
Chapter 4

Introduction to Dynamics

4.1 Deterministic Dynamical Systems

Having covered programming and metric spaces in some depth, we now possess am-
ple tools for analysis of dynamics. After starting with deterministic dynamical sys-
tems, setting up the basic theory and the notion of stability, we turn to stochastic
models, where evolution of the state variable is affected by noise. While deterministic
systems are clearly a kind of stochastic system (with zero-variance noise), we will see
that the converse is also true: Stochastic models can be embedded in the determin-
istic framework. Through this embedding we can study the dynamic properties of
stochastic systems using our knowledge of the deterministic model.

4.1.1 The Basic Model

Suppose that we are observing the time path of some variable x in a metric space S. At
t, the current state of the system is denoted by xt. Assume that from the current state xt
we can compute the time t + 1 value xt+1 by applying a map h. That is, xt+1 = h(xt).
The two primitives that make up this system are S and h:

Definition 4.1.1 A dynamical system is a pair (S, h), where S = (S, ρ) is an arbitrary
metric space and h is a map from S into itself.

By the n-th iterate of x ∈ S under h we mean hn(x). It is conventional to set h0(x) :=
x. The trajectory of x ∈ S under h is the sequence (ht(x))t≥0. As before, x∗ ∈ S is a
fixed point of h in S if h(x∗) = x∗. Fixed points are also said to be stationary or invariant
under h.1

1Similar terminology applies to sets. For example, if h(A) ⊂ A, then A is said to be invariant under h.
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Figure 4.1 The result of mapping x 7→ h(x) for a grid of x values

Figure 4.1 illustrates the dynamics of one particular map h on S := R2 by showing
an arrow from x to h(x) for x ∈ a grid of points. Details on the map are in the section
of the Jupyter code book corresponding to this chapter.

Exercise 4.1 Show that if (S, h) is a dynamical system, if x′ ∈ S is the limit of some
trajectory (i.e., ht(x) → x′ as t → ∞ for some x ∈ S), and if h is continuous at x′, then
x′ is a fixed point of h.

Exercise 4.2 Prove that if h is continuous on S and h(A) ⊂ A (i.e., h maps A → A),
then h(cl A) ⊂ cl A.

Let x∗ be a fixed point of h on S. By the stable set Λ(x∗) of x∗ we refer to all x ∈ S
such that limt→∞ ht(x) = x∗. Clearly, Λ(x∗) is nonempty. (Why?) The fixed point
x∗ is said to be locally stable, or an attractor, whenever there exists an open set G with
x∗ ∈ G ⊂ Λ(x∗). Equivalently x∗ is locally stable whenever there exists an ϵ-ball
around x∗ such that every trajectory starting in that ball converges to x∗:

Exercise 4.3 Prove that x∗ is locally stable if and only if there exists an ϵ > 0 such that
B(ϵ, x∗) ⊂ Λ(x∗).

In this book we will be interested primarily in global stability:
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Figure 4.2 Global stability

Definition 4.1.2 A dynamical system (S, h) is called globally stable or asymptotically
stable if

1. h has a unique fixed point x∗ in S, and

2. ht(x) → x∗ as t → ∞ for all x ∈ S.

Exercise 4.4 Prove that if x∗ is a fixed point of (S, h) to which every trajectory con-
verges, then x∗ is the only fixed point of (S, h).

Figure 4.2 helps to visualize the concept of global stability, plotting 9 individual
trajectories of a stable map h on R2. The details are in the Jupyter code book (see
page xiv).

Figure 4.3 also illustrates global stability, in this case for the one-dimensional sys-
tem (S, h), where S := (0, ∞) and h(k) := sAkα with s ∈ (0, 1], A > 0 and α ∈ (0, 1).
The system represents a simple Solow–Swan growth model, where next period’s cap-
ital stock h(k) is the savings rate s times current output Akα. The value A is a produc-
tivity parameter and α is the capital intensity. Figure 4.3 is called a 45 degree diagram.
When the curve h lies above (resp., below) the 45 degree line we have h(k) > k (resp.,
h(k) < k), and hence the trajectory moves to the right (resp., left). Two trajectories are
shown, converging to the unique fixed point k∗.
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Figure 4.3 45 degree diagram

Regarding local stability of (S, h) when S is an open subset of R, it is well-known
that

Lemma 4.1.3 If h is a map with continuous derivative h′ and x∗ is a fixed point of h with
|h′(x∗)| < 1, then x∗ is locally stable.

Intuitively, when the condition holds, h(x) ≈ h(x∗) + h′(x∗)(x − x∗) is locally
uniformly contracting in the neighborhood of x∗.

Example 4.1.4 Consider a growth model with “threshold” nonconvexities of the form
kt+1 = sA(kt)kα

t , where s, α ∈ (0, 1) and k 7→ A(k) is some increasing function with
A(k) > 0 when k > 0. Suppose, for example, that A is a step function of the form

A(k) =

{
A1 if 0 < k < kb

A2 if kb ≤ k < ∞

Here kb is a “threshold” value of capital stock, and 0 < A1 < A2. Let k∗i be the
solution to k = sAikα for i = 1, 2 when it exists. A plot is given in figure 4.4 for the
case where k∗1 < kb < k∗2. The two fixed points k∗1 and k∗2 are local attractors, as can be
verified from lemma 4.1.3. Long-run outcomes depend on initial conditions, and for
this reason the model is said to exhibit path dependence.

Exercise 4.5 A dynamical system (S, h) is called Lagrange stable if every trajectory
is precompact in S. In other words, the set {hn(x) : n ∈ N} is precompact for every
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Figure 4.4 Threshold externalities

x ∈ S.2 Show that if S is a closed and bounded subset of Rk, then (S, h) is Lagrange
stable for any choice of h.

Exercise 4.6 Let S = R, and let h : R→ R be an increasing function, in the sense that
if x ≤ y, then h(x) ≤ h(y). Show that every trajectory of h is a monotone sequence in
R (either increasing or decreasing).

Exercise 4.7 Now order points in Rn by setting x ≤ y whenever xi ≤ yi for i in
{1, . . . , n} (i.e., each component of x is dominated by the corresponding component
of y). Let S = Rn, and let h : S → S be monotone increasing. (The definition is the
same.) Show that the same result no longer holds—h does not necessarily generate
monotone trajectories.

4.1.2 Global Stability

Global stability will be a key concept for the remainder of the text. Let’s start our
investigation of global stability by looking at linear (more correctly, affine) systems in
one dimension.

2Equivalently every subsequence of the trajectory has a convergent subsubsequence.
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Exercise 4.8 Let S = (R, | · |) and h(x) = ax + b. Prove that

ht(x) = atx + b
t−1

∑
i=0

ai (x ∈ S, t ∈ N)

From this expression, prove that (S, h) is globally stable whenever |a| < 1, and exhibit
the fixed point.

Exercise 4.9 Show that the condition |a| < 1 is also necessary, in the sense that if
|a| ≥ 1, then (S, h) is not globally stable. Show, in particular, that ht(x0) converges to
x∗ := b/(1 − a) only if x0 = x∗.

In exercise 4.8 we found a direct proof of global stability for our affine system
when |a| < 1. For more complex systems direct methods are usually unavailable,
and we must deploy more powerful machinery, such as Banach’s fixed point theorem
(theorem 3.2.16 on page 57).

Exercise 4.10 Let (S, h) be as in exercise 4.8. Using theorem 3.2.16, prove that (S, h) is
globally stable whenever |a| < 1.

Exercise 4.11 Let S := (0, ∞) with ρ(x, y) := | ln x − ln y|. Prove that ρ is a metric
on S and that (S, ρ) is a complete metric space. Consider the growth model kt+1 =
h(kt) = sAkα

t in figure 4.3, where s ∈ (0, 1], A > 0 and α ∈ (0, 1). Convert this into a
dynamical system on (S, ρ), and prove global stability using theorem 3.2.16.

Next we consider linear systems inRn. In general, a function h : Rn → Rn is called
linear if

h(αx + βy) = αh(x) + βh(y) ∀ x, y ∈ Rn ∀ α, β ∈ R (4.1)

It can be shown that every such h is continuous. If E is an n × n matrix, then the map
on Rn defined by x 7→ Ex is linear. In fact it can be shown that for all linear maps
h : Rn → Rn there exists a matrix Eh with h(x) = Ehx for all x ∈ Rn. An affine system
onRn is a map h : Rn → Rn given by

h(x) = Ex + b where E is an n × n matrix and b ∈ Rn

To investigate this system, let ‖ · ‖ be any norm onRn, and define

λ := max{‖Ex‖ : x ∈ Rn, ‖x‖ = 1} (4.2)

Exercise 4.12 If you can, prove that the maximum exists. Using the properties of
norms and linearity of E, show that ‖Ex‖ ≤ λ‖x‖ for all x ∈ Rn. Show in addition
that if λ < 1, then (Rn, h) is globally stable.
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Let’s look at an application of these ideas. Carvalho and Tahbaz-Salehi (2019)
study production networks by building on earlier work due to Long and Plosser
(1983), who study business cycles using multisector growth models. Long and Plosser
solve their model to obtain a system for log output given by yt+1 = Ayt + b. Here
A = (aij) is a matrix of input/output elasticities across sectors, and yt is a 6× 1 vector
recording output in agriculture, mining, construction, manufacturing, transportation
and services. Using cost share data and the hypothesis of perfect competition, the
authors calculate A to be given by

A = (aij) =



0.45 0.00 0.01 0.21 0.10 0.16
0.00 0.09 0.04 0.17 0.05 0.49
0.00 0.01 0.00 0.42 0.12 0.09
0.06 0.03 0.01 0.46 0.06 0.13
0.00 0.00 0.02 0.12 0.10 0.32
0.02 0.02 0.06 0.20 0.09 0.38


Exercise 4.13 Prove that Long and Plosser’s system is stable in the following way: Let
A = (aij) be an n × n matrix where the sum of any of the rows of A is strictly less
than 1 (i.e., maxi αi < 1, where αi := ∑j |aij|). Using the norm ‖ · ‖∞ in (4.2), show that
for A we have λ < 1. Now argue that in Long and Plosser’s model, (yt) converges
to a limit y∗, which is independent of initial output y0, and, moreover, is the unique
solution to the equation y∗ = Ay∗ + b.3

Exercise 4.14 Let B = (bij) be an n × n matrix where the sum of any of the columns of
B is strictly less than 1 (i.e., maxj β j < 1, where β j := ∑i |bij|). Using the norm ‖ · ‖1 in
(4.2), show that for B we have λ < 1. Conclude that if h(x) = Bx + b, then (Rn, h) is
globally stable.

