈ Z.

Letting θ := αn, we have θ < 1. The stated claim then follows from Lemma A.4. □

Theorem A.1. If Assumption 2.1 holds, then T is well defined on the function space C , and there
exists an n ∈ N such that Tn is a contraction mapping on (C , ρ). Moreover,

(i) T has a unique fixed point f ∗ in C .
(ii) The fixed point f ∗ is the unique equilibrium pricing rule in C .

(iii) For each f in C , we have ρ(Tk f , f ∗) as k → ∞.

Proof. Proposition A.1 shows that T is a well-defined operator on C . Since in addition (i)
T is order preserving by Lemma A.2, (ii) C is closed under the addition of non-negative
constants, and (iii) there exist n ∈ N and θ < 1 such that Tn( f + γ) ≤ Tn f + θγ for
all f ∈ C and γ ≥ 0 by Lemma A.5, we have: Tn is a contraction mapping on (C , ρ)
of modulus θ based on Blackwell (1965). Claims (i)–(iii) then follow from the Banach
contraction mapping theorem and the definition of the equilibrium pricing rule. □

For each f in C , we define

p̄0
f (z) := e−δ

Ez M̂ f (Ŷ, Ẑ)− k and p̄ f (z) := min{ p̄0
f (z), p(b)}.

Lemma A.6. For each f in C , T f satisfies
(i) T f (x, z) = p(x) if and only if x ≤ p−1[ p̄ f (z)],

(ii) T f (x, z) > p0(x) if and only if p−1[ p̄ f (z)] < x < x∗f (z), and

(iii) T f (x, z) = 0 if and only if x ≥ x∗f (z).
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Proof. Regarding claim (i), suppose T f (x, z) = p(x). We show that x ≤ p−1[ p̄ f (z)]. Note
that in this case, x ≤ p−1(0) ≤ x∗f (z) since p(x) = T f (x, z) ≥ 0. Hence,

I [T f (x, z), x, z] = x − p−1[T f (x, z)] = 0.

By the definition of T, we have

p(x) = T f (x, z) = min
{

max
{

e−δ
Ez M̂ f (Ŷ, Ẑ)− k, p(x)

}
, p(b)

}
≥ min

{
p̄0

f (z), p(b)
}
= p̄ f (z).

Since p is decreasing, this implies x ≤ p−1[ p̄ f (z)].
Next, we prove that x ≤ p−1[ p̄ f (z)] implies T f (x, z) = p(x). If p̄0

f (z) ≥ p(b), then

p̄ f (z) = p(b) =⇒ x ≤ p−1[ p̄ f (z)] = p−1[p(b)] = b.

Hence x = b. Then by definition T f (x, z) = min{ p̄0
f (z), p(b)} = p(b) = p(x).

If p̄0
f (z) < p(b), then p̄ f (z) = p̄0

f (z). Since in addition

p̄0
f (z) ≥ e−δ

Ez M̂p(Ŷ)− k > 0 and x ≤ p−1[ p̄ f (z)],

we have x < p−1(0) ≤ x∗f (z) in this case. Suppose to the contrary that T f (x, z) > p(x) for
some (x, z) ∈ S. Then by the definition of T,

p(x) < e−δ
Ez M̂ f

[
e−δ

(
x − p−1[T f (x, z)]

)
+ Ŷ, Ẑ

]
− k.

The monotonicity of f in its first argument then implies that

p(x) < e−δ
Ez M̂ f (Ŷ, Ẑ)− k = p̄0

f (z) = p̄ f (z),

which is a contradiction. Claim (i) is now verified.
Note that claim (ii) follows immediately once claim (iii) is verified. To see that claim (iii)

is true, suppose to the contrary that x ≥ x∗f (x) and T f (x, z) > 0 for some (x, z) ∈ S. Then

I [T f (x, z), x, z] = x∗f (z)− p−1[T f (x, z)] > x∗f (z)− p−1(0).

By the definition of x∗f (z) and the monotonicity of f , this gives

e−δ
Ez M̂ f

(
e−δ I [T f (x, z), x, z] + Ŷ, Ẑ

)
− k ≤ 0.

