
Chapter 2

Programming

Mathematics provides the foundations of our models and of the algorithms we use
to solve them. Computers are the engines that run these algorithms. Computers are
also invaluable for simulation and visualization. Simulation and visualization build
intuition, and intuition completes the loop by feeding into better mathematics. This
chapter provides a brief introduction to scientific computing.

Companion code for this and other chapters is available in the accompanying
Jupyter code book, written in Python (see page xiv). When the first edition of this
book was published in 2009, the choice of Python was viewed as surprising. But
Python now lies at the heart of a great many applications in engineering, machine
learning, artificial intelligence and data science. It also features an outstanding just-
in-time compiler and easy access to parallelized computation, which we discuss in
more detail below.

At the same time, there are other excellent scientific computing environments and
preferences across them vary widely. To avoid constraining the reader, in the current
edition, almost all algorithms presented within in the hardcopy textbook have been
shifted to pseudocode, rather than one specific language.

2.1 Algorithms

In this introductory section we discuss algorithmic foundations and work through
simple examples.
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2.1.1 Iteration and Flow Control

Many of the problems we study in this text reduce to a search for algorithms. The
language we will use to describe algorithms is called pseudocode. Pseudocode is an in-
formal way of presenting algorithms for the benefit of human readers, without getting
tied down in the syntax of any particular programming language. It’s a good habit to
begin every program by sketching it first in pseudocode.

Our pseudocode rests on the following four constructs:

if–then–else, while, repeat–until, and for

The general syntax for the if–then–else construct is

if condition then
first sequence of actions

else
second sequence of actions

end

The condition is evaluated as either true or false. If found true, the first sequence
of actions is executed. If false, the second is executed. Note that the else statement
and alternative actions can be omitted: If the condition fails, then no actions are per-
formed. A simple example of the if–then–else construct is

if there are cookies in the jar then
eat them

else
go to the shops and buy more
eat them

end

The while construct is used to create a loop with a test condition at the beginning:

while condition do
sequence of actions

end

The sequence of actions is performed only if the condition is true. Once they are
completed, the condition is evaluated again. If it is still true, the actions in the loop
are performed again. When the condition becomes false the loop terminates. Here’s
an example:
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while there are cookies in the jar do
eat one

end

The algorithm terminates when there are no cookies left. If the jar is empty to begin
with, the action is never attempted.

The repeat–until construct is similar:

repeat
sequence of actions

until condition

Here the sequence of actions is always performed once. Next the condition is
checked. If it is true, the algorithm terminates. If not, the sequence is performed
again, the condition is checked, and so on.

The for construct is sometimes called a definite loop because the number of repe-
titions is predetermined:

for element in sequence do
do something

end

For example, the following algorithm computes the maximum of a function f over
a finite set S using a for loop and prints it to the screen.1

set c = −∞
for x in S do

set c = max{c, f (x)}
end
print c

In the for loop, x is set equal to the first element of S and the statement “set
c = max{c, f (x)}” is executed. Next x is set equal to the second element of S, the
statement is executed again, and so on. The statement “set c = max{c, f (x)}” should
be understood to mean that max{c, f (x)} is first evaluated, and the resulting value is
assigned to the variable c.

Exercise 2.1 Modify this algorithm so that it prints the maximizer rather than the
maximum. Explain why it is more useful to know the maximizer.

Let’s consider another example. Suppose that we have two arrays A and B stored

1That is, it displays the value to the user. The term “print” dates from the days when sending output to
the programmer required generating hardcopy on a printing device.
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in memory, and we wish to know whether the elements of A are a subset of the ele-
ments of B. Here’s a prototype algorithm that will tell us whether this is the case:

set subset = True
for a in A do

if a /∈ B then set subset = False

end
print subset

Next, as an example of a more sophisticated problem, suppose we wish to model
flipping a biased coin with probability p of heads, and have access to a random num-
ber generator that yields uniformly distributed variates on [0, 1]. The next algorithm
uses these random variables to generate and print the outcome (either “heads” or
“tails”) of ten flips of the coin, as well as the total number of heads.2

set H = 0
for i in 1 to 10 do

draw U from the uniform distribution on [0, 1]
if U < p then // with probability p

print “heads”
H = H + 1

else // with probability 1 − p
print “tails”

end
end
print H

Note the use of indentation, which helps maintaining readability of our code.

