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Abstract. We represent a dynamic program as a family of operators acting on
a partially ordered set. We provide an optimality theory based on order-theoretic
assumptions and show how many applications of dynamic programming fit into this
framework. These range from traditional dynamic programs to those involving non-
linear recursive preferences, desire for robustness, function approximation, Monte
Carlo sampling and distributional dynamic programs. We apply our framework to
establish new optimality and algorithmic results for specific applications.

1. Introduction

Dynamic programs occur in many fields including operations research, artificial intel-
ligence, economics, and finance (Bäuerle and Rieder, 2011; Bertsekas, 2021; Kochen-
derfer et al., 2022). They are used to price products, control aircraft, sequence DNA,
route shipping, recommend information, and solve frontier research problems. Within
economics, applications of dynamic programming range from monetary and fiscal
policy to asset pricing, unemployment, firm investment, wealth dynamics, inventory
control, commodity pricing, sovereign default, natural resource extraction, retirement
decisions, portfolio choice, and dynamic pricing.

The key idea behind dynamic programming is to reduce an intertemporal prob-
lem with many stages into a two-period problem by assigning appropriate values
to future states (Bellman, 1957). While optimality theory for conventional dynamic
programs—often called Markov decision processes (MDPs)—is well understood (see,
e.g., Puterman (2005), Bäuerle and Rieder (2011), Hernández-Lerma and Lasserre
(2012), Bertsekas (2012)), many recent applications fall outside this framework.
These include models with nonlinear discounting Bäuerle et al. (2021), Epstein–Zin
preferences (Epstein and Zin, 1989), risk-sensitive preferences (Hansen and Sargent,
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1995; Bäuerle and Jaśkiewicz, 2018), adversarial agents (Cagetti et al., 2002; Hansen
and Sargent, 2011), and ambiguity (Iyengar, 2005; Yu et al., 2024).

Mathematicians have constructed frameworks that include both standard MDPs and
the growing list of nonstandard applications discussed in the last paragraph. Bert-
sekas (2022) contributed important work in this direction. His “abstract dynamic
programming” framework extends earlier ideas dating back to Denardo (1967) and
Bertsekas (1977) and generalizes the traditional Bellman equation in ways that can
represent many different models. Recent applications of the framework include Ren
and Stachurski (2021), Bloise et al. (2024) and Toda (2023).

Nevertheless, many classes of dynamic programs lie outside the framework of Bert-
sekas (2022). One such class is dynamic programs that reverse the order of expecta-
tion and maximization in the Bellman equation, with well known examples in optimal
stopping (Jovanovic, 1982; Hubmer et al., 2020), Q-learning (see, e.g., Watkins (1989);
Kochenderfer et al. (2022)), and structural estimation (Rust (1987), Rust (1994), and
Mogensen (2018), etc.). Another such class involves dynamic programs with value
functions that are not real-valued. Examples can be found in distributional dynamic
programming (Bellemare et al., 2017), where states are mapped to distributions, and
in empirical dynamic programming, where states are mapped to random elements
taking values in a function space (Munos and Szepesvári, 2008; Haskell et al., 2016;
Bertsekas, 2021; Kalathil et al., 2021; Rust et al., 2002; Sidford et al., 2023). A related
situation occurs with dynamic programs cast in 𝐿𝑝 spaces, where value “functions”
are actually equivalence classes of functions.

Another motivation for extending the framework of Bertsekas (2022) is to study ap-
proximate dynamic programming, which replaces exact value and policy functions
with parametric or nonparametric approximations (Powell, 2016; Bertsekas, 2021,
2022). The framework developed here facilitates viewing at least some of these ap-
proximate dynamic programs as dynamic programs in their own right. One advantage
is acquiring the ability to analyze whether an approximate dynamic program under
study is a well-defined Bellman-type optimization problem, in the sense that a single
policy function is optimal starting from all possible initial states (see, e.g., Naik et al.
(2019)).

In order to capture the broad class of applications described above, the framework de-
veloped in this paper replaces traditional value functions with elements of an abstract
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partially ordered set 𝑉. Policies that are traditionally understood as mappings from
states to actions now become abstract indices over a family {𝑇𝜎 : 𝜎 ∈ Σ} of “policy
operators.” Each policy operator 𝑇𝜎 is an order preserving self-map on 𝑉. Whenever
it exists, the lifetime value 𝑣𝜎 of a policy 𝜎 ∈ Σ is identified with the unique fixed
point of 𝑇𝜎. A policy 𝜎∗ is defined to be optimal when 𝑣𝜎∗ is a greatest element of
{𝑣𝜎 : 𝜎 ∈ Σ}. In this setting we provide an order-theoretic treatment of dynamic pro-
gramming and describe conditions under which some classical dynamic programming
optimality results hold, e.g., the value function is a unique fixed point of the Bellman
equation, Bellman’s principle of optimality is valid. We also provide conditions under
which standard dynamic programming algorithms converge.

Our framework brings three significant benefits. First, policy operators are general
enough to represent both standard and many nonstandard dynamic programs. Sec-
ond, because we work in an abstract partially ordered space, it is possible to handle
Bellman equations defined not only over spaces of real-valued functions, but also
over spaces of distributions and spaces of random functions. Third, its high level
of abstraction simplifies analysis and isolates roles of various assumptions. We illus-
trate our framework by applying it to establish new results in the context of several
applications. .

Section 2 introduces terminology and essential concepts. Section 3 introduces our
abstract dynamic programming framework and provides examples that help illustrate
the definitions. Section 4 defines optimality and Section 5 provides fundamental
optimality results that are then proved in Section 6. Section 7 presents applications
and Section 8 concludes.

2. Preliminaries

Let 𝑉 = (𝑉, ⪯) be a partially ordered set. We use the symbol ∨ to represent suprema;
for example, if {𝑣𝛼}𝛼∈Λ is a subset of 𝑉, then ∨

𝛼 𝑣𝛼 is the least element of the set
of upper bounds of {𝑣𝛼}𝛼∈Λ. 𝑉 is called bounded when 𝑉 has a least and greatest
element. A subset 𝐶 of 𝑉 is called a chain if it is totally ordered by ⪯. A sequence
(𝑣𝑛)𝑛∈N in 𝑉 is called increasing if 𝑣𝑛 ⪯ 𝑣𝑛+1 for all 𝑛 ∈ N. If (𝑣𝑛) is increasing
and ∨

𝑛 𝑣𝑛 = 𝑣 for some 𝑣 ∈ 𝑉, then we write 𝑣𝑛 ↑ 𝑣. A partially ordered set 𝑉 is
called chain complete (resp., countably chain complete) if 𝑉 is bounded and every
chain (resp., every increasing sequence) in 𝑉 has a supremum. 𝑉 is called countably
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Dedekind complete if every countable subset of 𝑉 that is bounded above (i.e., the set
of upper bounds is nonempty) has a supremum in 𝑉.

A self-map 𝑆 on 𝑉 is called order preserving on 𝑉 when 𝑣, 𝑤 ∈ 𝑉 and 𝑣 ⪯ 𝑤 imply
𝑆𝑣 ⪯ 𝑆𝑤, and order continuous on 𝑉 if, for any (𝑣𝑛) in 𝑉 with 𝑣𝑛 ↑ 𝑣, we have 𝑆𝑣𝑛 ↑ 𝑆𝑣.1

Simple arguments show that if 𝑆 is order continuous on 𝑉 then 𝑆 is order preserving.

In the theorem below, 𝑆 is a self-map on partially ordered set 𝑉 and fix(𝑆) is the set
of all fixed points of 𝑆 in 𝑉. While the result is well-known, our version is slightly
nonstandard so we include a partial proof.

Theorem 2.1. The set fix(𝑆) is nonempty if either

(i) 𝑉 is chain complete and 𝑆 is order preserving, or
(ii) 𝑉 is countably chain complete and 𝑆 is order continuous.

Moreover, in the second case, 𝑣 ∈ 𝑉 and 𝑣 ⪯ 𝑆𝑣 implies ∨
𝑛 𝑆

𝑛𝑣 ∈ fix(𝑆).

Proof. For a proof of case (i), see, for example, Theorems 8.11 and 8.22 of Davey and
Priestley (2002). As for (ii), let 𝑆, 𝑉 be as stated in (ii) and fix 𝑣 ∈ 𝑉 with 𝑣 ⪯ 𝑆𝑣. 𝑆
is order continuous and hence order preserving, so (𝑣𝑛) ≔ (𝑆𝑛𝑣) is increasing. As 𝑉 is
countably chain complete, the suprema ∨

𝑛⩾1 𝑣𝑛 and ∨
𝑛⩾1 𝑆𝑣𝑛 exist in 𝑉. If 𝑣 ≔ ∨

𝑛 𝑣𝑛,
then 𝑆𝑣 = 𝑆

∨
𝑛⩾1 𝑣𝑛 =

∨
𝑛⩾1 𝑆𝑣𝑛 =

∨
𝑛⩾2 𝑣𝑛 = 𝑣, where the second equality is by order

continuity. Hence 𝑣 ∈ fix(𝑆). Finally, countable chain completeness implies that 𝑉
has a least element ⊥. We then have ⊥ ⪯ 𝑆⊥, so fix(𝑆) is nonempty. □

We call a self-map 𝑆 on 𝑉 upward stable if 𝑆 has a unique fixed point 𝑣 in 𝑉 and 𝑣 ⪯ 𝑆𝑣

implies 𝑣 ⪯ 𝑣, downward stable if 𝑆 has a unique fixed point 𝑣 in 𝑉 and 𝑆𝑣 ⪯ 𝑣 implies
𝑣 ⪯ 𝑣, and order stable if 𝑆 is both upward and downward stable. Order stability is
a weak and purely order-theoretic version of asymptotic stability.