Using the definition of T, we obtain 0 < T f (x, z) ≤ min{max{0, p(x)}, p(b)} = 0, which
is a contradiction. Hence, x ≥ x∗f (z) implies T f (x, z) = 0.

Now suppose T f (x, z) = 0. The definition of T implies that

e−δ
Ez M̂ f

(
e−δ I(0, x, z) + Ŷ, Ẑ

)
− k ≤ 0.

By the definition of x∗f (z), this gives x ≥ x∗f (z). Claim (iii) is now verified. □
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Proof of Theorem 2.1. Theorem A.1 implies that there exists a unique equilibrium pricing
rule f ∗ in C . Claims (i)–(iii) follow immediately from Lemma A.6 since p̄(z) = p̄ f ∗(z)
and f ∗ is the unique fixed point of T in C .

To see that claim (iv) holds, suppose f ∗(x, z) is not strictly decreasing in x under the
given conditions. Then by claims (i)–(iii), there exists z ∈ Z with e−δ

Ez M̂ < 1 and a
first interval [x0, x1] ⊂

(
p−1[ p̄(z)], x∗(z)

)
such that f ∗(x, z) ≡ B on this interval for some

constant B > 0. By the definition of T, for all x ∈ [x0, x1],

B = f ∗(x, z) = e−δ
Ez M̂ f

(
e−δ I [ f ∗(x, z), x, z] + Ŷ, Ẑ

)
− k.

Since the left-hand-side is a constant, f
(
e−δ I [ f ∗(x, z), x, z] + Ŷ, Ẑ

)
= B′(Ẑ) for some con-

stant B′(Ẑ). Moreover, B′(Ẑ) ≤ B since f is decreasing in x and [x0, x1] is the first interval
on which f is constant in x. Since in addition e−δ

Ez M̂ < 1, we have B ≤ e−δ
Ez M̂B− k <

B − k ≤ B, which is a contradiction. Hence claim (iv) must be true. □

Proof of Proposition 2.1. The continuity of i∗ and claims (i)–(iii) follow from Theorem 2.1
and the definition of i∗. We next show that i∗(x, z) is increasing in x. Since i∗(x, z) is
constant given z when x ≤ p−1[ p̄(z)] and when x ≥ x∗(z) by claim (i) and claim (iii),
it remains to show that i∗(x, z) is increasing in x when p−1[ p̄(z)] < x < x∗(z). In this
case i∗(x, z) = x − p−1[ f ∗(x, z)]. Suppose to the contrary that there exist z ∈ Z and
x1, x2 ∈

(
p−1[ p̄(z)], x∗(z)

)
such that x1 < x2 and i∗(x1, z) > i∗(x2, z). Then by definition,

x1 − p−1[ f ∗(x1, z)] > x2 − p−1[ f ∗(x2, z)].

Since x1 < x2, this gives p−1[ f ∗(x2, z)] > p−1[ f ∗(x1, z)]. But by (ii) of Theorem 2.1 and
the definition of T, we obtain

f ∗(x1, z) = e−δ
Ez M̂ f ∗

(
e−δi∗(x1, z) + Ŷ, Ẑ

)
− k

≤ e−δ
Ez M̂ f ∗

(
e−δi∗(x2, z) + Ŷ, Ẑ

)
− k ≤ f ∗(x2, z),

which implies p−1[ f ∗(x1, z)] ≥ p−1[ f ∗(x2, z)]. This is a contradiction. Hence, it is true
that i∗(x, z) is increasing in x.

It remains to verify claim (iv). Pick any z ∈ Z and x1, x2 ∈
(

p−1[ p̄(z)], x∗(z)
)

with
x1 < x2. By claim (iv) of Theorem 2.1, we have f ∗(x1, z) > f ∗(x2, z). Using the definition
of T and claim (ii) of Theorem 2.1 again, we have

Ez M̂ f ∗
(

e−δi∗(x1, z) + Ŷ, Ẑ
)
> Ez M̂ f ∗

(
e−δi∗(x2, z) + Ŷ, Ẑ

)
.