The following results will be needed later in the text:

Exercise 4.15 Suppose that h is uniformly contracting on complete space S, so (S, h)
is globally stable. Prove that if A ⊂ S is nonempty, closed and invariant under h (i.e.,
h(A) ⊂ A), then the fixed point of h lies in A.

Lemma 4.1.5 Let (S, h) be a dynamical system. If h is nonexpansive and (S, hN) is globally
stable for some N ∈ N, then (S, h) is globally stable.

Proof. By hypothesis, hN has a unique fixed point x∗ in S, and hkN(x) → x∗ as k → ∞
for all x ∈ S. Pick any ϵ > 0, and choose k ∈ N so that ρ(hkN(h(x∗)), x∗) < ϵ. Then

ρ(h(x∗), x∗) = ρ(h(hkN(x∗)), x∗) = ρ(hkN(h(x∗)), x∗) < ϵ

3You are proving d∞-convergence of trajectories, but this is equivalent to d2-convergence by theo-
rem 3.2.14.
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It follows that x∗ is a fixed point of h. (Why?)
Stability: Fix x ∈ S and ϵ > 0. Choose k ∈ N so that ρ(hkN(x), x∗) < ϵ. Then

nonexpansiveness implies that, for each n ≥ kN,

ρ(hn(x), x∗) = ρ(hn−kN(hkN(x)), x∗) ≤ ρ(hkN(x), x∗) < ϵ

In other words, (S, h) is globally stable.

4.1.3 Chaotic Dynamic Systems

In this section we make a brief foray into chaotic (or complex) dynamical systems.
Chaotic dynamics is a field that initially benefited and then suffered from excessive
hype. Nonetheless, it retains great practical significance in various branches of sci-
ence.

To begin, consider first the dynamical system (S, h) defined by

h(x) = 4x(1 − x) (x ∈ S := [0, 1]) (4.3)

The function h is called the quadratic (or logistic) map and is often found in biological
models related to population dynamics. Readers can check that h maps S into itself.

In the previous section we defined global stability. For these systems all trajectories
converge to a single point, so long series will have an average value close to that point.
Other systems can have several attractors, so the point where the trajectory settles
down to depends on the initial condition. We will see that for (4.3) dynamics are still
more complicated.

Figure 4.5 shows one trajectory starting at initial condition 0.11. Code used to
generate the figure can be found in the Jupyter code book.

Notice that in figure 4.5 the trajectory continues to traverse through the space with-
out settling down. Some experimentation shows that this happens for many initial
conditions (but not all—does the map have any fixed points?). Moreover a slight
variation in the initial condition typically leads to a time series that bears no clear
resemblance to the previous one.

Science and mathematics are all about simplification and reduction. For example,
with a globally stable system we can usually focus our attention on the steady state.
(How does this state fit with the data?) From this perspective figure 4.5 is a little
distressing. Unless the initial conditions are very special and can be known exactly, it
seems that long run outcomes cannot be predicted.4 However, this conclusion is too
pessimistic, as the next exercise illustrates.

4Which is problematic for a scientific study—what falsifiable implications can be drawn from these
models?
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Figure 4.5 Trajectory of the quadratic map

Exercise 4.16 Using your preferred plotting tool, histogram some trajectories gener-
ated by the quadratic map, starting at different initial conditions. Use relatively long
trajectories (e.g., around 5,000 points), and a fine histogram (about 40 bins). What
regularities can you observe?

Incidentally, the time series in figure 4.5 looks quite random, and in exercise 4.16
we treated the trajectory in a “statistical” way, by computing its histogram. Is there in
fact any formal difference between this kind of complex dynamics and the dynamics
produced in systems perturbed by random variables?

One answer was proposed by Kolmogorov, who suggested measuring the “ran-
domness” of a string of numbers by the size of the shortest computer program that can
replicate it.5 The upper bound of this measure is the size of the string itself because, if
necessary, one can simply enumerate the string. This upper bound is associated with
complete randomness. On the other hand, our code used to produce the time series
for the quadratic map was only a few lines, and therefore has a low Kolmogorov score.
In this sense we can differentiate it from a random string.

How does the quadratic map behave when we let the multiplicative parameter
take values other than 4? Consider the more general map x 7→ rx(1 − x), where
0 ≤ r ≤ 4. A subset of these maps is plotted in figure 4.6, along with a 45 degree line.
More curvature corresponds to greater r. It turns out that for some values of r this
system is globally stable. For others, like 4, the behavior is highly complex.

5Put differently, by how much can we compress such a string of numbers?
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Figure 4.6 Quadratic maps, r ∈ [0, 4]

The bifurcation diagram shown in figure 4.7 helps to give an understanding of the
dynamics. On the x-axis the parameter r ranges from 2.7 to 4. The y-axis corresponds
to the state space S. For each value r in a grid over [2.7, 4], a trajectory of length
1000 was generated. The first 950 points were discarded, and the last 50 were plotted.
For r ≤ 3, interior points converge to a unique interior steady state. For r ∈ (3, 1 +√

6], the state eventually oscillates between two “periodic attractors.” From there
the number of periodic attractors increases rapidly, and the behavior of the system
becomes correspondingly more “chaotic.”

Exercise 4.17 Reproduce figure 4.7 using your preferred computing environment.

4.1.4 Equivalent Dynamics and Linearization

In general, nonlinear models are much more difficult to analyze than linear models,
leading researchers to approximate nonlinear models with linearized versions. The
latter are usually obtained by a first-order Taylor expansion. Since fixed points are the
natural focus of analysis, it is standard to take expansions around fixed points.

Let us see how this is done in the one-dimensional case. Let (S, h) be a dynamical
system where S is an open subset of R, and h is continuously differentiable, with
derivative h′ on S. Pick any a ∈ S. The first-order Taylor expansion around a is the
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Figure 4.7 Bifurcation diagram

map h1 defined by
h1(x) = h(a) + h′(a)(x − a) (4.4)

Notice that h1 is an affine function on R with h(a) = h1(a). Clearly, h1 approximates
h in some sense when |x − a| is small. For this reason it is regarded as a “linear”
approximation to h around a.

Now let x∗ be a fixed point of h, so

h1(x) = x∗ + h′(x∗)(x − x∗) (4.5)

You can check that x∗ is also a fixed point of the approximating map h1. Note also that
x∗ will be stable for h1 whenever |h′(x∗)| < 1. But this is precisely the condition for
x∗ to be a local attractor for h (lemma 4.1.3). So it seems that we can learn something
about how ht(x) will behave when |x − x∗| is small by studying the simple affine map
h1 and the trajectory ht

1(x) that it generates.
The well-known Hartman–Grobman theorem formalizes this idea. To state the

theorem, it is necessary to introduce the abstract but valuable notion of topological
conjugacy. First, let S and Ŝ be two metric spaces. A function τ from S to Ŝ is called
a homeomorphism if it is continuous, a bijection, and its inverse τ−1 is also continuous.
Two dynamical systems (S, g) and (Ŝ, ĝ) are said to be topologically conjugate if there
exists a homeomorphism τ from S into Ŝ such that g and ĝ commute with τ in the
sense that ĝ = τ ◦ g ◦ τ−1 everywhere on Ŝ. In other words, shifting a point x̂ ∈ Ŝ to
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ĝ(x̂) using the map ĝ is equivalent to moving x̂ into S with τ−1, applying g, and then
moving the result back using τ:

x
g−−−−→ g(x)xτ−1

yτ

x̂
ĝ−−−−→ ĝ(x̂)

Exercise 4.18 Let S := ((0, ∞), | · |) and Ŝ := (R, | · |). Let g(x) = Axα, where A > 0
and α ∈ R, and let ĝ(x̂) = ln A + αx̂. Show that g and ĝ are topologically conjugate
under τ := ln.

Exercise 4.19 Show that if (S, g) and (Ŝ, ĝ) are topologically conjugate, then x ∈ S is
a fixed point of g on S if and only if τ(x) ∈ Ŝ is a fixed point of ĝ on Ŝ.

Exercise 4.20 Let x∗ ∈ S be a fixed point of g and let x be any point in S. Show, in
addition, that limt→∞ gt(x) = x∗ if and only if limt→∞ ĝt(τ(x)) = τ(x∗).

Exercise 4.21 Let x∗ ∈ S be a fixed point of g. Show that if x∗ is a local attractor for
(S, g), then τ(x∗) is a local attractor for (Ŝ, ĝ). Show that if (S, g) is globally stable,
then (Ŝ, ĝ) is globally stable.