Example 2.1. Let 𝑉 be a metric space endowed with a closed partial order ⪯, so that
𝑢𝑛 ⪯ 𝑣𝑛 for all 𝑛 implies lim𝑛 𝑢𝑛 ⪯ lim𝑛 𝑣𝑛 whenever the limits exist, and let 𝑆 : 𝑉 → 𝑉

be order preserving and globally stable under the metric on 𝑉, so that 𝑆 has a unique
fixed point 𝑣 in 𝑉 and lim𝑛 𝑆𝑛𝑣 = 𝑣 for all 𝑣 ∈ 𝑉. If 𝑣 ⪯ 𝑆𝑣, then 𝑣 ⪯ 𝑆𝑛𝑣 for all 𝑛.
Taking the limit and using the fact that ⪯ is closed yields 𝑣 ⪯ 𝑣. Hence 𝑆 is upward
stable. A similar argument shows that 𝑆 is downward stable.

1The definition of order continuity varies across subfields of mathematics but the one just given
suffices for our purposes.
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Lemma 2.2. Let 𝑆 be a self-map on 𝑉 with at most one fixed point in 𝑉. If either

(i) 𝑉 is chain complete and 𝑆 is order preserving, or
(ii) 𝑉 is countably chain complete and 𝑆 is order continuous,

then 𝑆 is order stable on 𝑉.

Proof. First suppose that 𝑆 is order preserving and 𝑉 is chain complete, with least
element ⊥ and greatest element ⊤. By Theorem 2.1, 𝑆 has a fixed point 𝑣 ∈ 𝑉. By
assumption, 𝑣 is the only fixed point of 𝑆 in 𝑉. Now fix 𝑣 ∈ 𝑉 with 𝑣 ⪯ 𝑆𝑣. Since
𝐼 ≔ [𝑣,⊤] is itself chain complete, and since 𝑆 maps 𝐼 to itself, 𝑆 has a fixed point
in 𝐼. Hence 𝑣 ∈ 𝐼, which yields 𝑣 ⪯ 𝑣. This proves upward stability. The proof of
downward stability is similar.

Now suppose that 𝑉 is countably chain complete and 𝑆 is order continuous. Let 𝑣 be
the unique fixed point of 𝑆 in 𝑉 (existence of which follows from Theorem 2.1). Pick
any 𝑣 ∈ 𝑉 with 𝑣 ⪯ 𝑆𝑣. Since 𝐼 ≔ [𝑣,⊤] is itself countably chain complete, and since
𝑆 is an order continuous map from 𝐼 to itself, Theorem 2.1 implies that 𝑆 has a fixed
point in 𝐼. Hence 𝑣 ∈ 𝐼, which yields 𝑣 ⪯ 𝑣. This proves upward stability. The proof
of downward stability is similar. □

3. Abstract Dynamic Programs

We define an abstract dynamic program (ADP) to be a pair (𝑉,T), where 𝑉 = (𝑉, ⪯)
is a partially ordered set and T = {𝑇𝜎 : 𝜎 ∈ Σ} is a family of order preserving self-
maps on 𝑉. The set 𝑉 is called the value space. The operators in T are called policy
operators. Σ is an arbitrary index set and elements of Σ will be referred to as policies.
In applications we impose conditions under which each 𝑇𝜎 has a unique fixed point.
In these settings, the significance of 𝑇𝜎 is that its fixed point, denoted below by 𝑣𝜎,
represents the lifetime value (or cost) of following policy 𝜎.

Example 3.1. In some settings, 𝑉 is a set of functions and ⪯ is the pointwise partial
order ⩽ (i.e., 𝑣 ⩽ 𝑤 if 𝑣(𝑥) ⩽ 𝑤(𝑥) for all 𝑥 in X). The value 𝑣𝜎(𝑥) represents the
lifetime value of following policy 𝜎 when the initial state is X.

Let (𝑉,T) be an ADP with policy set Σ. Given 𝑣 ∈ 𝑉, a policy 𝜎 in Σ is called 𝑣-greedy
if 𝑇𝜎 𝑣 ⪰ 𝑇𝜏 𝑣 for all 𝜏 ∈ Σ. We call (𝑉,T) regular when each 𝑣 ∈ 𝑉 has at least one
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𝑣-greedy policy. Given 𝑣 ∈ 𝑉, we set

𝑇𝑣 =
∨
𝜎∈Σ

𝑇𝜎 𝑣 (1)

whenever the supremum exists. We call 𝑇 the Bellman operator generated by (𝑉,T).
We say that 𝑣 ∈ 𝑉 satisfies the Bellman equation if 𝑇𝑣 = 𝑣.

For a given ADP (𝑉,T), we define three sets:

• 𝑉𝐺 ≔ {𝑣 ∈ 𝑉 : at least one 𝑣-greedy policy exists},
• 𝑉Σ ≔ {𝑣 ∈ 𝑉 : 𝑣 is a fixed point of 𝑇𝜎 for some 𝜎 ∈ Σ}, and
• 𝑉𝑈 ≔ {𝑣 ∈ 𝑉 : 𝑣 ⪯ 𝑇𝑣}.

The next lemma shows that 𝑇 has attractive properties on 𝑉𝐺.

Lemma 3.1. The Bellman operator 𝑇 has the following properties:

(i) 𝑇 is well-defined and order preserving on 𝑉𝐺.
(ii) For 𝑣 ∈ 𝑉𝐺 we have 𝑇𝜎 𝑣 = 𝑇𝑣 if and only if 𝜎 ∈ Σ is 𝑣-greedy.

Proof. We begin with part (ii). Fix 𝑣 ∈ 𝑉𝐺 and let 𝜎 be 𝑣-greedy. Then, by definition,
𝑇𝜎 𝑣 is the greatest element of {𝑇𝜏 𝑣}𝜏∈Σ. A greatest element is also a supremum, so
𝑇𝑣 = 𝑇𝜎 𝑣. Conversely, if 𝑇𝑣 = 𝑇𝜎 𝑣, then 𝑇𝜏 𝑣 ⪯ 𝑇𝜎 𝑣 for all 𝜏 ∈ Σ. Hence (ii) holds. As
for (i), fixing 𝑣 ∈ 𝑉𝐺, a 𝑣-greedy policy exists, so 𝑇𝑣 is well-defined by part (ii). As
for the order preserving claim, fix 𝑣, 𝑤 ∈ 𝑉𝐺 with 𝑣 ⪯ 𝑤. Let 𝜎 ∈ Σ be 𝑣-greedy. Since
𝑇𝜎 is order preserving, we have 𝑇𝑣 = 𝑇𝜎 𝑣 ⪯ 𝑇𝜎𝑤 ⪯ 𝑇𝑤. □

Lemma 3.2. If (𝑉,T) is regular, then 𝑉Σ ⊂ 𝑉𝑈.

Proof. Fix 𝑣𝜎 ∈ 𝑉Σ and let 𝑇𝜎 be such that 𝑣𝜎 is a fixed point. Since 𝑇 is well-defined
on all of 𝑉, we have 𝑣𝜎 = 𝑇𝜎 𝑣𝜎 ⪯ 𝑇𝑣𝜎. In particular, 𝑣𝜎 ∈ 𝑉𝑈 . □

3.1. Example: MDPs. We begin with a simple and familiar example involving
Markov decision processes (MDPs, see, e.g., Bäuerle and Rieder (2011)). The objec-
tive is to maximize E∑

𝑡⩾0 𝛽
𝑡𝑟(𝑋𝑡, 𝐴𝑡) where 𝑋𝑡 takes values in finite set X (the state

space), 𝐴𝑡 takes values in finite set A (the action space), Γ is a nonempty correspon-
dence from X to A (the feasible correspondence), G ≔ {(𝑥, 𝑎) ∈ X × A : 𝑎 ∈ Γ(𝑥)}
denotes the feasible state-action pairs, 𝑟 is a reward function defined on G, 𝛽 ∈ (0, 1)
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is a discount factor, and 𝑃 : G × X → [0, 1] provides transition probabilities. The
Bellman equation is

𝑣(𝑥) = max
𝑎∈Γ(𝑥)