The monotonicity of f ∗ then gives i∗(x1, z) < i∗(x2, z). Hence claim (iv) holds. □

APPENDIX B. PROOF OF SECTION 3 RESULTS

A Markov chain {Zt} with transition matrix F is called monotone if∫
h(ẑ)d F(z1, ẑ) ≤

∫
h(ẑ)d F(z2, ẑ)

31



whenever z1 ≤ z2 and h : Z → R is bounded and increasing. In proofs, when stat-
ing equality or inequality conditions between different random variables, we understand
them as holding with probability one.

Proof of Proposition 3.1. Let C1 be the elements in C such that z 7→ f (x, z) is decreasing
for all x. Obviously, C1 is a closed subset of C . Therefore, to show that z 7→ f ∗(x, z) is
decreasing for all x, it suffices to verify TC1 ⊂ C1.

Fix f ∈ C1 and z1, z2 ∈ Z with z1 ≤ z2. Suppose there exists an x such that

ξ1 := T f (x, z1) < T f (x, z2) =: ξ2. (B.1)

Note that f is a decreasing function since f ∈ C1. Moreover, by assumption m(z, ε) =
1/r(z, ε) is decreasing in z, y(z, η) is increasing in z, and Φ is monotone. Therefore, for all
ξ ∈ B(x), we have

Ez1 M̂ f
(

e−δ[x − p−1(ξ)] + Ŷ, Ẑ
)
≥ Ez2 M̂ f

(
e−δ[x − p−1(ξ)] + Ŷ, Ẑ

)
. (B.2)

In particular, by the definition of x∗f , we have x∗f (z2) ≤ x∗f (z1). If x < x∗f (z2), then

I(ξ1, x, z1) = x − p−1(ξ1) ≤ x − p−1(ξ2) = I(ξ2, x, z2).

Recall ψ defined in (A.5). The above inequality and (B.2) imply that

ξ1 = ψ(ξ1, x, z1) ≥ ψ(ξ1, x, z2) ≥ ψ(ξ2, x, z2) = ξ2.

If x ≥ x∗f (z2), then we also have ξ1 ≥ ξ2 since ξ2 = 0 and ξ1 ≥ 0. In either case, this is
contradicted with (B.1). Therefore, we have shown that z 7→ T f (x, z) is decreasing for all
x and TC1 ⊂ C1. It then follows that z 7→ f ∗(x, z) is decreasing for all x.

To see that i∗(x, z) is decreasing in z, pick any z1, z2 ∈ Z with z1 ≤ z2. By the definition
of x∗(z) and the monotonicity of f ∗(x, z) in z, we have

0 = f ∗(x∗(z1), z1) ≥ f ∗(x∗(z1), z2)

and thus x∗(z1) ≥ x∗(z2). The definition of i∗ and the monotonicity of p−1 and f ∗ then
implies that

i∗(x, z1) = min{x, x∗(z1)} − p−1[ f ∗(x, z1)]

≥ min{x, x∗(z2)} − p−1[ f ∗(x, z2)] = i∗(x, z2).

Hence z 7→ i∗(x, z) is decreasing for all x.
Finally, note that Ẑ 7→ M̂ f ∗(Ŷ, Ẑ) = m(Ẑ, ε̂) f ∗(y(Ẑ, η̂), Ẑ) is decreasing because f ∗

is decreasing, y is increasing in z, and m is decreasing in z. Since in addition {Zt} is
monotone, it follows immediately by definition that z 7→ Ez M̂ f ∗(Ŷ, Ẑ) is decreasing.
Hence p̄ is decreasing by definition. □

Next, we discuss the correlation between commodity price and stochastic discount fac-
tor. To state the result, we suppose Zt = (Z1t, . . . , Znt) takes values in Rn. The following
is a simple corollary of the key result of Fortuin et al. (1971).
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Lemma B.1 (Fortuin–Kasteleyn–Ginibre). If f , g are decreasing integrable functions on Rn

and W = (W1, · · · , Wn) is a random vector on Rn such that {W1, · · · , Wn} are independent,
then E f (W)E g(W) ≤ E f (W)g(W).

Lemma B.1 implies that if f is decreasing and g is nondecreasing (so that −g is decreas-
ing), then we have E f (W)E g(W) ≥ E f (W)g(W).

Proposition B.1. If m(z, ε) is decreasing in z, y(z, η) is nondecreasing in z, Φ is monotone, and
{Z1t, . . . , Znt} are independent for each fixed t, then Covt−1(Pt, Mt) ≥ 0 for all t ∈ N.