Exercise 2.2 Consider a game that pays $1 if and only if three consecutive heads
occur within ten flips. Otherwise the game pays zero. Modify the previous algorithm
to generate a round of the game and print the payoff. If you can, write a routine to
run the game 10,000 times and record the outcome. Use this data to make an estimate
of the probability that the game pays $1.

Exercise 2.3 Let b be a vector of zeros and ones. The vector corresponds to the
employment history of one individual, where 1 means employed at the associated
point in time, and 0 means unemployed. Write an algorithm to compute the longest
(consecutive) period of employment.

2What is the probability distribution of this total?
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2.1.2 Application: Bisection

As a more extensive example, let’s look at the bisection algorithm. You have probably
implemented bisection as a child, when you played this game: First, player A thinks of
a secret number n between 1 and 100. Player B must find n with the minimum number
of guesses, receiving only “yes” or “no” replies. The right strategy is for player B to
ask if n ≤ 50. If the answer is yes, then B repeats the same logic on 1, . . . 50 by asking
if n is less than 25. If no, then the logic is repeated in the other direction, by asking if
n is less than 75, and so on.

Here’s the same idea applied to approximating the root of a function f : [α, β] → R,
where f (α) and f (β) have different signs (i.e., f (α) f (β) < 0). We assume here for
convenience that f is continuous and has exactly one root (i.e., one x ∈ (α, β) such
that f (x) = 0). Other inputs to the algorithm are M, a maximal number of iterations
(to bound runtime) and ϵ, a small number. If M is sufficiently large, then the algorithm
finds and prints a value x such that | f (x)| < ϵ.

set i = 1, a = α, and b = β

while i ≤ M do
set c = (a + b)/2 // take the midpoint of the current interval
if | f (c)| < ϵ then

print “Approximate root of f is c”
stop

end
set i = i + 1
if f (c) f (a) < 0 then // signs differ so root is in (a, c)

set b = c // set (a, b) = (a, c) (choose lower subinterval)
else // root not in (a, c) so must be in (c, b)

set a = c // set (a, b) = (c, b) (choose upper subinterval)
end

end
print “Exceeded maximum iteration value M, bisection failed.”

The stop keyword indicates that execution of the algorithm should terminate when-
ever it is encountered. The key piece of logic is that a < b and f (a) f (b) < 0 implies
that the root lies in (a, b). The algorithm works by using this logic to iteratively select
a subinterval of the domain which is half as long as the previous one and guaranteed
to contain the root.

Exercise 2.4 Implement the bisection algorithm in your favorite programming lan-
guage. Test it on the function f (x) = sin(4(x − 1/4)) + x + x20 − 1, over the interval
[0, 1]. The unique root of f on [0, 1] is ≈ 0.408.
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A solution in Python can be found in the code book (see page xiv).

2.2 Program Design

In this section we discuss how to combine algorithms into programs, considering both
flexibility and efficiency.

2.2.1 User-Defined Functions

Algorithms solve programming problems. Programming involves more than just
implementing algorithms, however. Another issue is design: How should we con-
struct programs that contain multiple interacting algorithms while retaining clarity
and readability as our projects grow?

The first step along the road to good program design is learning to break programs
up using functions. Functions are the primary tool through which programmers im-
plement the time-honored strategy of divide and conquer: problems are split into
smaller subproblems, which are then coded up as functions. The main program then
coordinates these functions, calling on them to do their jobs at the appropriate time.

Functions allow programmers to isolate and test individual algorithms or steps of
logic. Functions also allow programmers to isolate variables to local scope: for most
programming languages, changing the value of variables local to the function does
not affect the value of global variables, even if they share the same name. Finally, due
to their ability to isolate logic and scope, functions can be targeted for optimization by
a compiler—more on this below.

Let’s look at a particular algorithm and how to implement it as a function. The
algorithm we consider is the (discrete) inverse transform method for generating ran-
dom draws from a discrete probability distribution. More specifically, we take S to
be a finite set and ϕ to be a function from S to R+ with the property ∑x∈S ϕ(x) = 1.
Throughout, ϕ(x) represents the “probability assigned to x.” Suppose we have the
ability to generate random variables that are uniformly distributed on (0, 1]. We now
want to generate random draws from S that are distributed according to ϕ.