{
𝑟(𝑥, 𝑎) + 𝛽

∑
𝑥′
𝑣(𝑥′)𝑃(𝑥, 𝑎, 𝑥′)

}
(𝑥 ∈ X). (2)

The set of feasible policies is the finite set Σ ≔ {𝜎 ∈ AX : 𝜎(𝑥) ∈ Γ(𝑥) for all 𝑥 ∈ X}.
We combine RX (the set of all real-valued functions on X) with the pointwise partial
order ⩽ and, for 𝜎 ∈ Σ and 𝑣 ∈ RX, define the MDP policy operator

(𝑇𝜎 𝑣)(𝑥) = 𝑟(𝑥, 𝜎(𝑥)) + 𝛽
∑
𝑥′
𝑣(𝑥′)𝑃(𝑥, 𝜎(𝑥), 𝑥′) (𝑥 ∈ X). (3)

Let 𝑉 ≔ R
X and T = {𝑇𝜎 : 𝜎 ∈ Σ}. Since each 𝑇𝜎 is an order preserving self-map on

𝑉, the pair (𝑉,T) is an ADP. Given 𝑣 ∈ 𝑉, let 𝜎 ∈ Σ be such that

𝜎(𝑥) ∈ arg max
𝑎∈Γ(𝑥)

{
𝑟(𝑥, 𝑎) + 𝛽

∑
𝑥′
𝑣(𝑥′)𝑃(𝑥, 𝑎, 𝑥′)

}
for all 𝑥 ∈ X. (4)

Such a 𝜎 satisfies 𝑇𝜎 𝑣 ⩾ 𝑇𝜏 𝑣 for all 𝜏 ∈ Σ, implying 𝜎 is 𝑣-greedy. Moreover, since Γ is
nonempty, at least one policy obeying (4) exists. This proves that (𝑉,T) is regular.

We stated above that, in applications, the fixed point of each 𝑇𝜎 ∈ T is the lifetime
value of policy 𝜎. To see the idea in the MDP setting, fix 𝜎 ∈ Σ and let 𝑟𝜎 and 𝑃𝜎 be
defined by 𝑃𝜎(𝑥, 𝑥′) ≔ 𝑃(𝑥, 𝜎(𝑥), 𝑥′) and 𝑟𝜎(𝑥) ≔ 𝑟(𝑥, 𝜎(𝑥)). In the present setting,
the lifetime value of 𝜎 given 𝑋0 = 𝑥 is understood to be 𝑣𝜎(𝑥) = E

∑
𝑡⩾0 𝛽

𝑡𝑟𝜎(𝑋𝑡), where
(𝑋𝑡)𝑡⩾0 is a Markov chain generated by 𝑃𝜎 with initial condition 𝑋0 = 𝑥 ∈ X. Pointwise
on X, we can express 𝑣𝜎 as 𝑣𝜎 =

∑
𝑡⩾0(𝛽𝑃𝜎)𝑡𝑟𝜎 = (𝐼 − 𝛽𝑃𝜎)−1𝑟𝜎 (see, e.g., Puterman

(2005), Theorem 6.1.1). This implies that 𝑣𝜎 is the unique solution to the equation
𝑣 = 𝑟𝜎 + 𝛽𝑃𝜎 𝑣. From the definition of 𝑇𝜎 in (3), this is equivalent to the statement
that 𝑣𝜎 is the unique fixed point of 𝑇𝜎.

For the ADP (𝑉,T), the ADP Bellman equation (1) reduces to the MDP Bellman
equation (2). This connection is important because it allows to use optimality proper-
ties of (𝑉,T) to study optimality properties of the MDP. To see that it holds observe
that, since 𝑉 is endowed with the pointwise partial order, for given 𝑣 ∈ 𝑉 and 𝑥 ∈ X,
the ADP Bellman operator (1) reduces to

(𝑇 𝑣) (𝑥) = sup
𝜎∈Σ

(𝑇𝜎 𝑣)(𝑥) = sup
𝜎∈Σ

{
𝑟(𝑥, 𝜎(𝑥)) + 𝛽

∑
𝑥′
𝑣(𝑥′)𝑃(𝑥, 𝜎(𝑥), 𝑥′)

}
.
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By the definition of Σ, we can also write this as

(𝑇 𝑣) (𝑥) = max
𝑎∈Γ(𝑥)

{
𝑟(𝑥, 𝑎) + 𝛽

∑
𝑥′
𝑣(𝑥′)𝑃(𝑥, 𝑎, 𝑥′)

}
. (5)

Evidently 𝑣 satisfies the ADP Bellman equation 𝑇𝑣 = 𝑣 if and only if the traditional
MDP Bellman equation (2) holds.

3.2. Example: Risk-Sensitive Q-learning. Some dynamic programs reverse the
order of maximization and mathematical expectation. One example is Q-factor risk-
sensitive decision processes (see, e.g., Fei et al. (2021)), where the Bellman equation
takes the form

𝑓 (𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽

𝜃
ln

{∑
𝑥′

exp
[
𝜃 max
𝑎′∈Γ(𝑥′)

𝑓 (𝑥′, 𝑎′)
]
𝑃(𝑥, 𝑎, 𝑥′)

}
(6)

for (𝑥, 𝑎) ∈ G and nonzero 𝜃 ∈ R. (We take X, A, Γ, Σ and G as in our discussion of
MDPs in Section 3.1.) Given 𝜎 ∈ Σ, the corresponding policy operator is

(𝑇𝜎 𝑓 )(𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽

𝜃
ln

[∑
𝑥′

exp [𝜃 𝑓 (𝑥′, 𝜎(𝑥′))] 𝑃(𝑥, 𝑎, 𝑥′)
]

(7)

where 𝑓 ∈ RG ≔ all real-valued functions on G. With T ≔ {𝑇𝜎 : 𝜎 ∈ Σ} and G
endowed with the pointwise order, the pair (RG,T) is an ADP. The ADP Bellman
operator is 𝑇 𝑓 ≔

∨
𝜎 𝑇𝜎 𝑓 (by (1)) and the ADP Bellman equation is 𝑇 𝑓 = 𝑓 . By

replicating arguments in Section 3.1, one can show that 𝑓 ∈ G solves 𝑇 𝑓 = 𝑓 if and
only if it solves (6). This allows us to study optimality properties of the original
model (as characterized by (6)) through the ADP (RG,T).

3.3. Distributional Dynamic Programming. Distributional dynamic program-
ming focuses on an entire distribution of lifetime returns, not just its expected value
(Bellemare et al., 2017). This falls outside frameworks such as Puterman (2005) or
Bertsekas (2022) because elements of the value space PX are not real-valued functions.
In this section we show how distributional dynamic programming can be represented
in the setting of ADPs.

In what follows, P is the set of all probability distributions on R and PX is the set of
all functions from X into P. A typical element is written as 𝜂(𝑥, d𝑔), indicating that
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𝜂(𝑥, ·) is a distribution on R for each 𝑥 ∈ X. For 𝜂, 𝜂 ∈ PX, we write 𝜂 ⪯ 𝜂 when 𝜂(𝑥)
lies below 𝜂(𝑥) in the sense of stochastic dominance for every 𝑥 ∈ X. Thus,

𝜂 ⪯ 𝜂 ⇐⇒
∫

ℎ(𝑔)𝜂(𝑥, d𝑔) ⩽
∫

ℎ(𝑔)𝜂(𝑥, d𝑔) ∀ ℎ ∈ 𝑖𝑏R, 𝑥 ∈ X,

where 𝑖𝑏R is the set of increasing bounded measurable functions from R to itself.

Maintaining the MDP setting in Section 3.1 but switching to a distributional per-
spective, the distributional policy operator, written here as 𝐷𝜎, maps 𝜂 ∈ PX to 𝐷𝜎𝜂,
where (𝐷𝜎𝜂) (𝑥) is the distribution of the random variable 𝐺′ ≔ 𝑟𝜎(𝑥) + 𝛽𝐺𝑋 ′ when 𝐺𝑋 ′

is sampled by first drawing the next period state 𝑋′ from 𝑃𝜎(𝑥, ·) and then drawing 𝐺
from 𝜂(𝑋′, ·). So the expectation of ℎ ∈ 𝑖𝑏R under the distribution (𝐷𝜎𝜂) (𝑥) can be
expressed as

Eℎ(𝐺′) ≔ ⟨ℎ, (𝐷𝜎𝜂)(𝑥)⟩ ≔
∑
𝑥′

∫
ℎ(𝑟𝜎(𝑥) + 𝛽𝑔)𝜂(𝑥′, d𝑔)𝑃𝜎(𝑥, 𝑥′).

If we now take 𝜂 ⪯ 𝜂 and ℎ ∈ 𝑖𝑏R, we get
∫
ℎ(𝑟𝜎(𝑥) + 𝛽𝑔)𝜂(𝑥′, d𝑔) ⩽

∫
ℎ(𝑟𝜎(𝑥) +

𝛽𝑔)𝜂(𝑥′, d𝑔) for any 𝑥′ and hence ⟨ℎ, (𝐷𝜎𝜂) (𝑥)⟩ ⩽ ⟨ℎ, (𝐷𝜎𝜂)(𝑥)⟩. Since this holds for
any 𝑥 we have 𝐷𝜎 𝜂 ⪯ 𝐷𝜎 𝜂, so 𝐷𝜎 is order preserving. In particular, (PX, {𝐷𝜎}𝜎∈Σ) is
an ADP.