Proof. The equilibrium path is Xt = e−δ i∗(Xt−1, Zt−1) + y(Zt, ηt) where

i∗(Xt−1, Zt−1) = min {Xt−1, x∗(Zt−1)} − p−1 [ f ∗(Xt−1, Zt−1)] .

Note that Xt is a nondecreasing function of Zt since z 7→ y(z, η) is nondecreasing for all η.
Moreover, the proof of Proposition 3.1 implies that f ∗ is a decreasing function under the
assumptions of the current proposition. Hence, Zt 7→ f ∗(Xt, Zt) is decreasing. Since in
addition z 7→ m(z, ε) is decreasing for all ε and {Z1t, . . . , Znt} are independent, applying
Lemma B.1 (taking W = Zt) yields

E [ f ∗(Xt, Zt)m(Zt, εt) | Xt−1, Zt−1, εt, ηt]

≥ E [ f ∗(Xt, Zt) | Xt−1, Zt−1, εt, ηt]E [m(Zt, εt) | Xt−1, Zt−1, εt, ηt]

= E [ f ∗(Xt, Zt) | Xt−1, Zt−1, ηt]E [m(Zt, εt) | Zt−1, εt] .

Using this result, it follows that

E (PtMt | Xt−1, Zt−1) = E [ f ∗(Xt, Zt)m(Zt, εt) | Xt−1, Zt−1]

= E (E [ f ∗(Xt, Zt)m(Zt, εt) | Xt−1, Zt−1, εt, ηt] | Xt−1, Zt−1)

≥ E {E [ f ∗(Xt, Zt) | Xt−1, Zt−1, ηt]E [m(Zt, εt) | Zt−1, εt] | Xt−1, Zt−1}
= E [ f ∗(Xt, Zt) | Xt−1, Zt−1]E [m(Zt, εt) | Xt−1, Zt−1]

= E (Pt | Xt−1, Zt−1)E (Mt | Xt−1, Zt−1) ,

where the second-to-last equality holds because ηt is independent of εt. Hence,

Covt−1(Pt, Mt) = Cov(Pt, Mt | Xt−1, Zt−1)

= E (Pt, Mt | Xt−1, Zt−1)−E (Pt | Xt−1, Zt−1)E (Mt | Xt−1, Zt−1) ≥ 0,

as was to be shown. □
Proof of Proposition 3.2. Since Rt = 1/Mt, applying Lemma B.1 again and working through
similar steps to the proof of Proposition B.1, we can show that Covt−1(Pt, Rt) ≤ 0 for all t.
The details are omitted. □
Proof of Proposition 3.3. Let T1 and T2 be respectively the equilibrium price operators cor-
responding to {R1

t } and {R2
t }. It suffices to show that T1 f ≤ T2 f for all f ∈ C . To see

this, we adopt an induction argument. Suppose Tk
1 f ≤ Tk

2 f . Then by the order preserving
property of the equilibrium price operator and the initial argument T1 f ≤ T2 f for all f in
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C , we have Tk+1
1 f = T1(Tk

1 f ) ≤ T1(Tk
2 f ) ≤ T2(Tk

2 f ) = Tk+1
2 f . Hence, Tk

1 f ≤ Tk
2 f for all

k ∈ N and f ∈ C . Letting k → ∞ then yields f ∗1 ≤ f ∗2 .
We now show that T1 f ≤ T2 f for all f ∈ C . Suppose there exists (x, z) ∈ S such that

ξ1 := T1 f (x, z) > T2 f (x, z) =: ξ2. Let Mi
t = 1/Ri

t for i = 1, 2. Since R1
t ≥ R2

t , we have
M1

t ≤ M2
t . Letting M̂i be the next-period discount factor of economy i, the monotonicity

of g and h defined in (A.9) then implies that

ξ1 = g
[
e−δ

Ez M̂1 f
(
h(ξ1, x), Ẑ

)
, x
]