We can now state the theorem of Hartman and Grobman. In the statement of the
theorem, S is an open subset of R and h : S → S. In this setting, h is called a C1-
diffeomorphism if both h and its inverse h−1 are continuously differentiable on S. A
fixed point x∗ of h in S is called hyperbolic if |h′(x∗)| 6= 1.

Theorem 4.1.6 (Hartman–Grobman) Let h be a diffeomorphism, let x∗ ∈ S be a fixed point
of h in S, and let h1 be the Taylor approximation in (4.5). If x∗ is hyperbolic, then there exists
an open set G containing x∗ such that h and h1 are topologically conjugate on G.6

Be careful when applying this theorem, which is one of the most misused math-
ematical results in all of economics. It provides only a neighborhood of S such that
behavior of the approximation is qualitatively similar to that of the original system. As
it stands, the Hartman–Grobman theorem provides no basis for quantitative analysis.7

6To see why |h′(x∗)| 6= 1 is important, consider the case of h(x) = arctan(x).
7For a discussion of some of the problems associated with applying linearization to quantitative models

with significant nonlinearities, see, for example, Boneva et al. (2016) or Pohl et al. (2018).
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4.2 Finite State Markov Chains

Next we start our journey into the world of stochastic dynamics. We begin with finite
state Markov chains, which were mentioned briefly in chapter 1. Finite state Markov
chains are employed routinely in almost every field of science and form a core part of
quantitative modeling in economics, finance and operations research. Our treatment
of finite state stochastic dynamics is also geared toward building intuition, notation
and tools that will be used in the general state case.

4.2.1 Definition

Let S = {x1, . . . , xN}. A typical element of S is usually denoted by x, rather than
a symbol such as xi or xn, in order to make our notation more consistent with the
continuous state theory developed below. The set S will be called the state space. The
set of distributions on S will be denoted P(S), and consists of all functions ϕ : S → R

with ϕ(x) ≥ 0 for all x ∈ S, and ∑x∈S ϕ(x) = 1. In general, ϕ(x) will correspond to
the probability attached to the point x in the state space under some given scenario.8

A quick digression: Although ϕ has been introduced as a function from S to R,
one can also think of it as a vector under the one-to-one correspondence

P(S) 3 ϕ ↔ (ϕ(x))x∈S := (ϕ(x1), . . . , ϕ(xN)) ∈ RN (4.6)

Under the correspondence (4.6), the collection of functions P(S) becomes a subset of
the vector spaceRN—in particular, the elements ofRN that are nonnegative and sum
to one. This set is called the unit simplex, and is illustrated for the case of N = 3 in
figure 4.8.

The basic primitive for a discrete time Markov process on S is a stochastic kernel,
the definition of which is as follows.

Definition 4.2.1 A stochastic kernel p is a function from S × S into [0, 1] such that

1. p(x, y) ≥ 0 for each (x, y) in S × S, and

2. ∑y∈S p(x, y) = 1 for each x ∈ S.

In other words, the function S 3 y 7→ p(x, y) ∈ R is an element of P(S) for all x ∈ S.
This distribution is represented by the symbol p(x, dy) in what follows.

As well as being a function, the distribution p(x, dy) can be viewed as a row9

vector (p(x, x1), . . . , p(x, xN)) in RN , located in the unit simplex, and these rows can

8What we call a distribution here is also referred to as a probability mass function.
9When treating distributions as vectors it is traditional in the Markov chain literature to regard them as

row vectors.
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Figure 4.8 The unit simplex with N = 3

be stacked horizontally to produce an N × N matrix with the property that each row
is nonnegative and sums to one:

p =

 p(x1, dy)
...

p(xN , dy)

 =

 p(x1, x1) · · · p(x1, xN)
...

...
p(xN , x1) · · · p(xN , xN)

 (4.7)

Conversely, any square N × N matrix that is nonnegative and has all rows summing
to one defines a stochastic kernel. However, when we move on to infinite state spaces
there is no concept of matrices, and hence most of the theory is stated in terms of
kernels.

In this chapter we are going to study a sequence of random variables (Xt)t≥0,
where each Xt takes values in S. The sequence updates according to the following
rule: If Xt = x, then, in the following period Xt+1 takes the value y with probability
p(x, y). In other words, once the current state Xt is realized, the probabilities for Xt+1
are given by p(Xt, dy). Figure 4.9 depicts an example of a simple Markov system,
where S = {x1, x2, x3}, and p(xi, xj) is the probability that Xt moves from state xi at
time t to xj at time t + 1.

The transition probabilities at each time depend on nothing other than the cur-
rent location of the state. This is the “Markov” assumption. Moreover the transition
probabilities do not depend on time. This is called time homogeneity. While these as-
sumptions might seem strict, it turns out that, with some manipulation, a large class of
systems can be embedded in the basic Markov framework. Typically this is achieved
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Figure 4.9 Finite Markov chain

by enlarging the state space until it contains all the information required to update the
state.

A simple example of a stochastic kernel is the one used in Hamilton (2005), who
investigates a nonlinear statistical model of the business cycle based on US unemploy-
ment data. As part of his calculation he estimates the kernel

pH :=

 0.971 0.029 0
0.145 0.778 0.077

0 0.508 0.492

 (4.8)

Here S = {x1, x2, x3} = {NG, MR, SR}, where NG corresponds to normal growth,
MR to mild recession, and SR to severe recession. For example, the probability of
transitioning from severe recession to mild recession in one period is 0.508. The length
of each period is one month.

For another example of a Markov model, consider the growth dynamics study of
Quah (1993), who analyzes the evolution of real GDP per capita relative to the world
average for a “typical” country (e.g., Xt = 2 implies that income per capita for the
country in question is twice the world average at time t). A natural state space is R+,
but to simplify matters Quah discretizes this space into five bins that correspond to
values for relative GDP of 0 to 0.25, 0.25 to 0.5, 0.5 to 1, 1 to 2 and 2 to ∞ respectively.
He then calculates the stochastic kernel by setting p(x, y) equal to the fraction of times
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that a country, finding itself in state x, subsequently makes the transition to state y.10

The result of this calculation is

pQ :=


0.97 0.03 0.00 0.00 0.00
0.05 0.92 0.03 0.00 0.00
0.00 0.04 0.92 0.04 0.00
0.00 0.00 0.04 0.94 0.02
0.00 0.00 0.00 0.01 0.99

 (4.9)

For example, the probability of our typical country transitioning from the lowest bin
to the second lowest bin in one year is 0.03.

Algorithm 4.1: Simulation of a Markov chain

draw X0 ∼ ψ and set t = 0
while True do // "while True" means repeat forever

draw Xt+1 ∼ p(Xt, dy)
set t = t + 1

end

Let us now clarify the definition of a Markov chain (Xt)t≥0 corresponding to a
given stochastic kernel p. It is helpful to imagine that we wish to simulate (Xt)t≥0 on
a computer. First we draw X0 from some predetermined initial condition ψ ∈ P(S).
As p(x, dy) gives the transition probabilities for Xt+1 conditional on Xt = x, we now
draw X1 from p(X0, dy). Taking the result X1, we then draw X2 from p(X1, dy), and
so on. This is the content of algorithm 4.1, as well as the next definition.

Definition 4.2.2 Let ψ ∈ P(S). A sequence of S-valued random variables (Xt)t≥0 is
called Markov-(p, ψ) if

1. at time t = 0, the initial state X0 is drawn from ψ, and

2. at each t ≥ 1, Xt is drawn from p(Xt−1, dy).

If ψ = δx for some x ∈ S, then (Xt)t≥0 is called Markov-(p, x).

4.2.2 From MCs to SRSs

Let’s think carefully about the mechanics of simulating Markov chains. How exactly
should we implement algorithm 4.1 on a computer? Considering this problem leads

10His data span the period 1962 to 1984, and have a sample of 118 countries. The transitions are over a
one year period. The model is assumed to be stationary (transition probabilities do not vary with time), so
all of the transitions (1962 to 1963, 1963 to 1964, etc.) can be pooled when calculating transition probabilities.
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us to investigate the connection between Markov chains generated by stochastic ker-
nels on one hand and stochastic recursive sequences (SRSs, also called stochastic dif-
ference equations) on the other. Stochastic recursive sequences lie at the heart of many
economic models.

A typical SRS has the form

Xt+1 = F(Xt, Wt+1), X0 ∼ ψ ∈ P(S), F : S × Z → S (4.10)

where (Wt)t≥1 is a sequence of IID shocks taking values in arbitrary set Z. The shocks
Wt are to be thought of as functions on a common set Ω, called the probability space.
The system now evolves as follows:

1. At the start of time, nature selects an ω ∈ Ω according to some probability P.

2. The draw ω determines a complete realization of the path (Wt(ω))t≥1.

3. The draw ω also determines X0, with P{ω : X0(ω) = x} = ψ(x).

4. Given (Wt(ω))t≥1 and X0(ω), we construct the time path (Xt(ω))t≥0 via

X1(ω) = F(X0(ω), W1(ω)), X2(ω) = F(X1(ω), W2(ω)), etc.

The idea that all uncertainty is realized at the start of time by a single observation ω
from Ω is a convenient mathematical fiction. It does, however, have an close analogy
with what happens on a machine when we run a simulation. In particular, a sequence
of “random” numbers produced by a computer is in fact only pseudorandom, meaning
that the sequence is produced deterministically, according to a particular rule and
initialized by a particular seed, while at the same time mimicking the properties of
independent draws.

From this perspective, you can think of ω as the seed that is fixed at the beginning
of our simulation, which then determines the whole path via steps 1–4 above.