Let W be uniformly distributed on (0, 1], so that, for any a ≤ b ∈ (0, 1], we have
P{a < W ≤ b} = b − a, which is the length of the interval (a, b].3 Our problem will
be solved if we can implement a function z 7→ τ(z) from (0, 1] to S such that τ(W) has
distribution ϕ. In other words,

P{τ(W) = x} = ϕ(x) for all x ∈ S

3The probability is the same whether inequalities are weak or strict.
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ϕ(x1) ϕ(x1) + ϕ(x2)0 1

I(x1) I(x2) I(x3)

Figure 2.1 Partition (I(x))x∈S created by ϕ

One technique is as follows. First we divide the unit interval (0, 1] into disjoint subin-
tervals, one for each x ∈ S. The interval corresponding to x is denoted I(x) and is
chosen to have length ϕ(x). More specifically, when S = {x1, . . . , xN}, we take

I(xi) := (ϕ(x1) + · · ·+ ϕ(xi−1), ϕ(x1) + · · ·+ ϕ(xi)]

with I(x1) = (0, ϕ(x1)]. You can easily confirm that the length of I(xi) is ϕ(xi) for all
i. Figure 2.1 gives the picture for S = {x1, x2, x3}.

Now consider the function z 7→ τ(z) defined by

τ(z) := ∑
x∈S

x1{z ∈ I(x)} (z ∈ (0, 1]) (2.1)

where 1{z ∈ I(x)} is one when z ∈ I(x) and zero otherwise.

Exercise 2.5 Prove: for all x ∈ S, we have τ(z) = x if and only if z ∈ I(x).

The random variable τ(W) has distribution ϕ. To see this, pick any x ∈ S, and
observe that the τ(W) = x precisely when W ∈ I(x). The probability of this event
is the length of the interval I(x), which, by construction, is ϕ(x). Hence P{τ(W) =
x} = ϕ(x) for all x ∈ S as claimed.

A pseudocode implementation of the function z 7→ τ(z) is given in algorithm 2.1.
A direct Python implementation is shown in listing 2.1. In the accompanying

Jupyter code book we verify via simulation that the function performs as expected.
Similar implementations can be produced in Julia and other scientific computing en-
vironments.

The algorithm displayed in listing 2.1 can be improved upon in practice. For ex-
ample, instead of using for loop, we can apply a variation on the bisection algorithm
from §2.1 to find the interval containing z more efficiently.
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Algorithm 2.1: The function z 7→ τ(z; ϕ)

Data: the set of points S = {x1, . . . , xN} and a distribution ϕ on S
Function τ(z)

set a = 0
for i in 1, . . . , N do

set b = a + ϕ(xi)
if a < z ≤ b then return xi
set a = b

end

def tau(z, S, phi ):
"""
Evaluates tau(z) given array_like S and phi.
"""
a = 0
f o r i, x i n enumerate(S):

b = a + phi[i]
i f a < z <= b:

r e t u r n x
a = b

Listing 2.1 Direct implementation of the function τ
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i nput numpy as np
def tau(z, S, phi ):

i = np. searchsorted (np. cumsum (phi), z)
r e t u r n S[i]

Listing 2.2 Efficient implementation of the function τ

def tau_factory (S, phi ):
Phi = np. cumsum (phi)

def tau(z):
i = np. searchsorted (Phi , z)
r e t u r n S[i]

r e t u r n tau

Listing 2.3 Implementing τ via a closure (factory function)

One such implementation is given in listing 2.2. It applies NumPy’s searchsorted
function, which employs a form of bisection, to the task of locating the correct inter-
val. All common scientific computing environments provide a function analogous to
searchsorted.

Even though the function tau in listing 2.2 is efficient, there are still some im-
provements we can make. For example, it is quite likely that we will want to call
tau at many different z, while holding S and phi fixed. In this case, it would be less
cumbersome if we could pass S and phi once and then call tau with z alone.

In addition, the cumulative sum of phi is recomputed every time the function tau
in listing 2.2 is called. This is clearly inefficient.

Listing 2.3 solves both these problems by employing what’s known as a closure. An
outer function called tau_factory is used to compute the cumulative sum of phi and
create a function tau that acts on this sum and the array S. It then returns the function
tau.