≤ g
[
e−δ

Ez M̂2 f
(
h(ξ1, x), Ẑ

)
, x
]
≤ g

[
e−δ

Ez M̂2 f
(
h(ξ2, x), Ẑ

)
, x
]
= ξ2,

which is a contradiction. Therefore, T1 f ≤ T2 f and all the stated claims hold. □
Proof of Proposition 3.4. In this case, the exogenous state is Zt = Rt, which is a monotone
Markov process, and r(z, ε) ≡ z is strictly increasing in z. Since R2

t ≤ R1
t , y is nondecreas-

ing in R, and both economies share the same innovation process {ηt}, we have Y2
t ≤ Y1

t .
Since in addition X2

t−1 ≤ X1
t−1 and R1

t−1 ≤ R2
t−1, Propositions 2.1 and 3.2 and the law of

motion of the state process imply that

X2
t = e−δi∗(X2

t−1, R2
t−1) + Y2

t ≤ e−δi∗(X1
t−1, R1

t−1) + Y1
t = X1

t

with probability one. Applying Proposition 3.2 again and the monotonicity of f ∗ with
respect to the endogenous state yields

P1
t = f ∗(X1

t , R1
t ) ≤ f ∗(X1

t , R2
t ) ≤ f ∗(X2

t , R2
t ) = P2

t

with probability one. Hence the statement is verified. □
Proof of Proposition 3.5. We have seen that, in this case, the exogenous state is Zt = Rt,
which is a monotone Markov process, and r(z, ε) ≡ z is strictly increasing in z. Since
Rt ≤ Rt+1 and y is nondecreasing, we have Yt ≤ Yt+1. Since in addition Xt−1 ≤ Xt
and Rt−1 ≥ Rt, applying Propositions 2.1 and 3.2, the law of motion of the state process
indicates that

Xt = e−δi∗(Xt−1, Rt−1) + Yt ≤ e−δi∗(Xt, Rt) + Yt+1 = Xt+1

with probability one. Then Proposition 3.2 and the monotonicity of f ∗ with respect to the
endogenous state imply that

Pt = f ∗(Xt, Rt) ≥ f ∗(Xt, Rt+1) ≥ f ∗(Xt+1, Rt+1) = Pt+1

with probability one. Hence the stated claim holds. □

APPENDIX C. POSITIVE CORRELATION

Here we provide examples showing that Proposition 3.2 does not hold in general if Zt
is positively or negatively correlated across dimensions. We begin with the following.

Proposition C.1. If Assumption 2.1 holds and the inverse demand function is p(x) = a + dx
with a > 0 and d < 0, then the equilibrium pricing rule f ∗(x, z) is convex in x.
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Proof. Let C2 be the elements in C such that x 7→ f (x, z) is convex for all z ∈ Z. Then
C2 is a closed subset of C . Hence it suffices to show that TC2 ⊂ C2. Fix f ∈ C2, since
T f ∈ C by Proposition A.2, it remains to show that T f (x, z) is convex in x. Since T f (x, z)
is decreasing in x and, by Lemma A.6, T f (x, z) is linear in x when x ≤ p−1[ p̄(z)] or
x ≥ x∗f (z), it suffices to show that T f (x, z) is convex in x on B0(z) := (p−1[ p̄(z)], x∗f (z)).
In this case,

T f (x, z) = e−δ
Ez M̂ f

(
e−δ

(
x − p−1[T f (x, z)]

)
+ Ŷ, Ẑ

)
− k.

Suppose to the contrary that T f (x, z) is not convex, then there exist z ∈ Z, x1, x2 ∈ B0(z),
and α ∈ [0, 1] such that, letting x0 := αx1 + (1 − α)x2,

αT f (x1, z) + (1 − α)T f (x2, z) < T f (x0, z)

= e−δ
Ez M̂ f

(
e−δ

(
x − p−1[T f (x0, z)]

)
+ Ŷ, Ẑ

)
− k

≤ e−δ
Ez M̂ f

(
e−δ

(
x − p−1 [αT f (x1, z) + (1 − α)T f (x2, z)]

)
+ Ŷ, Ẑ

)
− k

≤ αT f (x1, z) + (1 − α)T f (x2, z),

where the last inequality is by convexity of f (x, z) in x and the linearity of p(x). This is a
contradiction. Hence T f (x, z) is convex in x on B0(z) and the stated claim holds. □

Suppose Rt = 0.98 with probability 0.5 and Rt = 1.02 with probability 0.5. If Rt = 0.98,
then Yt = y0 with probability one, and if Rt = 1.02, then Yt = y1 with probability φ and
Yt = y2 with probability 1 − φ. This is a special case of our framework. In particular,

εt = ηt = 0, Zt = (Z1t, Z2t) = (Rt, Yt),

r(Zt, εt) = r(Rt, Yt, εt) = Rt and y(Zt, ηt) = y(Rt, Yt, ηt) = Yt.