The SRS (4.10) induces a stochastic kernel p on S by

p(x, y) = P{F(x, Wt) = y} := P{ω ∈ Ω : F(x, Wt(ω)) = y}

We now show it is possible to go the other way, representing any Markov-(p, ψ) pro-
cess by an SRS such as (4.10). One we have the SRS representation, we will have
another way to view Markov chains, which is helpful for concepts and theory, as well
as a natural way to simulate paths from a given kernel.

To this end, let p be a stochastic kernel on S and fix ψ ∈ P(S). To generate a
Markov-(p, ψ) chain, we take (Wt)t≥0 to be IID uniform on (0, 1] and let

X0 = τ(W0; ψ), Xt+1 = τ(Wt+1; p(Xt, dy)) (4.11)
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Figure 4.10 Simulation of the Hamilton Markov chain

where τ is the function discussed at length in §2.2.1. The second equality can be
rewritten as

Xt+1 = F(Xt, Wt+1) where F(x, z) := τ(z; p(x, dy)) (4.12)

The discussion of the inverse transform method in §2.2.1 tells is that, since W is uni-
form on (0, 1], the random variable F(x, W) has distribution p(x, dy). As a result, the
sequence (Xt)t≥0 generated by (4.11) and (4.12) obeys X0 ∼ ψ and Xt+1 ∼ p(Xt, dy)
for t ≥ 0. In other words, (Xt)t≥0 is a Markov-(p, ψ) chain.

Exercise 4.22 Using an implementation of the function τ from §2.2.1, or your own
version of the inverse transform method in your preferred language, combined with
the SRS formulation in (4.11), simulate and plot a time series from Hamilton’s Markov
chain. You can identify the state space S = {NG, MR, SR} with the integers {0, 1, 2}.

The Jupyter code book contains multiple solutions to exercise 4.22. One is coded
to replicate the mathematical description as closely as possible. Another uses existing
(and highly efficient) code from the QuantEcon library. Figure 4.10 shows one time
series generated in this exercise.

Incidentally, SRSs are sometimes referred to as iterated function systems (IFSs). In
this framework one thinks of updating the state from Xt to Xt+1 by the random function
FWt+1 := F(·, Wt+1). In practice the only change is a notational one: Xt+1 = FWt+1(Xt)
as compared to (4.10). The main advantage is that we can now write

Xt = FWt ◦ FWt−1 ◦ · · · ◦ FW1(X0) = FWt ◦ FWt−1 ◦ · · · ◦ FW1(τ(W0; ψ))
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We see more clearly that Xt is just a fixed function of the initial condition and shocks
up to time t.

4.2.3 Marginal Distributions

Let (Xt)t≥0 be Markov-(p, ψ). For every t ∈ N, let ψt ∈ P(S) denote the distribution
of Xt. That is, ψt(y) is the probability that Xt = y, given that X0 is drawn from
initial distribution ψ, and that the chain subsequently follows Xt+1 ∼ p(Xt, dy). This
distribution is sometimes called the marginal or unconditional distribution of Xt. We
can understand it as follows: Generate n independent realizations of Xt, and calculate
the fraction that takes the value y. Call this number ψn

t (y). The probability ψt(y) can
be thought of as the limit of ψn

t (y) as n → ∞.
A method for computing the fraction ψn

t (y) is given in algorithm 4.2. In the algo-
rithm, the instruction draw X ∼ p(X, dy) should be interpreted as: Draw a random
variable Y according to the distribution p(X, dy) and then set X = Y. Also, 1{Xi

t = y}
is an indicator function, equal to one when Xi

t = y and zero otherwise.

Algorithm 4.2: Approximate marginal distribution

for i in 1 to n do
draw X ∼ ψ

for j in 1 to t do
draw X ∼ p(X, dy)

end
set Xi

t = X
end
return (1/n)∑n

i=1 1{Xi
t = y}

Exercise 4.23 Implement algorithm 4.2 for Hamilton’s Markov chain. You can identify
the state space S = {NG, MR, SR} with the integers {0, 1, 2}. Set ψ = (0, 0, 1), so the
economy starts in severe recession with probability one. Compute an approximation
to ψt(y), where t = 10 and y = 0. For sufficiently large n you should get an answer
close to 0.6.

Exercise 4.24 Rewrite algorithm 4.2 using a counter that increments by one whenever
the output of the inner loop produces a value equal to y instead of recording the value
of each Xi

t.

Now consider again a Markov-(p, ψ) chain (Xt)t≥0 for arbitrary stochastic kernel
p and initial condition ψ. As above, let ψt ∈ P(S) be the marginal distribution of Xt.
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From ψt and our complete description of the dynamics in p, it seems possible that we
will be able to calculate the distribution of Xt+1. That is to say, we might be able to
link ψt and ψt+1 using p. That we can in fact construct such a recursion is one of the
most fundamental and important properties of Markov chains.

To begin, pick any y ∈ S. Using the law of total probability (see §A.1.3), we can
decompose the probability that Xt+1 = y into conditional parts as follows:

P{Xt+1 = y} = ∑
x∈S
P{Xt+1 = y | Xt = x} ·P{Xt = x}

Rewriting this statement in terms of our marginal and conditional probabilities gives

ψt+1(y) = ∑
x∈S

p(x, y)ψt(x) (y ∈ S) (4.13)

This is precisely the kind of recursion we are looking for. Let’s introduce some addi-
tional notation to help manipulate this expression.

Definition 4.2.3 Given stochastic kernel p, the Markov operator corresponding to p is
the map M sending P(S) 3 ψ 7→ ψM ∈ P(S), where ψM is defined by

ψM(y) = ∑
x∈S

p(x, y)ψ(x) (y ∈ S) (4.14)

The notation appears unusual, in the sense that we normally write M(ψ) instead of
ψM for the image of ψ under a mapping M. However, such notation is traditional in
the Markov literature. It reminds us that applying the Markov operator to a distribu-
tion ψ ∈ P(S) is just postmultiplication of the row vector (ψ(x))x∈S by the stochastic
kernel (viewed as a matrix).

Combining (4.13) and (4.14), we obtain the fundamental recursion

ψt+1 = ψtM (4.15)

Check this carefully until you feel comfortable with the notation.
This representation (4.15) is easy to manipulate. For example, suppose that we

want to calculate ψj+k from ψj. Clearly,

ψj+k = ψj+k−1M = (ψj+k−2M)M = ψj+k−2M2 = · · · = ψjMk

where Mm is the m-th composition of the map M with itself. In particular, setting j = 0
and k = t, we have Xt ∼ ψMt when X0 ∼ ψ. Let’s state these results as a theorem:

Theorem 4.2.4 Let (Xt)t≥0 be Markov-(p, ψ), and let M be the Markov operator correspond-
ing to p. If ψt is the marginal distribution of Xt for each t, then ψt+1 = ψtM and ψt = ψMt.
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Figure 4.11 Top: X0 = 0. Bottom: X0 = 4

To illustrate these ideas, consider again the kernel pQ calculated by Danny Quah,
and let MQ be the Markov operator. The states are enumerated as S = {0, 1, 2, 3, 4}.
We can evaluate probabilities of different outcomes for a given country over time by
iteratively applying MQ to an initial condition ψ, generating the sequence (ψMt

Q).
Figure 4.11 shows the elements ψM10

Q , ψM60
Q , and ψM160

Q of this sequence. In the top
graph, the country in question is initially in the poorest group, so ψ = (1, 0, 0, 0, 0).
The bottom graph shows the corresponding elements when the initial condition is
reset to ψ = (0, 0, 0, 1, 0).

4.2.4 Other Identities

Let’s think a bit more about the iterates of the Markov operator M. To begin, fix a
kernel p with Markov operator M and define the t-th order kernel pt by

p1 := p, pt(x, y) := ∑
z∈S

pt−1(x, z)p(z, y) ((x, y) ∈ S × S, t ∈ N)

Exercise 4.25 Show that pt is in fact a stochastic kernel on S for each t ∈ N.

Exercise 4.26 Let t ∈ N. Show that if p is interpreted as the matrix in (4.7), then
pt(x, y) is the (x, y)-th element of its t-th power.
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To interpret pt, we can use the following lemma:

Lemma 4.2.5 If M is the Markov operator defined by stochastic kernel p on S, then its t-th
iterate Mt is the Markov operator defined by pt, the t-th order kernel of p. In other words, for
any ψ ∈ P(S) we have

ψMt(y) = ∑
x∈S

pt(x, y)ψ(x) (y ∈ S)

We prove only the case t = 2 here, and leave the full proof for the reader. (Hint:
Use induction.) Pick any ψ ∈ P(S) and any y in S. Then

ψM2(y) = ((ψM)M)(y) = ∑
z∈S

p(z, y)ψM(z)

= ∑
z∈S

p(z, y) ∑
x∈S

p(x, z)ψ(x)

= ∑
x∈S

∑
z∈S

p(x, z)p(z, y)ψ(x) = ∑
x∈S

p2(x, y)ψ(x)

Now let δx ∈ P(S) be the distribution that puts all mass on x ∈ S (i.e., δx(y) = 1 if
y = x and zero otherwise). Applying lemma 4.2.5 with ψ = δx, we obtain δxMt(y) =
pt(x, y) for all y ∈ S. In other words, the distribution pt(x, dy) is precisely δxMt,
which we know is the distribution of Xt when X0 = x. More generally, pk(x, y) is the
probability that the state moves from x now to y in k steps:

pk(x, y) = P{Xt+k = y | Xt = x} (x, y ∈ S, k ∈ N)

and pk(x, dy) is the conditional distribution of Xt+k given Xt = x.