We can create and use the function tau using code such as this:

phi = 0.2, 0.5, 0.3
S = 0, 1, 2
tau = tau_factory (S, phi)
tau (0.1) # only need to supply the parameter z
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Notice how tau retains access to the data S and phi even after the function tau_factory
has finished executing. The outer function is sometimes called a factory function.4

Python, Julia, R and MATLAB all offer the ability to use closures.

2.2.2 Object Oriented Programming

Some programming languages, such as Python, support object-oriented programming
(OOP), which essentially means that functions and the data they act on are bundled
together into abstract data types (ADTs). MATLAB and Julia offer variations on this
idea. I personally use Python’s OOP facilities routinely, although I write only small,
lightweight data types for organizing closely related data.

For those who are interested, we now cover several examples of OOP style, using
Python. Readers who prefer procedural styles or other computing environments can
safely skip the remainder of this section.

In Python, a class definition is a blueprint for such an ADT, describing what kind
of data it stores, and what functions it possesses for acting on these data. An object
is an instance of the ADT; an individual realization of the blueprint, typically with its
own unique data. Functions defined within classes are referred to as methods.

To illustrate the key ideas, we will build a simple class to represent and manipulate
polynomial functions. The data in this case are the coefficients (a0, . . . , aN), which
define a unique polynomial

p(x) = a0 + a1x + a2x2 + · · · aN xN =
N

∑
n=0

anxn (x ∈ R)

To manipulate these data we will create two methods, one to evaluate the polynomial
from its coefficients, returning the value p(x) for any x, and another to differentiate
the polynomial, replacing the original coefficients (a0, . . . , aN) with the coefficients of
p′.

Consider, first, listing 2.4, which sketches a class definition in pseudo-Python. This
is not real Python code—it is intended to give the feeling of how the class definition
might look, while omitting some boilerplate. The name of the class is Polynomial, as
specified after the keyword class. The class definition consists of three methods. Let’s
discuss them in the order they appear.

The first method is called initialize(), and represents a constructor, which is
a special method most languages provide to build (construct an instance of) an ob-
ject from a class definition. Constructor methods usually take as arguments the data
needed to set up a specific instance, which in this case is the vector of coefficients

4The technique adopted in listing 2.3 is called a closure because the data available in the outer function
is enclosed in the nested function.
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Listing 2.4 (polyclass0.py) A polynomial class in pseudo-Python

c l a s s Polynomial :

def initialize (coef):
""" Creates an instance p of the Polynomial class ,
where p(x) = coef [0] x^0 + ... + coef[N] x^N."""

def evaluate (x):
y = sum(a*x**i f o r i, a i n enumerate(coef))
r e t u r n y

def differentiate ():
new_coef = [i*a f o r i, a i n enumerate(coef)]
# Remove the first element , which is zero
de l new_coef [0]
# And reset coefficients data to new values
coef = new_coef

(a0, . . . , aN). The function should be passed a list or tuple, to which the identifier coef
is then bound. Here coef[i] represents ai.

The second method evaluate() evaluates p(x) from x and the coefficients. The
third method is differentiate(), which modifies the data of a Polynomial instance,
rebinding coef from (a0, . . . , aN) to (a1, 2a2, . . . , NaN). The modified instance repre-
sents p′.

Now that we have written up an outline of a class definition in pseudo-Python,
let’s rewrite it in proper Python syntax. The modified code is given in listing 2.5.
Before working through the additional syntax, let’s look at an example of how to use
the class:

data = [2, 1, 3]
p = Polynomial (data) # Creates instance of Polynomial class
p. evaluate (1) # Returns 6
p.coef # Returns [2, 1, 3]
p. differentiate () # Modifies coefficients of p
p.coef # Returns [1, 6]
p. evaluate (1) # Returns 7

An instance p is created by a call of the form p = Polynomial(data). Behind the
scenes this generates a call to the constructor method, which realizes the instance as an
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Listing 2.5 (polyclass.py) A polynomial class, correct syntax

c l a s s Polynomial :

def __init__ (self , coef):
""" Creates an instance p of the Polynomial class ,
where p(x) = coef [0] x^0 + ... + coef[N] x^N."""
self.coef = coef

def evaluate (self , x):
y = sum(a*x**i f o r i, a i n enumerate(self.coef))
r e t u r n y

def differentiate (self):
new_coef = [i*a f o r i, a i n enumerate(self.coef)]
# Remove the first element , which is zero
de l new_coef [0]
# And reset coefficients data to new values
self.coef = new_coef

object stored in memory, and binds the name p to this instance. As part of this process
a namespace for the object is created, and the name coef is registered in that names-
pace and bound to the data [2, 1, 3].5 The attributes of p can be accessed using
p.attribute notation, where the attributes are the methods (in this case evaluate()
and differentiate()) and instance variables (in this case coef).