3.4. Empirical Dynamic Programming. Monte Carlo estimates are sometimes
used to approximate mathematical expectations in dynamic programs with large state
spaces. For example, in Haskell et al. (2016), the MDP Bellman operator (5) is
replaced by

(𝑇 𝑣)(𝑥) = max
𝑎∈Γ(𝑥)

{
𝑟(𝑥, 𝑎) + 𝛽

1
𝑛

𝑛∑
𝑖=1

𝑣(𝐹(𝑥, 𝑎, 𝜉𝑖))
}
,

where (𝜉𝑖)𝑛𝑖=1 is a collection of random variables on probability space (Ω,F ,P) and
each 𝐹(𝑥, 𝑎, 𝜉𝑖) has distribution 𝑃(𝑥, 𝑎, ·). The corresponding policy operators T̂ ≔

{𝑇𝜎 : 𝜎 ∈ Σ} are

(𝑇𝜎 𝑣)(𝑥) = 𝑟(𝑥, 𝜎(𝑥)) + 𝛽
1
𝑛

𝑛∑
𝑖=1

𝑣(𝐹(𝑥, 𝜎(𝑥), 𝜉𝑖)). (8)

Following Haskell et al. (2016), we take V to be the set of random elements defined on
probability space (Ω,F ,P) and taking values in the function space RX. To make the
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dependence on 𝜔 ∈ Ω explicit we write a realization as 𝑣(𝜔, ·), so that 𝑥 ↦→ 𝑣(𝜔, 𝑥)
is a function in RX assigning values to states. The policy operator (8) then becomes

(𝑇𝜎 𝑣)(𝜔, 𝑥) = 𝑟(𝑥, 𝜎(𝑥)) + 𝛽
1
𝑛

𝑛∑
𝑖=1

𝑣(𝜔, 𝐹(𝑥, 𝜎(𝑥), 𝜉𝑖(𝜔))). (9)

A partial order can be introduced on V by writing 𝑣 ⩽ 𝑤 when 𝑣(𝜔, 𝑥) ⩽ 𝑤(𝜔, 𝑥) for
all 𝜔 ∈ Ω and 𝑥 ∈ X. It is clear that 𝑇𝜎 𝑣 ⩽ 𝑇𝜎𝑤 whenever 𝑣 ⩽ 𝑤, so (V, T̂) is an
ADP.

3.5. Example: Approximate Dynamic Programming. In practice, solution
methods for a vast range of dynamic programs involve some form of function approx-
imation to simplify update steps and generate representations of value and policy
functions (see, e.g., Powell (2016); Bertsekas (2021, 2022)). For example, the MDP
policy operator 𝑇𝜎 from (3) might be replaced by 𝐴 ◦ 𝑇𝜎, where 𝐴 implements an ap-
proximation architecture such as kernel averaging or projection onto a space of basis
functions.

When function approximation is added to policy and Bellman operators, properties
needed to pose a well-defined dynamic program may not be satisfied. For example,
function approximations may transmute a well-behaved MDP into a dynamic program
for which no optimal stationary policy exists (Naik et al., 2019). Our framework
facilitating addressing these issues. For example, if the approximation operator 𝐴 is
order preserving, then setting 𝑉 = RX andT𝐴 = {𝐴◦𝑇𝜎 : 𝜎 ∈ Σ} yields an ADP (𝑉,T𝐴).
Below we provide results under which ADPs such as (𝑉,T𝐴) have well-defined optimal
policies.

3.6. Example: Structural Estimation. Rust (1987) and many subsequent authors
study discrete choice problems with Bellman equations of the form

𝑔(𝑥, 𝑎) =
∑
𝑥′

∫ {
max
𝑎′∈A

[𝑟(𝑥′, 𝑎′, 𝑒′) + 𝛽𝑔(𝑥′, 𝑎′)]
}
𝜈(d𝑒′)𝑃(𝑥, 𝑎, 𝑥′). (10)

Here (𝑥, 𝑎) ∈ G ≔ X × A where A and X are the action and state spaces respectively.
The set A is finite (hence discrete choice) and we take X to be finite for simplicity
(although other settings can also be handled). We assume that 𝑟 is a bounded reward
function, 𝛽 ∈ (0, 1) and 𝑃(𝑥, 𝑎, ·) is a probability distribution (probability mass func-
tion) on X for each (𝑥, 𝑎) ∈ G. The component 𝑒′ in the reward function takes values
in some measurable space and is iid with distribution 𝜈.
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The function 𝑔 can be interpreted as an “expected post-action value function.” Ad-
vantages of working with this version of the Bellman equation are discussed in Rust
(1994), Kristensen et al. (2021) and other sources. Because the max operator is inside
the expectation, frameworks such as Puterman (2005) and Bertsekas (2022) do not
directly apply. Nevertheless, we can set this problem up as an ADP by taking Σ to
be the set of maps from X to A and, for each 𝜎 ∈ Σ, introducing the policy operator

(𝑇𝜎 𝑔) (𝑥, 𝑎) =
∑
𝑥′

∫
{𝑟(𝑥′, 𝜎(𝑥′), 𝑒′) + 𝛽𝑔(𝑥′, 𝜎(𝑥′))} 𝜈(d𝑒′)𝑃(𝑥, 𝑎, 𝑥′). (11)

Clearly 𝑇𝜎 maps RG into itself and is order preserving on RG under the pointwise
partial order. Hence, with T ≔ {𝑇𝜎 : 𝜎 ∈ Σ}, the pair (RG,T) is an ADP. Moreover,
if we take 𝑀 ∈ N such that |𝑟 | ⩽ 𝑀 and set 𝑊 to all 𝑔 ∈ RG with |𝑔 | ⩽ 𝑀/(1 − 𝛽),
then straightforward calculations show that 𝑇𝜎 maps 𝑊 to itself. Hence (𝑊,T) is also
an ADP.

4. Properties of ADPs

In this section we define optimality for ADPs. We also categorize ADPs with the aim
of determining properties that lead to strong optimality results.

4.1. Basic Properties. Let (𝑉,T) be an ADP with policy set Σ. When it exists,
we denote the unique fixed point of 𝑇𝜎 in 𝑉 by 𝑣𝜎. We call (𝑉,T) finite if T is finite,
well-posed if each 𝑇𝜎 ∈ T has a unique fixed point 𝑣𝜎 in 𝑉, order stable if each 𝑇𝜎 ∈ T
is order stable on 𝑉, order continuous if each 𝑇𝜎 ∈ T is order continuous on 𝑉, and
bounded above if there exists a 𝑢 ∈ 𝑉 with 𝑇𝜎 𝑢 ⪯ 𝑢 for all 𝑇𝜎 ∈ T.

In our applications, the lifetime value of a policy 𝜎 coincides with the fixed point
𝑣𝜎 of its policy operator 𝑇𝜎. Well-posedness is a minimal condition because without
it we cannot be sure that policies have well-defined lifetime values. Maximizing
lifetime values (or, equivalently, minimizing lifetime costs) is the objective of dynamic
programming.

Example 4.1. The distributional ADP (PX, {𝐷𝜎}𝜎∈Σ) described in Section 3.3 is well-
posed, since, given boundedness of the reward function 𝑟 and 𝛽 ∈ (0, 1), each policy
operator 𝐷𝜎 has a unique fixed point in PX. This existence and uniqueness result
follows from Theorem 1 of Gerstenberg et al. (2023).
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Example 4.2. The ADP (𝑉,T) generated by the MDP model in Section 3.1 is
finite, well-posed, order stable, order continuous, and bounded above. Finiteness
holds because X and A are finite. (𝑉,T) is well-posed because, under the stated
assumptions, each 𝑇𝜎 𝑣 = 𝑟𝜎 + 𝛽𝑃𝜎 𝑣 has a unique fixed point in 𝑉 given by 𝑣𝜎 ≔

(𝐼 − 𝛽𝑃𝜎)−1𝑟𝜎. Order stability follows from Lemma 2.2. (𝑉,T) is order continuous
because 𝑣𝑛 ↑ 𝑣 is equivalent to 𝑣𝑛 → 𝑣 pointwise when 𝑉 = RX. Hence 𝑣𝑛 ↑ 𝑣 implies
𝑇𝜎 𝑣𝑛 ↑ 𝑇𝜎 𝑣. Finally, (𝑉,T) is bounded above because, for any 𝜎 ∈ Σ,

𝑢 =
max 𝑟
1 − 𝛽

=⇒ 𝑇𝜎 𝑢 = 𝑟𝜎 + 𝛽𝑃𝜎 𝑢 ⩽ max 𝑟 + 𝛽𝑢 = 𝑢.