Exercise 4.27 Confirm the Chapman–Kolmogorov equation, which states that for any
j, k ∈ N,

pj+k(x, y) = ∑
z∈S

pj(x, z)pk(z, y) ((x, y) ∈ S × S)

Now let’s introduce another operation for the Markov operator M. So far we have
M acting on distributions to the left, as in ψM(y) = ∑x p(x, y)ψ(x). We also let M act
on functions to the right, as in

Mh(x) = ∑
y∈S

p(x, y)h(y) (x ∈ S) (4.16)

where h : S → R is any function. Thus M takes a given function h on S and sends it
into a new function Mh on S. In terms of matrix algebra, this is pre-multiplication of
the column vector (h(y))y∈S by the matrix (4.7).
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To understand (4.16), recall that if Y is a random variable on S with distribution
ϕ ∈ P(S) (i.e., P{Y = y} = ϕ(y) for all y ∈ S) and h is a real-valued function on
S, then the expectation Eh(Y) of h(Y) is the sum of all values h(y) weighted by the
probabilities P{Y = y}:

Eh(Y) := ∑
y∈S

h(y)P{Y = y} = ∑
y∈S

ϕ(y)h(y)

In terms of vectors we are just computing inner products.
It is now clear that Mh(x) = ∑y∈S p(x, y)h(y) should be interpreted as the expec-

tation of h(Xt+1) given Xt = x. Analogous to the result in lemma 4.2.5, we have

Mth(x) = ∑
y∈S

pt(x, y)h(y) (x ∈ S, t ∈ N) (4.17)

Since pt(x, dy) is the distribution of Xt given X0 = x, it follows that Mth(x) is the
expectation of h(Xt) given X0 = x.

Exercise 4.28 Confirm the claim in (4.17).

Now the finishing touches. Fix an initial condition ψ ∈ P(S), a function h as
above and a k ∈ N. Define

ψMkh := ∑
y∈S

∑
x∈S

pk(x, y)ψ(x)h(y) (4.18)

In terms of linear algebra, this expression can be thought of as the inner product of
ψMk and h. Since ψMk is the distribution of Xt+k when Xt ∼ ψ, (4.18) gives us the
expectation of h(Xt+k) given Xt ∼ ψ. In symbols,

ψMkh = E[h(Xt+k) | Xt ∼ ψ] (4.19)

Exercise 4.29 Suppose that the business cycle evolves according to Hamilton’s kernel
pH on S = {NG, MR, SR}, and that a firm makes profits {1000, 0,−1000} in these
three states. Compute expected profits at t = 5, given that the economy starts in NG.
How much do profits change when the economy starts in SR?

Exercise 4.30 Compute expected profits at t = 1000 for each of the three possible
initial states. What do you notice?

Exercise 4.31 Suppose now that the initial state will be drawn according to ψ =
(0.2, 0.2, 0.6). Compute expected profits at t = 5 using (4.19).
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4.2.5 Constructing Joint Distributions

Let’s now consider the joint distributions of a Markov-(p, ψ) process (Xt)t≥0. We
would like to understand more about probabilities not just for individual elements of
the sequence such as Xt, but rather for a collection of elements. For example, how do
we compute the probability that (Xt, Xt+1) = (x, y), or that Xj ≤ x for j ≤ t?

Consider first the pair (X0, X1), which can be thought of as a single bivariate ran-
dom variable taking values in S2 := S × S. Thus the joint distribution is an element of
P(S2). A typical element of S2 is a pair (x0, x1), where xi ∈ S.11 We wish to find the
probability P{X0 = x0, X1 = x1}.

To begin, pick any (x0, x1) ∈ S2, and let

q2(x0, x1) := P{X0 = x0, X1 = x1} = P{X0 = x0} ∩ {X1 = x1}

From (A.2) on page 327, for any events A and B we have P(A ∩ B) = P(A)P(B | A).
It follows that

q2(x0, x1) = P{X0 = x0}P{X1 = x1 | X0 = x0} = ψ(x0)p(x0, x1)

Similarly, the distribution q3 ∈ P(S3) of (X0, X1, X2) is

q3(x0, x1, x2) = P{X0 = x0, X1 = x1, X2 = x2}
= P{X0 = x0, X1 = x1}P{X2 = x2 | X0 = x0, X1 = x1}
= ψ(x0)p(x0, x1)p(x1, x2)

Notice that we are using P{X2 = x2 | X0 = x0, X1 = x1} = p(x1, x2). This is reason-
able because, if X1 = x1, then X2 ∼ p(x1, dy).

Continuing along the same lines yields the general expression

qT+1(x0, . . . , xT) = ψ(x0)
T−1

∏
t=0

p(xt, xt+1) (4.20)

To evaluate (4.20) we can use the function given in algorithm 4.3.

Exercise 4.32 Show that for Hamilton’s kernel pH and ψ = (0.2, 0.2, 0.6), the proba-
bility of path (NG, MR, NG) is 0.000841.

A solution to this and other computational exercises below can be found in the
Jupyter code book.

11A word on notation: Superscripts represent time, so x0 ∈ S is a typical realization of X0, x1 ∈ S is a
typical realization of X1, and so on.
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Algorithm 4.3: A function to compute the probability of path (x0, x1, . . . , xT)

Data: a stochastic kernel p and initial distribution ψ on S
Function q(x0, x1, . . . , xT)

set s = ψ(x0)
for t in 0, . . . , T − 1 do

set s = s · p(xt, xt+1)
end
return s

From our expression for qT+1 in (4.20) we can also compute the probabilities of
more complex events. By an event is meant any subset B of ST+1. For example,

B := {(x0, . . . , xT) ∈ ST+1 : xt ≤ xt+1 for t = 0, . . . , T − 1}

is an event. It consists of all paths (x0, . . . , xT) in ST+1 that are increasing (i.e., nonde-
creasing). To obtain the probability of any such event B we just sum qT+1(x0, . . . , xT)
over all distinct paths in B.

One important special case is events of the form

D0 × · · · × DT = {(x0, . . . , xT) ∈ ST+1 : xt ∈ Dt for t = 0, . . . , T}

where Dt ⊂ S for each t. ThenP{(X0, . . . , XT) ∈ D0 ×· · ·×DT} = P∩t≤T {Xt ∈ Dt},
and for this kind of event the following lemma applies:

Lemma 4.2.6 If D0, . . . , DT is any collection of subsets of S, then

P∩t≤T {Xt ∈ Dt} = ∑
x0∈D0

ψ(x0) ∑
x1∈D1

p(x0, x1) · · · ∑
xT∈DT

p(xT−1, xT)

Proof. For any such sets Dt, the probability P ∩t≤T {Xt ∈ Dt} can be computed by
summing over distinct paths:

P∩t≤T {Xt ∈ Dt} = ∑
(x0,...,xT)∈D0×···×DT

qT+1(x0, . . . , xT)

= ∑
x0∈D0

· · · ∑
xT∈DT

qT+1(x0, . . . , xT)

The last step now follows from the expression for qT+1 in (4.20).

Exercise 4.33 Returning to Hamilton’s kernel pH , and using the same initial condition
ψ = (0.2, 0.2, 0.6) as in exercise 4.32, compute the probability that the economy starts
and remains in recession through periods 0, 1, 2.

Another way to compute this probability is via Monte Carlo:
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Exercise 4.34 Generate 10,000 observations of (X0, X1, X2), starting at the same initial
condition ψ = (0.2, 0.2, 0.6). Count the number of paths that do not enter state NG
and divide by 10,000 to get the fraction of paths that remain in recession. This fraction
converges to the probability of the event, so you should get approximately the same
number as you found in exercise 4.33.

Now let’s think a little bit about computing expectations. Recall the firm in exer-
cise 4.29. If the firm operates up until period T, and if the interest rate is equal to r,
then the net present value (NPV) of the firm is the expected sum of discounted profits

EΠ(X0, . . . , XT) where Π(X0, . . . , XT) :=
T

∑
t=0

ρth(Xt)

and ρ := 1/(1 + r). Expectations for finite state spaces are found by summing values
weighted by probabilities. In this case,

EΠ(X0, . . . , XT) = ∑ Π(x0, . . . , xT)qT+1(x0, . . . , xT) =: ∑ Π(x)qT+1(x)

where the sum is over all x ∈ ST+1.
For large T and S this kind of computation is problematic. For example, if S has

ten elements and T = 100, then we must sum Π(x)qT+1(x) over 10100 paths.

Exercise 4.35 If the computer can evaluate one billion (109) paths per second, how
may years will it take to evaluate all of the paths? Compare this with current estimates
of the age of the universe.

Fortunately, the computational problem can be greatly simplified in this particular
case by linearity of expectations, which gives

EΠ = E

[
T

∑
t=0

ρth(Xt)

]
=

T

∑
t=0

ρtEh(Xt) =
T

∑
t=0

ρtψMth

The second equality (linearity of E) can be proved from the definition of the joint dis-
tribution, but we treat it in much greater generality below. The third equality follows
from (4.19) on page 83.

Exercise 4.36 Compute NPV when r = 0.05. Take the same initial condition as in
exercise 4.32. Plot expected profits against T. For what values of T will the firm’s
expected profits be positive?

4.3 Stability of Finite State MCs

In chapter 1 we investigated a Markovian model where the distribution for log income
converges to a unique distribution N(µ∗, v∗), independent of initial conditions. This
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Figure 4.12 Top: X0 = 1. Bottom: X0 = 4

behavior means that knowledge of the limiting distribution gives us a great deal of
predictive power in terms of likelihoods for long-run outcomes. In fact stability also
gives us a number of statistical properties that are central to time series econometrics.
As a result, we are motivated to study when one does observe stability, beginning
with the case of finite state Markov chains.