Note that {Zt} is IID. Hence, it is naturally monotone and the equilibrium pricing rule is
not a function of Zt. Since in addition r(z, ε) and y(z, η) are increasing in z, the assump-
tions of Proposition 3.1 hold. However, because Z1t and Z2t (i.e., Rt and Yt) are correlated,
the assumptions of Proposition 3.2 are violated.

Some simple algebra shows that ERt = 1,

EYt =
y0

2
+

φy1

2
+

(1 − φ)y2

2
and ERtYt =

0.98y0

2
+

1.02φy1

2
+

1.02(1 − φ)y2

2
.

Hence Covt−1(Rt, Yt) = ERtYt −ERtEYt = −0.01y0 + 0.01φy1 + 0.01(1− φ)y2. Choose
δ such that δ > logE(1/Rt) ≈ 0.0004. Then β := e−δ

E(1/Rt) < 1 and the following
result holds under the current setup.

Lemma C.1. Either (i) Pt = 0 for all t or (ii) It = 0 in finite time with probability one. If the
per-unit storage cost k > 0, then (ii) holds.
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Proof. Suppose (ii) does not hold, then It > 0 for all t with positive probability, and the
equilibrium price path satisfies

P0 ≤ e−δt
E

(
t

∏
i=0

1
Ri

)
Pt −

(
t−1

∑
i=0

e−δi

)
k for all t. (C.1)

Note that {Pt} is bounded with probability one since f ∗ ∈ C implies that, for some L0 <
∞, we have Pt = f ∗(Xt) ≤ f ∗(Yt) ≤ f ∗(y

¯
) ≤ p0(y

¯
) + L0 =: L1 < ∞ with probability

one, where y
¯

:= min{y0, y1, y2}. If in addition (i) does not hold, we may assume P0 > 0
without loss of generality. In this case, (C.1) implies that, when t is sufficiently large, we
have 0 < P0 ≤ βtL1 < P0 with positive probability, which is a contradiction. Hence either
(i) or (ii) holds. If, on the other hand, k > 0 and (ii) does not hold, then for sufficiently
large t, (C.1) implies that P0 < P0 with positive probability for all P0 ≥ 0, which is also a
contradiction. Hence (ii) holds and the second claim is also verified. □

Consider a linear inverse demand function p as in Proposition C.1. If Pt = 0 for all t,
then Cov(Rt, Pt) = Covt−1(Rt, Pt) = 0 for all t. Otherwise, It−1 = 0 for some finite t, in
which case Xt = Yt, Pt = f ∗(Yt), and thus

Covt−1(Rt, Pt) = Et−1 RtPt −ERt Et−1 Pt = ERt f ∗(Yt)−ERt E f ∗(Yt)

= −0.01 f ∗(y0) + 0.01φ f ∗(y1) + 0.01(1 − φ) f ∗(y2).

If y1, y2 < y0, then Covt−1(Rt, Yt) < 0 and Covt−1(Rt, Pt) > 0 based on the monotonicity
of f ∗. If on the other hand y0, y1 and y2 satisfy32 y1 < p−1( p̄) < y0 < y2, then since f ∗ is
convex by Proposition C.1, and f ∗(x) > p(x) whenever x > p−1( p̄) by Theorem 2.1,

f ∗(y0)− f ∗(y2)

f ∗(y1)− f ∗(y2)
<

y2 − y0

y2 − y1
.

Hence φ can be chosen such that y2 − y0 > φ(y2 − y1) and f ∗(y0)− f ∗(y2) < φ[ f ∗(y1)−
f ∗(y2)]. In particular, the above inequalities respectively imply that

Covt−1(Rt, Yt) > 0 and Covt−1(Rt, Pt) > 0.
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