Example 4.3. The ADP (𝑊,T) generated by the dynamic structural model in Sec-
tion 3.6 is finite, well-posed, order stable, and order continuous. The proof is almost
identical to that given in Example 4.2.

Below we use order stability as a condition for optimality. The next lemma shows
that order continuity passes from the policy operators to the Bellman operator.

Lemma 4.1. If (𝑉,T) is order continuous and 𝑉 is countably chain complete, then
𝑇 is order continuous on 𝑉.

Proof. Fix (𝑣𝑛) ⊂ 𝑉 with 𝑣𝑛 ↑ 𝑣 ∈ 𝑉. Since, 𝑇 is order preserving, (𝑇𝑣𝑛)𝑛⩾1 is also
increasing. Hence ∨

𝑛 𝑇𝑣𝑛 exists in 𝑉. We claim that ∨
𝑛 𝑇𝑣𝑛 = 𝑇𝑣. On one hand,

𝑇𝑣 is an upper bound for (𝑇𝑣𝑛). On the other hand, if 𝑤 ∈ 𝑉 is such that 𝑇𝑣𝑛 ⪯ 𝑤

for all 𝑛, then 𝑇𝜎 𝑣𝑛 ⪯ 𝑤 for all 𝑛 and 𝜎. Fixing 𝜎 ∈ Σ, taking the supremum over 𝑛
and using order-continuity of 𝑇𝜎 gives 𝑇𝜎 𝑣 ⪯ 𝑤. Hence 𝑇𝑣 ⪯ 𝑤, which means that 𝑇𝑣
is a least upper bound of (𝑇𝑣𝑛). This confirms that ∨

𝑛 𝑇𝑣𝑛 = 𝑇𝑣. Hence 𝑇 is order
continuous. □

4.2. Defining Optimality. Next we define optimality for ADPs using concepts that
are direct generalizations of dynamic program optimality from existing frameworks.
To begin, we recall that, for a well-posed ADP (𝑉,T) with policy set Σ, the symbol
𝑉Σ represents the set of lifetime values {𝑣𝜎}𝜎∈Σ generated by (𝑉,T). A policy 𝜎 ∈ Σ is
called optimal for (𝑉,T) if 𝑣𝜎 is a greatest element of 𝑉Σ.

Example 4.4. The ADP (𝑉,T) generated by the MDP model in Section 3.1 uses
the pointwise partial order on 𝑉, so 𝑣𝜎 is optimal if and only if 𝑣𝜎(𝑥) = max𝜏∈Σ 𝑣𝜏(𝑥)
for all 𝑥 ∈ X. This is the standard definition of optimality of MDP policies (see, e.g.,
Puterman (2005), Ch. 6).
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We say that Bellman’s principle of optimality holds if 𝑉Σ has a greatest element 𝑣∗

and, for 𝜎 ∈ Σ,
𝜎 is optimal ⇐⇒ 𝜎 is 𝑣∗-greedy. (12)

Example 4.5. The ADP generated by the MDP model in Section 3.1 satisfies Bell-
man’s principle of optimality. See, for example, Bertsekas (2022), Lemma 2.1.1 (c).

We say that the fundamental ADP optimality results hold for (𝑉,T) if

(B1) 𝑉Σ has a greatest element 𝑣∗,
(B2) 𝑣∗ is the unique solution to the Bellman equation in 𝑉, and
(B3) Bellman’s principle of optimality holds.

When (B1) holds we call the greatest element 𝑣∗ the value function. Clearly (B1) is
equivalent to the statement that at least one optimal policy exists.

Properties (B1)–(B3) are not independent, as the next lemma shows.

Lemma 4.2. If 𝑉Σ has greatest element 𝑣∗, then 𝑣∗ satisfies the Bellman equation if
and only if Bellman’s principle of optimality holds.

Proof. Let 𝑉Σ have greatest element 𝑣∗. Suppose first that 𝑇𝑣∗ = 𝑣∗. Fixing 𝜎 ∈ Σ,
we claim that that (12) holds. As for ⇒, if 𝜎 ∈ Σ is optimal, then 𝑣𝜎 = 𝑣∗. Since
𝑇𝜎 𝑣𝜎 = 𝑣𝜎, this implies 𝑇𝜎 𝑣∗ = 𝑣∗. But 𝑇 𝑣∗ = 𝑣∗, so 𝑇𝜎 𝑣∗ = 𝑇𝑣∗. It follows that 𝜎 is
𝑣∗-greedy (by Lemma 3.1). As for ⇐, if 𝜎 is 𝑣∗-greedy, then 𝑇𝜎 𝑣∗ = 𝑇𝑣∗ = 𝑣∗. But
𝑣𝜎 is the unique fixed point of 𝑇𝜎 in 𝑉, so 𝑣𝜎 = 𝑣∗. Hence 𝜎 is an optimal policy.
As for the converse implication, the definition of greatest elements implies existence
of a 𝜎 ∈ Σ such that 𝑣𝜎 = 𝑣∗. By Bellman’s principle of optimality, the policy 𝜎 is
𝑣∗-greedy. As a result, 𝑇𝑣∗ = 𝑇𝜎 𝑣∗ = 𝑇𝜎 𝑣𝜎 = 𝑣𝜎 = 𝑣∗. □

4.3. Algorithms. Let (𝑉,T) be a regular well-posed ADP with Bellman operator 𝑇
and 𝜎-lifetime value functions 𝑉Σ. Suppose that the fundamental optimality proper-
ties (B1)–(B3) hold and let 𝑣∗ denote the value function. We consider three major
algorithms for computing 𝑣∗: value function iteration, optimistic policy iteration and
Howard policy iteration. To this end, we define the Howard policy operator 𝐻 : 𝑉 → 𝑉Σ

corresponding to (𝑉,T) via 𝐻𝑣 = 𝑣𝜎 where 𝜎 is 𝑣-greedy. So that 𝐻 is well-defined, we
always select the same 𝑣-greedy policy when applying 𝐻 to 𝑣. Also, fixing arbitrary
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𝑚 ∈ N, we define the optimistic policy operator 𝑊𝑚 from 𝑉𝐺 to 𝑉 via 𝑊𝑚 𝑣 ≔ 𝑇𝑚𝜎 𝑣

where 𝜎 is 𝑣-greedy. As was the case for 𝐻, we always select a fixed 𝑣-greedy policy
when applying 𝑊𝑚 to 𝑣. We say that

• value function iteration (VFI) converges if 𝑇𝑛𝑣 ↑ 𝑣∗ for all 𝑣 ∈ 𝑉𝑈 ,
• Howard policy iteration (HPI) converges if 𝐻𝑛𝑣 ↑ 𝑣∗ for all 𝑣 ∈ 𝑉𝑈 , and
• optimistic policy iteration (OPI) converges if 𝑊𝑛

𝑚𝑣 ↑ 𝑣∗ for all 𝑣 ∈ 𝑉𝑈 .

5. Optimality Results

In this section we present our main theoretical results. Proofs are deferred to Sec-
tion 6. Throughout this section, (𝑉,T) is a regular well-posed ADP. First, we state a
high-level result that assumes the existence of a fixed point for the Bellman operator.

Theorem 5.1. If (𝑉,T) is downward stable and 𝑇 has at least one fixed point in 𝑉,
then the fundamental ADP optimal results hold.

Now we drop the assumption that 𝑇 has a fixed point and suppose instead that 𝑉 has
some form of completeness.

Theorem 5.2. If the value space 𝑉 is chain complete, then the fundamental ADP
optimal results hold.

The next result weakens chain completeness to a milder condition on the space, while
adding continuity properties on the policy operators.

Theorem 5.3. If (𝑉,T) is order continuous and 𝑉 is countably chain complete, then

(i) the fundamental ADP optimal results hold, and
(ii) VFI, OPI, and HPI all converge.

In the previous two theorems, it is assumed that 𝑉 is order bounded. The next two
theorems drop this assumption. In the first, we state a result for the case where
(𝑉,T) is finite, which is relatively common in applications.

Theorem 5.4. If (𝑉,T) is finite and order stable, then

(i) the fundamental ADP optimal results hold, and
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(ii) HPI converges in finitely many steps.

Finally, we consider a setting where (𝑉,T) is not finite and the value space can be
unbounded.

Theorem 5.5. Let (𝑉,T) be order continuous and order stable. If 𝑉 is countably
Dedekind complete and (𝑉,T) is bounded above, then

(i) the fundamental ADP optimality properties hold and
(ii) VFI, OPI and HPI all converge.

6. Proofs of Section 5 Results

In this section we prove optimality results from Section 5. Throughout this section,
(𝑉,T) is a regular well-posed ADP with Howard policy operator 𝐻, optimistic policy
operator 𝑊 and Bellman operator 𝑇.

6.1. Preliminaries. We begin with some lemmas.

Lemma 6.1. The following statements hold.