To start the ball rolling, consider again the sequences of distributions in figure 4.11
(page 81). What happens if we extend the time horizon? In other words, what sort of
limiting properties, if any, do these sequences possess? Figure 4.12 repeats the same
distribution projections, but this time for dates t = 160, t = 500, and t = 1, 000.
Looking at the top graph for starters, note that after about t = 500 there seems to be
very little change in ψt. In other words, it appears that the sequence (ψt) is converging.
Interestingly, the sequence in the bottom graph seems to be converging to the same
limit.

Perhaps we are again observing a form of global stability? It turns out that we are,
but to show this we must first define stability for Markov chains and derive theorems
that allow us to establish this property.

4.3.1 Stationary Distributions

Recall that a dynamical system (U, h) consists of a metric space U and a map h : U →
U. Recall also the definition of the Markov operator M corresponding to a given
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stochastic kernel p: Given ψ ∈ P(S), the operator M is a map sending ψ into ψM,
where ψM(y) = ∑x∈S p(x, y)ψ(x) for each y ∈ S. What we are going to do now is
view (P(S), M) as a dynamical system in its own right (recalling that trajectories of
the form (ψMt)t≥0 correspond to the sequence of marginal distributions for a Markov-
(p, ψ) process (Xt)t≥0; see page 80). To do this, we need to introduce a metric on P(S),
and also establish that M does indeed send P(S) into itself.

Exercise 4.37 Confirm that ψM ∈ P(S) whenever ψ ∈ P(S).

To set P(S) up as a metric space, we define

‖ψ‖1 := ∑
x∈S

|ψ(x)| for each ψ ∈ P(S), and d1(ψ, ψ′) := ‖ψ − ψ′‖1

If one views P(S) as the unit simplex in RN rather than as a space of functions (see
the correspondence (4.6) on page 73), then our norm and distance are just the regular
‖ · ‖1 norm (see page 41) and d1 distance onRN . Viewed in this way, P(S) is a closed
and bounded subset of (RN , d1), and therefore both compact and complete.12

The next exercise introduces another way to view the distance imposed by d1.

Exercise 4.38 Let ψ1, ψ2 ∈ P(S), and for each A ⊂ S let Ψi(A) := ∑x∈A ψi(x) = the
probability of A ⊂ S under distribution ψi. Let s(ψ1, ψ2) = supA⊂S |Ψ1(A)− Ψ2(A)|.
Show that

1. the supremum is achieved by D = {x ∈ S : ψ1(x) ≥ ψ2(x)} and

2. the norm ‖ · ‖1 and s are connected by ‖ψ1 − ψ2‖1 = 2s(ψ1, ψ2).

To illustrate the dynamical system (P(S), M) and its trajectories, consider Hamil-
ton’s kernel pH and the corresponding operator MH . Here P(S) can be visualized as
the unit simplex in R3. Figure 4.13 shows four trajectories (ψMt

H) generated by iter-
ating MH on four different initial conditions ψ. All trajectories converge toward the
bottom right-hand corner. Indeed, we will prove below that (P(S), MH) is globally
stable.
Exercise 4.39 Let M be the Markov operator determined by an arbitrary stochastic
kernel p. Show that M is d1-nonexpansive on P(S), in the sense that for any ψ, ψ′ ∈
P(S) we have d1(ψM, ψ′M) ≤ d1(ψ, ψ′).

12Interested readers are invited to supply the details of the argument. The connection between the func-
tion space (P(S), d1) and the unit simplex in (RN , d1) can be made precise using the concept of isomor-
phisms. Metric spaces (S, ρ) and (S′, ρ′) are said to be isometrically isomorphic if there exists a bijection
τ : S → S′ such that ρ(x, y) = ρ′(τ(x), τ(y)) for all x, y ∈ S. In our case, the bijection in question is (4.6)
on page 73. If (S, ρ) and (S′, ρ′) are isometrically isomorphic, then (S, ρ) is complete if and only if (S′, ρ′) is
complete, and compact if and only if (S′, ρ′) is compact.
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Figure 4.13 Trajectories of (P(S), MH)

Let us now turn to the existence of fixed points for the system (P(S), M). For
Markov chains, fixed points are referred to as stationary distributions:

Definition 4.3.1 A distribution ψ∗ ∈ P(S) is called stationary or invariant for M if
ψ∗M = ψ∗. In other words, ψ∗ is a stationary distribution for M if it is a fixed point of
the dynamical system (P(S), M).

If ψ∗ is stationary for M, if M corresponds to kernel p, if (Xt)t≥0 is Markov-(p, ψ),
and if Xt has distribution ψ∗ for some t, then Xt+1 has distribution ψt+1 = ψtM =
ψ∗M = ψ∗. In fact iteration shows that Xt+k has distribution ψ∗ for every k ∈ N,
so probabilities are stationary over time. Moreover if (Xt)t≥0 is Markov-(p, ψ∗), then
Xt ∼ ψ∗ for all t, and the random variables (Xt)t≥0 are identically distributed (but not
IID—why?).

On the other hand, stationary distributions are just fixed points of a dynamical
system (P(S), M). This is convenient for analysis because we already know various
techniques for studying fixed points and stability properties of deterministic dynam-
ical systems. For example, suppose that we view P(S) as the unit simplex in RN ,
and ψ 7→ ψM as postmultiplication of vector ψ ∈ RN by the matrix corresponding
to p. This mapping is d1-nonexpansive (recall exercise 4.39), and hence d1-continuous
(exercise 3.44, page 57). The unit simplex is a compact, convex subset of (RN , d1).
(Proof?) Applying Brouwer’s theorem (theorem 3.2.15, page 56) we obtain our first
major result for Markov chains:
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Listing 4.1 (fphamilton.py) Computing stationary distributions

import numpy as np
from numpy. linalg import solve

pH = ((0.971 , 0.029 , 0.000) ,
(0.145 , 0.778 , 0.077) ,
(0.000 , 0.508 , 0.492) )

I = np. identity (3)
Q, b = np.ones ((3, 3)), np.ones ((3, 1))
A = np. transpose (I - pH + Q)
p r i n t (solve(A, b))

Theorem 4.3.2 Every Markov operator defined over a finite state space has at least one sta-
tionary distribution.

There may, of course, be many stationary distributions, just as other dynamical
systems can have many fixed points.

Exercise 4.40 For which kernel p is every ψ ∈ P(S) stationary?

Let’s consider a technique for computing fixed points using matrix inversion. In
terms of linear algebra, row vector ψ ∈ P(S) is stationary if and only if ψ(IN − p) = 0,
where IN is the N × N identity matrix, and p is the matrix in (4.7). One idea would
be to try to invert (IN − p). However, this does not impose the restriction that the
solution ψ is an element of P(S). That restriction can be imposed in the following
way.

Exercise 4.41 Let 1N be the 1× N row vector (1, . . . , 1). Let 1N×N be the N × N matrix
of ones. Show that if ψ is stationary, then

1N = ψ(IN − p + 1N×N) (4.21)

Explain how this imposes the restriction that the elements of ψ sum to 1.

Taking the transpose of (4.21) we get (IN − p + 1N×N)
> ψ> = 1>N . This is a linear

system of the form Ax = b, which can be solved for x = A−1b. (The solution is not
necessarily unique. We return to the issue of uniqueness below.) Listing 4.1 shows
how to do this in Python using NumPy.

Exercise 4.42 Use this technique to solve for the stationary distribution of Quah’s
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kernel pQ.13 Plot it as a bar plot, and compare with the t = 1000 distributions in
figure 4.12.

Exercise 4.43 Recall the firm introduced on page 83. Compute expected profits at
the stationary distribution. Compare it with profits at t = 1000, as computed in exer-
cise 4.30, from a range of initial states. Interpret your results.

4.3.2 The Dobrushin Coefficient

Now let’s consider convergence to the stationary distribution. We continue to im-
pose on P(S) the distance d1 and study the dynamical system (P(S), M). By defini-
tion 4.1.2, the system (P(S), M) is globally stable if

1. it has a unique fixed point (stationary distribution) ψ∗ ∈ P(S), and

2. d1(ψMt, ψ∗) := ‖ψMt − ψ∗‖1 → 0 as t → ∞ for all ψ ∈ P(S).

The second condition implies that if (Xt)t≥0 is Markov-(p, ψ) for some ψ ∈ P(S),
then the distribution of Xt converges to ψ∗.

Exercise 4.44 Exercise 4.40 asked you to provide an example of a kernel where global
stability fails. Another is the “periodic” Markov chain

p =

(
0 1
1 0

)
Show that ψ∗ := (1/2, 1/2) is the unique stationary distribution. Give a counterex-
ample to the claim ‖ψMt − ψ∗‖1 → 0 as t → ∞, ∀ψ ∈ P(S).

How might one check for stability of a given kernel p and associated dynamical
system (P(S), M)? Exercise 4.39 suggests the way forward: M is nonexpansive on
P(S), and if we can upgrade this to a uniform contraction then Banach’s fixed point
theorem (page 57) implies that (P(S), M) is globally stable, and that convergence to
equilibrium takes place at a geometric rate.

Which kernels will we be able to upgrade? Intuitively, stable kernels are those
where current states have little influence on future states. An extreme example is
where the distributions p(x, dy) are all equal: p(x, dy) = q ∈ P(S) for all x ∈ S. In
this case the current state has no influence on tomorrow’s state—indeed, the resulting
process is IID with Xt ∼ q for all t. The Markov operator satisfies ψM = q for all
ψ ∈ P(S) (check it), and (P(S), M) is globally stable.