Let’s now walk through the new syntax in listing 2.5. First, the constructor method
is given its correct name, which is __init__. The double underscore notation reminds
us that this is a special Python method—we will meet another example in a moment.
Second, every method has self as its first argument, and attributes referred to within
the class definition are also preceded by self (e.g., self.coef).

The idea with the self references is that they stand in for the name of any instance
that is subsequently created. As one illustration of this, note that calling p.evaluate(1)
is equivalent to calling

Polynomial . evaluate (p, 1)

This alternate syntax is more cumbersome and not generally used, but we can see how
p does in fact replace self, passed in as the first argument to the evaluate() method.

5To view the contents of this namespace type p.__dict__ at the prompt.
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And if we imagine how the evaluate() method would look with p instead of self,
our code starts to appear more natural:

def evaluate (p, x):
y = sum(a*x**i f o r i, a i n enumerate(p.coef ))
r e t u r n y

Before finishing, let’s briefly discuss another useful special method. One rather un-
gainly aspect of the Polynomial class is that for a given instance p corresponding
to a polynomial p, the value p(x) is obtained via the call p.evaluate(x). It would
be nicer—and closer to the mathematical notation—if we could replace this with the
syntax p(x). Actually this is easy: we simply replace the word evaluate in listing 2.5
with __call__. Objects of this class are now said to be callable, and p(x) is equivalent
to p.__call__(x).

Exercise 2.6 Drawing on listing 2.3 and the discussion concerning the inverse trans-
form method in §2.2.1, write a class with instance data S and phi that provides two
methods: a method to evaluate the function τ(z) for any given z, and a method to
generate a draw from S according to the distribution represented by phi.

2.2.3 High Performance Computing

When it comes to programming, which languages are suitable for scientific work?
Since the time it takes to complete a programming project is the sum of the time spent
writing the code and the time that a machine spends running it, an ideal language
would minimize both these terms.

Designing such a language is not an easy task. There is an inherent trade-off be-
tween human time and computer time, due to the fact that humans and computers
“think” differently: Flexible, high level languages that cater well to the human brain
are, in general, hard for machines to optimize (i.e., convert into efficient machine
code). For example, if we reduce flexibility by insisting that a variable x can point
only to floating point numbers, we inconvenience the programmer but free the com-
puter to specialize associated machine code to floating point operations.

Using the flexibility/efficiency trade-off, we can divide languages into (a) robust,
lower level languages such as Fortran and C/C++, which execute quickly but can be a
chore when coding and debugging, and (b) the more nimble, interactive higher level
languages, such as Python, MATLAB and R. By design, these languages are easy to
write with and debug, but execution can be orders of magnitude slower. As a con-
sequence, a paradigm for scientific computing developed where programmers write
most of the code in a high level language and then call out to Fortran or C code when
heavy lifting is required.
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There are several problems associated with this traditional approach. First, there
is always a nonzero quantity of boilerplate code required when gluing two languages
together. Such boilerplate is tedious to maintain and makes the code base less acces-
sible. Second, increasing the number of languages means increasing the number of
compilers (or interpreters), which in turn increases complexity and drives up mainte-
nance costs.

For these reasons, in recent years, scientists at the forefront of computational and
numerical methods have shifted towards computing environments with high perfor-
mance just-in-time (JIT) compilers. As suggested by the name, JIT compilers generate
machine code on the fly, at runtime. Python (through the Numba library) and Julia
offer state-of-the-art JIT compilers based on the LLVM architecture. These JIT compil-
ers can convert well written Python or Julia into extremely efficient machine code—as
efficient as the best implementations in C, C++ or Fortran.

Modern high quality JIT compilers also allow programmers to parallelize execu-
tion of JIT-compiled code across multiple threads or target execution on a GPU.

Since these technologies change fast, we refrain from studying any listings in this
text. Instead, readers are invited the explore just-in-time compilers on their own.6

6One possible source of information is https://quantecon.org, which presents lectures in Python and
Julia that heavily exploit their JIT compilers.