(L1) If 𝑣 ∈ 𝑉 with 𝐻𝑣 = 𝑣, then 𝑇𝑣 = 𝑣.
(L2) The operators 𝑇,𝑊 and 𝐻 all map 𝑉𝑈 to itself.
(L3) If 𝑣 ∈ 𝑉𝑈, then 𝑇𝑣 ⪯ 𝑊𝑣 ⪯ 𝑇𝑚𝑣.

Proof. As for (L1), fix 𝑣 ∈ 𝑉 with 𝐻 𝑣 = 𝑣 and let 𝜎 be a 𝑣-greedy policy such that
𝐻 𝑣 = 𝑣𝜎. Then 𝑣𝜎 = 𝐻 𝑣 = 𝑣. Since 𝜎 is 𝑣-greedy, 𝑇𝜎 𝑣 = 𝑇 𝑣. Since 𝑣𝜎 is fixed for 𝑇𝜎,
we also have 𝑇𝜎 𝑣 = 𝑣. Combining the last two equalities proves (L1).

As for (L2), fix 𝑣 ∈ 𝑉𝑈 . Since 𝑣 ⪯ 𝑇𝑣 and 𝑇 is order preserving on 𝑉𝑈 , we have
𝑇𝑣 ⪯ 𝑇𝑇𝑣. Hence 𝑇𝑣 ∈ 𝑉𝑈 . As for 𝑊, let 𝜎 be 𝑣-greedy with 𝑊 = 𝑇𝑚𝜎 𝑣. Since 𝑇 and
𝑇𝜎 are order preserving and 𝑣 ⪯ 𝑇𝑣, we have 𝑊𝑣 = 𝑇𝜎𝑇𝑚−1

𝜎 𝑣 ⪯ 𝑇𝑇𝑚−1
𝜎 𝑣 ⪯ 𝑇𝑇𝑚−1

𝜎 𝑇𝑣 =

𝑇𝑇𝑚𝜎 𝑣 = 𝑇𝑊𝑣. Hence 𝑊𝑣 ∈ 𝑉𝑈 . Finally, regarding 𝐻, we observe that 𝐻𝑣 ∈ 𝑉Σ and, by
Lemma 3.2, 𝑉Σ ⊂ 𝑉𝑈 .

To prove (L3) we fix 𝑣 ∈ 𝑉𝑈 . Letting 𝜎 be 𝑣-greedy, we have 𝑣 ⪯ 𝑇𝑣 = 𝑇𝜎 𝑣. Iterating on
this inequality with 𝑇𝜎 proves that (𝑇𝑘𝜎 𝑣) is increasing. In particular, 𝑇𝑣 = 𝑇𝜎 𝑣 ⪯ 𝑊𝑣.
For the second inequality in (L3) we use the fact that 𝑇𝜎 ⪯ 𝑇 on 𝑉 and 𝑇 and 𝑇𝜎 are
both order preserving to obtain 𝑊𝑣 = 𝑇𝑚𝜎 𝑣 ⪯ 𝑇𝑚𝑣. □
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The next lemma adds upward stability and derives additional implications.

Lemma 6.2. If (𝑉,T) is upward stable, then for every 𝑣 ∈ 𝑉𝑈,

𝑇𝑛𝑣 ⪯ 𝑊𝑛𝑣 and 𝑇𝑛𝑣 ⪯ 𝐻𝑛𝑣 (13)

for all 𝑛 ∈ N. Moreover, the VFI sequence (𝑇𝑛𝑣), the HPI sequence (𝐻𝑛𝑣) and the
OPI sequence (𝑊𝑛𝑣) are all increasing.

Proof. Our first claim is that

𝑢, 𝑣 ∈ 𝑉𝑈 with 𝑢 ⪯ 𝑣 =⇒ 𝑇𝑢 ⪯ 𝑊𝑣 and 𝑇𝑢 ⪯ 𝐻𝑣. (14)

To show this we fix such 𝑢, 𝑣 and take 𝜎 to be 𝑣-greedy. Let 𝑣𝜎 be the 𝜎-value function,
so that 𝑇𝜎 𝑣𝜎 = 𝑣𝜎 and 𝑣𝜎 = 𝐻𝑣. Since 𝑣 ∈ 𝑉𝑈 we have

𝑣 ⪯ 𝑇𝑣 = 𝑇𝜎 𝑣 ⪯ 𝑇𝑚𝜎 𝑣 =𝑊𝑣 ⪯ 𝑣𝜎 = 𝐻𝑣. (15)

The second inequality is by iterating on 𝑣 ⪯ 𝑇𝜎 𝑣, while the third is by upward stability.
Since 𝑇𝑢 ⪯ 𝑇𝑣, we can use (15) to obtain (14). Iterating on (14) produces (13). The
last claim in Lemma 6.2 follows from (15), which tells us that elements of 𝑉𝑈 are
mapped up by 𝑇, 𝑊, and 𝐻. □

Corollary 6.3. If (𝑉,T) is upward stable and an optimal policy exists, then conver-
gence of VFI implies convergence of OPI and convergence of HPI.

Proof. Assume the conditions of the corollary and fix 𝑣 ∈ 𝑉𝑈 . Since an optimal policy
exists, 𝑣∗ exists and is the greatest element of 𝑉Σ. Lemma 6.2 yields 𝑣 ⪯ 𝑇𝑛𝑣 ⪯ 𝑊𝑛𝑣 ⪯
𝑣∗ for all 𝑛, where the last inequality follows from (15) and the fact that 𝑣𝜎 ⪯ 𝑣∗ for
all 𝜎. Hence convergence of VFI implies convergence of OPI. The proof for HPI is
similar. □

6.2. Remaining Proofs. We now prove the main optimality results from Section 5.

Proof of Theorem 5.1. Let (𝑉,T) be downward stable and suppose that 𝑇 has at least
one fixed point 𝑣 in 𝑉. Since (𝑉,T) is regular, there exists a 𝜎 ∈ Σ with 𝑇𝜎 𝑣 = 𝑇𝑣

(Lemma 3.1). Since (𝑉,T) is well-posed, this last equality and 𝑇𝑣 = 𝑣 imply that 𝑣
is the unique fixed point of 𝑇𝜎. Thus, 𝑣 ∈ 𝑉Σ. Moreover, if 𝜏 ∈ Σ, then 𝑇𝜏 𝑣 ⪯ 𝑇𝑣 = 𝑣,
so, by downward stability, 𝑣𝜏 ⪯ 𝑣. Hence 𝑣 is both the greatest element of 𝑉Σ and a
solution to the Bellman equation in 𝑉. The fundamental ADP optimality properties
now follow from Lemma 4.2. □
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Proof of Theorem 5.2. Let 𝑉 be chain complete. (𝑉,T) is order stable by Lemma 2.2
and, by Theorem 2.1, 𝑇 has at least one fixed point in 𝑉. Hence the conditions of
Theorem 5.1 hold, which implies the fundamental ADP optimality properties. □

Proof of Theorem 5.3. Suppose (𝑉,T) is order continuous and 𝑉 is countably chain
complete. Since 𝑇 is order continuous (Lemma 4.1), Theorem 2.1 implies that 𝑇 has
at least one fixed point in 𝑉. Also, by Lemma 2.2, (𝑉,T) is order stable. Hence, by
Theorem 5.1, the fundamental ADP optimality properties hold. Moreover, for 𝑣 ∈ 𝑉𝑈
the sequence 𝑣𝑛 ≔ 𝑇𝑛𝑣 is increasing. Since 𝑇 is order continuous, the supremum is
a fixed point of 𝑇 (Theorem 2.1). But, by (B2) of the fundamental ADP optimality
properties, the value function 𝑣∗ is the only fixed point of 𝑇 in 𝑉. Hence VFI converges.
Convergence of OPI and HPI now follows from Corollary 6.3. □

Proof of Theorem 5.4. Let (𝑉,T) be order stable and finite. Fix 𝑣 ∈ 𝑉 and let 𝑣𝑛 =

𝐻𝑛𝑣 for all 𝑛 ∈ N. By Lemma 6.2, 𝑣𝑛 ⪯ 𝑣𝑛+1 for all 𝑛 ∈ N. Since (𝑣𝑛) is contained in
the finite set 𝑉Σ, it must be that 𝑣𝑛+1 = 𝑣𝑛 for some 𝑛 ∈ N. But then 𝐻 𝑣𝑛 = 𝑣𝑛, so, by
Lemma 6.1, we have 𝑣𝑛 is a fixed point of 𝑇. Hence, by Theorem 5.1, the fundamental
ADP optimality properties hold. By these same properties, the fixed point 𝑣𝑛 equals
the value function 𝑣∗. Thus, we have also shown that HPI converges in finitely many
steps. □

Proof of Theorem 5.5. In view of Theorem 5.1, the fundamental ADP optimality
properties will hold when 𝑇 has a fixed point in 𝑉. To see that this is true, fix
any 𝑣 ∈ 𝑉𝑈 (which is nonempty by Lemma 3.2) and set 𝑣𝑛 ≔ 𝑇𝑛𝑣. Since (𝑉,T) is
bounded above and 𝑉 is countably Dedekind complete, there exists a 𝑣 ∈ 𝑉 with
𝑣𝑛 ↑ 𝑣. We claim that 𝑇𝑣 = 𝑣. Indeed, 𝑣𝑛+1 = 𝑇𝑣𝑛 ⪯ 𝑇𝑣 for all 𝑛, so, taking the
supremum, 𝑣 ⪯ 𝑇𝑣. For the reverse inequality we take 𝜎 to be 𝑣-greedy and use order
continuity of 𝑇𝜎 to obtain

𝑇𝑣 = 𝑇𝜎 𝑣 = 𝑇𝜎
∨
𝑛

𝑣𝑛 =
∨
𝑛

𝑇𝜎 𝑣𝑛 ⪯
∨
𝑛

𝑇 𝑣𝑛 =
∨
𝑛

𝑣𝑛+1 = 𝑣.