A less extreme case is when the distributions p(x, dy) are “similar” across x ∈
S. One similarity measure for two distributions p(x, dy) and p(x′, dy) is ∑y p(x, y) ∧

13We prove below that the fixed point is unique.
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p(x′, y), where a ∧ b := min{a, b}. If p(x, dy) = p(x′, dy) then the value is one. If the
supports14 of p(x, dy) and p(x′, dy) are disjoint, then the value is zero. This leads us
to the Dobrushin coefficient, which measures the stability properties of a given kernel
p.

Definition 4.3.3 Given stochastic kernel p, the Dobrushin coefficient α(p) is defined by

α(p) := min

{
∑
y∈S

p(x, y) ∧ p(x′, y) : (x, x′) ∈ S × S

}
(4.22)

Exercise 4.45 Prove that 0 ≤ α(p) ≤ 1 always holds.

Exercise 4.46 Show that α(p) = 1 if and only if p(x, dy) is equal to a constant distri-
bution q ∈ P(S) for every x ∈ S.

Exercise 4.47 Show that α(p) = 0 for the periodic kernel in exercise 4.44, and for p
corresponding to the identity matrix.

Exercise 4.48 Distributions ϕ and ψ are said to overlap if there exists a y such that
ϕ(y) > 0 and ψ(y) > 0. Show that α(p) > 0 if and only if for each pair (x, x′) ∈ S × S
the distributions p(x, dy) and p(x′, dy) overlap.

The following result links the Dobrushin coefficient to stability via Banach’s fixed
point theorem (page 57).

Theorem 4.3.4 If p is a stochastic kernel on S with Markov operator M, then

‖ϕM − ψM‖1 ≤ (1 − α(p))‖ϕ − ψ‖1 ∀ ϕ, ψ ∈ P(S)

Moreover this bound is the best available, in the sense that if λ < 1 − α(p), then there exists
a pair ϕ, ψ in P(S) such that ‖ϕM − ψM‖1 > λ‖ϕ − ψ‖1.

The first half of the theorem says that if α(p) > 0, then M is uniformly contracting
(for the definition see page 57) with modulus 1 − α(p). Since (P(S), d1) is complete,
Banach’s fixed point theorem then implies global stability of (P(S), M). The second
part of the theorem says that this rate 1 − α(p) is the best available, which in turn sug-
gests that the Dobrushin coefficient is a good measure of the stability properties of M.
For example, if α(p) = 0, then we can be certain M is not a uniform contraction.

Some intuition for theorem 4.3.4 and it’s stability implications was discussed above.
The coefficient is large (close to one) when all distributions p(x, dy) are similar across

14The support of ϕ ∈ P(S) is {y ∈ S : ϕ(y) > 0}.
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x, and the current state has little influence on future states. This is the stable case. The
coefficient is zero when there exists states x and x′ such that p(x, dy) and p(x′, dy) have
disjoint support, as with the identity kernel and the periodic kernel. More intuition
on the link between positivity of α(p) and stability is given in the next section.

The proof of theorem 4.3.4 is given in the appendix to this chapter. The fact that
1 − α(p) is the best rate possible may suggest to you that the proof is not entirely
trivial. Indeed this is the case. We have to do better than crude inequalities. All but
the most enthusiastic readers are encouraged to skip the proof and move to the next
section.

4.3.3 Stability

Let p be a stochastic kernel on S. If α(p) > 0, then (P(S), M) is globally stable by
Banach’s fixed point theorem. In fact we can say a bit more. We now present our main
stability result for finite chains, which clarifies the relationship between the Dobrushin
coefficient and stability.

Theorem 4.3.5 Let p be a stochastic kernel on S with Markov operator M. The following
statements are equivalent:

1. The dynamical system (P(S), M) is globally stable.

2. There exists a t ∈ N such that α(pt) > 0.

Another way to phrase the theorem is that (P(S), M) is globally stable if and only
if there is a t ∈ N such that, given any pair of states x, x′, one can find at least one
state y such that pt(x, y) and pt(x′, y) are both positive. Thus, if we run two Markov
chains from any two starting points x and x′, there is a positive probability that the
chains will meet. This is connected with global stability because it rules out the kind of
behavior seen in example 4.1.4 (page 64), where initial conditions determine long-run
outcomes.

Exercise 4.49 Consider the periodic kernel in exercise 4.44. Show that α(pt) = 0 for
every t ∈ N.

Exercise 4.50 Prove that if minx∈S pt(x, ȳ) =: ϵ > 0 for some ȳ ∈ S, then (P(S), M)
is globally stable.

Exercise 4.51 Stokey and Lucas (1989, thm. 11.4) prove that (P(S), M) is globally
stable if there exists a t ∈ N such that ∑y∈S minx∈S pt(x, y) > 0. Show how this result
is implied by theorem 4.3.5.
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Exercise 4.52 Prove theorem 4.3.5 using results from earlier in the text.

Let’s consider how to apply theorem 4.3.5. In view of exercise 4.50, if there exists
a y with p(x, y) > 0 for all x ∈ S, then α(p) > 0 and global stability holds. A case in
point is Hamilton’s kernel (4.8) on page 75, which is globally stable as a result of the
strict positivity of column two.

Next consider Quah’s kernel pQ (page 76). We know from theorem 4.3.2 that at
least one stationary distribution exists, and we calculated a stationary distribution in
exercise 4.42. We should now check that there are not many stationary distributions—
otherwise exhibiting one of them is not very interesting. Also, the stationary distribu-
tion becomes a better predictor of outcomes if we know that all trajectories converge
to it.
Exercise 4.53 Show that the Dobrushin coefficient α(pQ) is zero.

Since α(pQ) = 0, let’s look at the higher order iterates. In his study Quah calculates
the 23rd-order kernel

p23
Q =


0.61 0.27 0.09 0.03 0.00
0.37 0.32 0.20 0.09 0.02
0.14 0.23 0.31 0.25 0.07
0.04 0.11 0.25 0.39 0.22
0.00 0.01 0.04 0.12 0.82

 (4.23)

Exercise 4.54 Show that α(p23
q ) > 0.

Exercise 4.55 As (P(S), MQ) is globally stable, we can iterate MQ on any initial
condition ψ to calculate an approximate fixed point ψ∗. Take ψ = (1, 0, 0, 0, 0) as your
initial condition and iterate until d1(ψMt

Q, ψMt+1
Q ) < 0.0001. Compare your result

with that of exercise 4.42.

Exercise 4.56 Code a function that takes a kernel p as an argument and returns α(p).
Write another function that repeatedly calls the first function to compute the smallest
t ≥ 1 such that α(pt) > 0, and prints that t along with the value α(pt). Include a
maximum value T such that if t reaches T the function terminates with a message that
α(pt) = 0 for all t ≤ T. Now show that the first t such that α(pt

Q) > 0 is 2.

One interesting fact regarding stationary distributions is as follows: Let p be a
kernel such that (P(S), M) is globally stable, and let ψ∗ be the unique stationary
distribution. Let (Xt)t≥0 be Markov-(p, x), where ψ∗(x) > 0. The return time to x is
defined as the random variable

τ(x) := inf{t ≥ 1 : Xt = x}



Introduction to Dynamics 95

It turns out that for τ(x) so defined we haveEτ(x) = 1/ψ∗(x). We will skip the proof
(see Norris, 1997, thm. 1.7.7), but let’s try running a simulation. The pseudocode in
algorithm 4.4 indicates how one might go about estimating Eτ(x).15

Algorithm 4.4: Computing the mean return time

for i in 1 to n do // n is the number of replications
set t = 0
set X = x
repeat

draw X ∼ p(X, dy)
set t = t + 1

until X = x
set τi = t

end
return n−1 ∑n

i=1 τi

Exercise 4.57 Implement algorithm 4.4 for Hamilton’s Markov chain. Examine whether
for fixed x ∈ S the output converges to 1/ψ∗(x) as n → ∞.

Finally, let’s consider a slightly more elaborate application, which concerns so-
called (s, S) inventory dynamics. Inventory management is a major topic in opera-
tions research that also plays a role in macroeconomics due to the impact of invento-
ries on aggregate demand. The discrete choice flavor of (s, S) models accord well with
the data on capital investment dynamics.

Let q, Q ∈ {0} ∪N with q ≤ Q, and consider a firm that, at the start of time t, has
inventory Xt ∈ {0, . . . , Q}. Here Q is the maximum level of inventory that the firm is
capable of storing. (We are studying (q, Q) inventory dynamics because the symbol
S is taken.) If Xt ≤ q, then the firm orders inventory Q − Xt, bringing the current
stock to Q. If Xt > q then the firm orders nothing. At the end of the period t demand
Dt+1 is observed, and the firm meets this demand up to its current stock level. Any
remaining inventory is carried over to the next period. Thus

Xt+1 =

{
max{Q − Dt+1, 0} if Xt ≤ q
max{Xt − Dt+1, 0} if Xt > q

If we adopt the notation x+ := max{x, 0} and let 1{x ≤ q} be one when x ≤ q and

15If ψ∗(x) > 0, then (Xt)t≥0 returns to x (infinitely often) with probability one, so the algorithm termi-
nates in finite time with probability one.
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zero otherwise, then this can be rewritten more simply as

Xt+1 = (Xt + (Q − Xt)1{Xt ≤ q} − Dt+1)
+

or, if hq(x) := x + (Q − x)1{x ≤ q} is the stock on hand after orders for inventory are
completed, as

Xt+1 = (hq(Xt)− Dt+1)
+

We assume throughout that (Dt)t≥1 is an IID sequence taking values in {0} ∪N ac-
cording to distribution b(d) := P{Dt = d} = (1/2)d+1.