The fundamental ADP optimality properties are now proved. In view of these prop-
erties, the only fixed point of 𝑇 in 𝑉 is 𝑣∗. Hence 𝑇𝑛𝑣 = 𝑣𝑛 ↑ 𝑣 = 𝑣∗. This proves
convergence of VFI. Convergence of OPI and HPI follow from Corollary 6.3. □
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7. Applications

Next we illustrate how the ADP optimality results stated above can be applied.

7.1. Non-EU Discrete Choice. Some studies have found incompatibilities between
data and predictions of utility maximization problems founded on additively separable
preferences (see, e.g, Lu et al. (2023)). To further this line of analysis, we return to the
discrete choice Bellman equation in Section 3.6, which was motivated by structural
estimation, while replacing ordinary conditional expectation with a general certainty
equivalent operator (so that preferences can fail to be additively separable). In partic-
ular, we adopt the setting and assumptions of Section 3.6 while modifying the policy
operator (11) to (𝑇𝜎 𝑔)(𝑥, 𝑎) = (E𝐻𝜎 𝑔) (𝑥, 𝑎), where

(𝐻𝜎 𝑔)(𝑥′) ≔
∫

{𝑟(𝑥′, 𝜎(𝑥′), 𝑒′) + 𝛽𝑔(𝑥′, 𝜎(𝑥′))} 𝜈(d𝑒′)

and E is a certainty equivalent operator mapping RX into RG. This means that E
is order preserving with respect to the pointwise order and E𝜆 = 𝜆 whenever 𝜆 is
constant. (Thus, E is a generalization of a conditional expectations operator.) We
call E constant subadditive if E( 𝑓 + 𝜆) ⩽ E 𝑓 + 𝜆 for all 𝑓 ∈ RX and 𝜆 ∈ R+.

Let T = {𝑇𝜎}𝜎∈Σ. Each 𝑇𝜎 is order preserving on RG under the usual pointwise order,
so (RG,T) is an ADP. Moreover, given 𝑔 ∈ RG, a policy 𝜎 ∈ Σ is 𝑔-greedy whenever

𝜎(𝑥) ∈ arg max
𝑎′∈A

∫
[𝑟(𝑥′, 𝑎′, 𝑒′) + 𝛽𝑔(𝑥′, 𝑎′)] 𝜈(d𝑒′) for all 𝑥 ∈ X.

Since A is finite, such a policy always exists. Hence (RG,T) is regular.

Proposition 7.1. If E is constant subadditive, then the fundamental ADP optimality
properties hold and HPI converges in finitely many steps.

Proof. Since (RG,T) is regular and finite, it suffices to show that (RG,T) is also
order stable (by Theorem 5.4). To this end, fix 𝑓 , 𝑔 ∈ RG. Since E and 𝐻𝜎 are order
preserving, we have 𝑇𝜎 𝑓 = E𝐻𝜎(𝑔+ 𝑓−𝑔) ⩽ E𝐻𝜎(𝑔+∥ 𝑓−𝑔∥) ⩽ E(𝐻𝜎 𝑔+𝛽∥ 𝑓−𝑔∥). Using
constant subadditivity of E and rearranging gives 𝑇𝜎 𝑓 −𝑇𝜎 𝑔 ⩽ E𝛽∥ 𝑓 − 𝑔∥ = 𝛽∥ 𝑓 − 𝑔∥.
Reversing the roles of 𝑓 and 𝑔 gives |𝑇𝜎 𝑓 − 𝑇𝜎 𝑔 | ⩽ 𝛽∥ 𝑓 − 𝑔∥, so each 𝑇𝜎 ∈ T is a
contraction on RG. Since RG is complete under the supremum norm, (RG,T) is well-
posed. Moreover, from the argument in Example 2.1, (RG,T) is order stable. This
completes the proof of Proposition 7.1. □



DYNAMIC PROGRAMS ON PARTIALLY ORDERED SETS 19

As an illustration, suppose that E is the risk-sensitive certainty equivalent

(E 𝑓 )(𝑥, 𝑎) ≔ 1
𝜃

ln
{∫

exp [𝜃 𝑓 (𝑥′)] 𝑃(𝑥, 𝑎, d𝑥′)
}

((𝑥, 𝑎) ∈ G)),

where 𝑃 is a stochastic kernel from G to X and 𝜃 is a nonzero constant. This choice of
certainty equivalent is constant subadditive, so, among other things, Proposition 7.1
tells us that 𝜎 ∈ Σ is optimal if and only if 𝜎(𝑥) ∈ arg max𝑎′∈A [𝑟(𝑥′, 𝑎′) + 𝛽𝑔∗(𝑥′, 𝑎′)]
for all 𝑥 ∈ X, where 𝑔∗ is the unique solution to the functional equation

𝑔(𝑥, 𝑎) = 1
𝜃

ln
{∫

exp
{
𝜃max

𝑎′∈A
[𝑟(𝑥′, 𝑎′) + 𝛽𝑔(𝑥′, 𝑎′)]

}
𝑃(𝑥, 𝑎, d𝑥′)

}
in the value space RG.2

7.2. Firm Valuation. We consider a firm valuation problem studied by Jovanovic
(1982) with the following extensions: (i) firm profits depend on an aggregate shock,
as well as a firm-specific shock and a cross-sectional distribution, (ii) the interest
rate is allowed to vary over time, (iii) the outside option of the firm is permitted to
depend on aggregates and the cross-section, and shocks and rewards are allowed to
be discontinuous and unbounded.

In this version of the problem, a firm that receives current profit 𝜋(𝑠, 𝜇, 𝑧) and then
transitions to the next period, where management will choose to either exit and
receive 𝑞(𝜇′, 𝑧′) or continue. Thus, the maximal expected firm value 𝑣(𝑠, 𝜇, 𝑧) obeys

𝑣(𝑠, 𝜇, 𝑧) = 𝜋(𝑠, 𝜇, 𝑧) + 𝛽(𝜇, 𝑧)E(𝑠,𝜇,𝑧) max{𝑞(𝜇′, 𝑧′), 𝑣(𝑠′, 𝜇′, 𝑧′)}. (16)

Here 𝑠 is an idiosyncratic state for the firm that takes values in set 𝑆, 𝜇 is a cross-
sectional distribution taking values in a space 𝐷, 𝑧 is an aggregate shock taking
values in set 𝑍, and 𝜋(𝑠, 𝜇, 𝑧) is current profit. Primes denote next period values.
The discount factor 𝛽 depends on cost of capital and hence the current state. Let
𝑥 ≔ (𝑠, 𝜇, 𝑧) take values in X ≔ 𝑆×𝐷×𝑍. Let B be a 𝜎-algebra over X that makes 𝜋, 𝛽
and the transition probabilities measurable. We rewrite the dynamics as 𝑥′ ∼ 𝑃(𝑥, ·),

2Another example of a nonlinear certainty equivalent operator is the quantile operator studied in
de Castro and Galvao (2019), which allows for separation of intertemporal elasticity of substitution
and risk aversion. This certainty equivalent is also constant subadditive, so Proposition 7.1 extends
the results in de Castro and Galvao (2019).
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meaning that 𝑃 is a stochastic kernel on (X,B) and the next period composite state
𝑥′ is drawn from distribution 𝑃(𝑥, ·). With this notation, (16) becomes

𝑣(𝑥) = 𝜋(𝑥) + 𝛽(𝑥)
∫

max {𝑞(𝑥′), 𝑣(𝑥′)} 𝑃(𝑥, d𝑥′) (𝑥 ∈ X). (17)

A 𝑣 that solves (17) gives firm valuation at each state under optimal management.

Let 𝐾 be the discount operator defined by

(𝐾𝑣)(𝑥) ≔ 𝛽(𝑥)
∫

𝑣(𝑥′)𝑃(𝑥, d𝑥′).

We suppose there exists a 𝜎-finite measure 𝜑 on (X,B) such that 𝜋, 𝑞 and 𝛽 are
nonnegative elements of 𝐿1 ≔ 𝐿1(X,B, 𝜑), and that 𝐾 maps 𝐿1 to itself. We endow
𝐿1 with the 𝜑-a.e. pointwise order ⩽, so that 𝑓 ⩽ 𝑔 means 𝜑{ 𝑓 > 𝑔} = 0. In what
follows, for any linear operator 𝐴 on 𝐿1, we use 𝜌(𝐴) to represent the spectral radius
of 𝐴. Also, 𝐴 is called positive if 0 ⩽ 𝑣 implies 0 ⩽ 𝐴𝑣.

Assumption 7.1. The discount operator obeys 𝜌(𝐾) < 1.

Assumption 7.1 is weaker than that found in Hansen and Scheinkman (2012) and
related sources, since we impose no irreducibility or compactness conditions on 𝐾.
(Later, in Proposition 7.3, we show that, when such conditions are in force, Assump-
tion 7.1 is both necessary and sufficient for optimality.)

Let Σ be the set of policies, each of which is a B-measurable map 𝜎 from X to {0, 1}.
Here 𝜎(𝑥) = 1 indicates the decision to exit at state 𝑥 and 𝜎(𝑥) = 0 indicates the
decision to continue. To each 𝜎 ∈ Σ we assign the policy operator

𝑇𝜎 𝑣 = 𝜋 + 𝐾 (𝜎𝑞 + (1 − 𝜎)𝑣) (18)

Since 𝐾 is positive and hence order preserving, 𝑇𝜎 is order preserving on 𝐿1. Hence
(𝐿1,T) is an ADP when T ≔ {𝑇𝜎 : 𝜎 ∈ Σ}.

Let 𝑉 be all 𝑣 ∈ 𝐿1 such that 0 ⩽ 𝑣 ⩽ 𝑣, where 𝑣 ≔ (𝐼 − 𝐾)−1(𝜋 + 𝐾𝑞) and 𝐼 is the
identity map (𝑣 is well-defined by Assumption 7.1). Straightforward arguments show
that every 𝑇𝜎 maps 𝑉 to itself. Hence (𝑉,T) is also an ADP. Since 0 ⩽ 𝐾 (1 − 𝜎) ⩽ 𝐾

we have 𝜌(𝐾 (1 − 𝜎)) ⩽ 𝜌(𝐾) < 1, so each 𝑇𝜎 is has a unique fixed point 𝑣𝜎 in 𝑉.
In particular, (𝑉,T) is well-posed. By definition, its ADP Bellman operator obeys
𝑇𝑣 ≔

∨
𝜎∈Σ 𝑇𝜎 𝑣 = 𝜋 + 𝐾 (𝑞 ∨ 𝑣), which coincides with (17). This means that solving

the ADP optimization problem is equivalent to solving the original dynamic program
with Bellman operator (17).
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Figure 1. Firm value function and exit threshold

Proposition 7.2. If Assumption 7.1 holds, then the fundamental ADP optimality
properties hold and VFI, OPI, and HPI all converge.

Proof. Given 𝑣 ∈ 𝑉, the set {𝑇𝜎 𝑣 : 𝜎 ∈ Σ} has greatest element 𝜋 + 𝐾 (𝑞 ∨ 𝑣), which
is attained by the 𝑣-greedy policy 𝜎 = 1{𝑞 ⩾ 𝑣}. Hence (𝑉,T) is regular. Also, 𝐾 is
order continuous because positive linear operators on 𝐿1 are order continuous (see,
e.g., Zaanen (2012), Example 21.6). It then follows that each 𝑇𝜎 is order continuous
(since the order limit ↑ is preserved under basic arithmetic operations – see, e.g., The-
orem 10.2 of Zaanen (2012)) and, in particular, (𝑉,T) is order continuous. Because
(𝑉,T) is regular, well-posed and order continuous, and because 𝑉 is chain complete
(see, e.g., Example 12.5 of Zaanen (2012)), Theorem 5.3 applies. This yields the
conclusions of Proposition 7.2. □

Figure 1 shows an approximation of the value function 𝑣∗ computed by VFI, as well
as a representation of a 𝑣∗-greedy policy 𝜎 in the form of an exit threshhold. For 𝑥
below the threshold, 𝜎(𝑥) = 0, indicating that exit is optimal. In this example, the
state space is just R+ and 𝑥 can be thought of as productivity. The function 𝜋 is
given by

𝜋(𝑥) = max
ℓ⩾0

{
𝑝𝑥ℓ𝜃 − 𝑐 − ℓ

}
,
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where 𝑝 is the output price, ℓ represents labor input, 𝜃 is a productivity parameter,
and 𝑐 is a fixed cost. The dynamics of 𝑥 are given by 𝑃(𝑥, d𝑥) d

= 𝐴𝑥, where 𝐴 is
lognormal (−0.012, 0.1). We set 𝛽 = 0.95, 𝜃 = 0.3, and 𝑐 = 4. The outside option 𝑞 is
set to zero.

To show that our assumptions are weak, we now prove that, under some mild condi-
tions, well-posedness fails whenever Assumption 7.1 fails. This means that Assump-
tion 7.1 is necessary for the dynamic program to be well-defined.

Proposition 7.3. Let 𝜋 be nonzero and let 𝐾 be weakly compact and irreducible on
𝐿1. In this setting, if (𝑉,T) is well-posed, then Assumption 7.1 holds.

Proof. Let 𝜋 be nonzero and let 𝐾 be weakly compact and irreducible. Let 𝐾′ be the
adjoint of 𝐾 and let 𝜆 be the spectral radius. By the Krein–Rutman theorem (see, in
particular, Lemma 4.2.11 of Meyer-Nieberg (2012)), there exists an 𝑒 ∈ 𝐿∞ such that
𝐾′𝑒 = 𝜆𝑒 and, in addition, ⟨𝑒, 𝑓 ⟩ > 0 for all nonzero nonnegative 𝑓 ∈ 𝐿1. Consider the
policy 𝜎 ≡ 0. Under this policy we have 𝑇𝜎 𝑣 = 𝜋 + 𝐾𝑣. If (𝑉,T) is well-posed, then
there exists a solution 𝑣 ∈ 𝑉 to 𝑣 = 𝜋+𝐾𝑣 in 𝑉. Since 𝜋 is nonzero and 𝑣 = 𝜋+𝐾𝑣 ⩾ 𝜋,
the same is true for 𝑣. Now observe that ⟨𝑒, 𝑣⟩ = ⟨𝑒, 𝜋⟩ + ⟨𝑒, 𝐾𝑣⟩ = ⟨𝑒, 𝜋⟩ + ⟨𝐾′𝑒, 𝑣⟩ =
⟨𝑒, 𝜋⟩ + 𝜆 ⟨𝑒, 𝑣⟩. Since 𝑣 and 𝜋 are nonnegative and nonzero, it must be that ⟨𝑒, 𝜋⟩ > 0
and ⟨𝑒, 𝑣⟩ > 0. Therefore 𝜆 satisfies (1 − 𝜆)𝛼 = 𝛽 for 𝛼, 𝛽 > 0. Hence 𝜆 < 1. □

8. Conclusion

The framework constructed in this paper represents dynamic programs as operators
over partially ordered sets and allows us to acquire a range of new optimality results
that include many existing results as special cases. These methods are suitable for
applications with a number of challenging features.

A limitation of our results is that we assumed our dynamic programs are regular.
Some dynamic programs do not have this property because certain policies lead to
infinite loss (see, e.g., Li and Rantzer (2024), Pates and Rantzer (2024), or Chapters 3–
4 of Bertsekas (2022)). Others lack this property due to nonstandard discounting
(Balbus et al., 2020; Jaśkiewicz and Nowak, 2021). Extensions of the results in this
paper to such problems would be valuable.

Another of our assumptions that could be altered is well-posedness, i.e.,that each
𝑇𝜎 has a unique fixed point 𝑣𝜎. It could be replaced by generalizing the approach
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in Bertsekas (2022), where 𝑣𝜎 is defined by 𝑣𝜎(𝑥) ≔ lim sup𝑘 𝑇𝑘𝜎 𝑣(𝑥) for some fixed
reference point 𝑣 ∈ 𝑉. The limsup could be generalized to an abstract partially ordered
set environment by setting 𝑣𝜎 ≔ ∧𝑛⩾1 ∨𝑘⩾𝑛𝑇𝑘𝜎 𝑣. The element 𝑣𝜎 would always be well-
defined if, say, 𝑉 is a complete lattice. We have not yet explored this modification of
our framework, but think it would be worthwhile.

We have focused on applications and theoretical settings where optimal policies always
exist. If one wishes to consider approximately optimal policies, then some metric on
the value space must be added in order to measure approximations. A promising path
forward would be to replace the assumption that 𝑉 is an arbitrary partially ordered
set with the assumption that 𝑉 is a partially ordered space; that is, a metric space
with partial order ⪯ such that the order ⪯ is preserved under limits.

Many further extensions could be built on top of our framework. One example is
average-cost optimality for dynamic programs, which we have not considered. An-
other is continuous time models. These topics are also left for future work.
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