Exercise 4.58 Let S = {0, 1, . . . , Q} and let Mq be the Markov operator on S corre-
sponding to these dynamics. Show that (P(S), Mq) is always globally stable indepen-
dent of the precise values of q and Q.

In what follows we let ψ∗
q denote the stationary distribution corresponding to

threshold q.

Exercise 4.59 Show numerically that if Q = 5, then

ψ∗
2 = (0.0625, 0.0625, 0.125, 0.25, 0.25, 0.25)

Now consider profits of the firm. To minimize the number of parameters, suppose
that the firm buys units of the product for zero dollars and marks them up by one dol-
lar. Revenue in period t is min{hq(Xt), Dt+1}. Placing an order for inventory incurs
fixed cost C. As a result profits for the firm at time t are given by

πq(Xt, Dt+1) = min{hq(Xt), Dt+1} − C1{Xt ≤ q}

If we now sum across outcomes for Dt+1 taking Xt = x as given, then we get

gq(x) := E[πq(x, Dt+1)] =
∞

∑
d=0

πq(x, d)b(d) =
∞

∑
d=0

πq(x, d)
2d+1

which is interpreted as expected profits in the current period when the inventory state
Xt is equal to x.

Exercise 4.60 One common performance measure for an inventory strategy (in this
case, a choice of q) is long-run average profits, which is defined here as Egq(X) when
X ∼ ψ∗

q (i.e., ∑x∈S gq(x)ψ∗
q (x)). Show numerically that according to this performance

measure, when Q = 20 and C = 0.1, the optimal policy is q = 7.
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4.3.4 The Law of Large Numbers

In this section we continue our discussion of stability by investigating some proba-
bilistic properties of sample paths. In particular, we reinforce our informal discussion
of ergodicity in chapter 1 by analyzing the law of large numbers in the context of
Markov chains.

In algorithm 4.2 (page 79) we computed an approximation to the marginal distri-
bution ψt via Monte Carlo. The basis of Monte Carlo is that if we sample indepen-
dently from a fixed probability distribution and count the fraction of times that an
event happens, that fraction converges to the probability of the event (as determined
by this probability distribution). This is more or less the frequentist definition of prob-
abilities, but it can also be proved from the axioms of probability theory. The theorem
in question is the law of large numbers (LLN), a variation of which is as follows:

Theorem 4.3.6 If F is a cumulative distribution function on R, (Xt)t≥1
IID∼ F, and h : R →

R is a measurable function with
∫
|h(x)|F(dx) < ∞, then

1
n

n

∑
i=1

h(Xi) → Eh(X1) :=:
∫

h(x)F(dx) as n → ∞ with probability one (4.24)

This result is fundamental to statistics. It states that for IID sequences, sample
means converge to means as the sample size gets large. Later we will give a for-
mal definition of independence and prove a version of the theorem. At that time the
term “measurable function” and the nature of probability one convergence will be
discussed. Suffice to know that measurability of h is never a binding restriction for
the problems we consider.

Example 4.3.7 If (Xi)
n
i=1 are independent standard normal random variates, then ac-

cording to theorem 4.3.6 we should find that n−1 ∑n
i=1 X2

i → 1. (Why?) You might like
to check this by simulation.

Another use of the LLN: Suppose that we wish to computeEh(X), where h is some
real function. One approach would be to use pen and paper plus our knowledge of
calculus to solve the integral

∫ ∞
−∞ h(x)F(dx). In some situations, however, this is not

so easy. If instead we have access to a random number generator that can generate
independent draws X1, X2, . . . from F, then we can produce a large number of draws,
take the mean of the h(Xi) terms, and appeal to (4.24).

In (4.24) the sequence of random variables is IID. In some situations the LLN ex-
tends to sequences that are neither independent nor identically distributed. For ex-
ample, we have the following result concerning stable Markov chains:
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Theorem 4.3.8 Let S be finite, let ψ ∈ P(S), let p be a stochastic kernel on S with α(pt) > 0
for some t ∈ N, and let h : S → R. If (Xt)t≥0 is Markov-(p, ψ), then

1
n

n

∑
t=1

h(Xt) → ∑
x∈S

h(x)ψ∗(x) as n → ∞ with probability one (4.25)

where ψ∗ is the unique stationary distribution of p.

The left-hand side is the average value of h(Xt), and the right-hand side is the
expectation of h(X) when X ∼ ψ∗. Note that the result holds for every initial condition
ψ ∈ P(S).

The proof of theorem 4.3.8 requires more tools than we currently have in hand.16

The intuition is that when the chain is globally stable, Xt is approximately distributed
according to ψ∗ for large t. In addition the stability property implies that initial condi-
tions are unimportant, and for the same reason Xt has little influence on Xt+k for large
k. Hence there is a kind of asymptotic independence in the chain. Together, these two
facts mean that our chain approximates the IID property that drives the LLN.

If h(x) = 1 if x = y and zero otherwise (i.e., h(x) = 1{x = y}), then (4.25) becomes

1
n

n

∑
t=1

h(Xt) =
1
n

n

∑
t=1
1{Xt = y} → ψ∗(y) as n → ∞ (4.26)

This provides a new technique for computing the stationary distribution, via Monte
Carlo. Exercise 4.61 illustrates.
Exercise 4.61 Let pH be Hamilton’s kernel, and let h(x) = 1 if x = NG and zero
otherwise. Take any initial condition, and draw a series of length 106. Compute the
left-hand side of (4.25). Compare it with the right-hand side, calculated via the alge-
braic method shown in listing 4.1.

When the state space is small, this is a less efficient technique for computing the
stationary distribution than the algebraic method used in listing 4.1. However, the
computational burden of the algebraic method increases rapidly with the size of the
state space. For large or infinite state spaces, a variation of the LLN technique used in
exercise 4.61 moves to center stage. See §6.1.3 for details.17

The importance of theorem 4.3.8 extends beyond this new technique for computing
stationary distributions. It provides a new interpretation for the stationary distribution:
If we turn (4.26) around, we get

ψ∗(y) ∼= fraction of time that (Xt) spends in state y
16A version of theorem 4.3.8 is proved in §11.1.1.
17The look-ahead method introduced in §6.1.3 concerns infinite state spaces, but it can be applied to finite

state spaces with the obvious modifications.
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This is indeed a new interpretation of ψ∗, although it is not generally valid unless the
chain in question is stable (in which case the LLN applies).

Exercise 4.62 Give an example of a kernel p and initial condition ψ where this inter-
pretation fails.

In the preceding discussion, h was an indicator function, which reduced the dis-
cussion of expectations to one of probabilities. Now let’s consider more general ex-
pectations.

Exercise 4.63 Recall the firm introduced on page 83. Extending exercise 4.61, approx-
imate expected profits at the stationary distribution using theorem 4.3.8. Compare
your results to those of exercise 4.43.

Thus the LLN provides a new way to compute expectations with respect to station-
ary distributions. However, as was the case with probabilities above, it also provides
a new interpretation of these expectations when the Markov chain is stationary. For
example, if h denotes profits as above, then we have

∑
x∈S

h(x)ψ∗(x) ∼= long-run average profits

Again, this interpretation is valid when the chain in question is stationary, but may
not be valid otherwise.

4.4 Commentary

Regarding deterministic, discrete-time dynamical systems, good mathematical intro-
ductions are provided by Holmgren (1996) and Wiggins (2003), who treat elementary
theory, topological conjugacy, and chaotic dynamics. For dynamics from an economic
perspective, see, for example, Stokey and Lucas (1989), Azariadis (1993), de la Fuente
(2000), Shone (2003), Caputo (2005), Gandolfo (2005) or Ljungqvist and Sargent (2018).

The threshold externality model in example 4.1.4 is a simplified version of Azari-
adis and Drazen (1990). See Durlauf (1993) for a stochastic model with multiple equi-
libria. Dosi et al. (2019) study convergence and divergence in a large, agent-based
model using simulation. Johnson and Papageorgiou (2020) review the evidence on
economic development and cross-country convergence.

Our discussion of chaotic dynamics lacked economic applications, but plenty exist.
The Solow–Swan model produces chaotic dynamics with some minor modifications
(e.g., Böhm and Kaas 2000). Moreover rational behavior in infinite-horizon, optimiz-
ing models can lead to chaos, cycles, and complex dynamics. See, for example, Ben-
habib and Nishimura (1985), Venditti (1998), or Mitra and Sorger (1999). For more dis-
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cussion of complex economic dynamics, see Medio (1995), Brock and Hommes (1998),
Kikuchi (2008), or Matsuyama et al. (2016).

For a general discussion of the relationship between complexity theory and eco-
nomics, see Arthur (2010).

Good references on finite state Markov chains include Norris (1997), Häggström
(2002), and Bremaud (2020). These texts provide a more traditional approach to sta-
bility of Markov chains based on irreducibility and aperiodicity. It can be shown that
every irreducible and aperiodic Markov chain is globally stable, and as a result sat-
isfies the conditions of theorem 4.3.5 (in particular, α(pt) > 0 for some t ∈ N). The
converse is not true, so theorem 4.3.5 is more general.

The Dobrushin coefficient was introduced by Dobrushin (1956). For an alternative
discussion of the Dobrushin coefficient in the context of finite state Markov chains, see
Bremaud (2020).

The treatment of (s, S) dynamics in §4.3.3 is loosely based on Norris (1997). For
another discussion of inventory dynamics see Stokey and Lucas (1989, sec. 5.14). An
interesting analysis of aggregate implications is Nirei (2008). A treatment of discrete
adjustment models can be found in Stokey (2008). Beare (2012) studies stability of
Markov chains generated by Archimedean copulas.


