
Economic Dynamics: Solutions
to Selected Exercises

This document contains solutions to most of the exercises for the second edition of
Economic Dynamics: Theory and Computation by John Stachurski.

I have focused on providing the kinds of answers that I thought would be hard to
find by searching. (For example, the exercises in Appendix A are all quite standard,
since we area treating basic real analysis, and solutions are omitted.)

Solution to Exercise 1.1. The variable X1 is normally distributed, since X0 is con-
stant and constant plus normal equals normal. Moreover Xt+1 is normally distributed
whenever Xt is normally distributed because linear combinations of independent nor-
mal random variables are themselves normal.

Solution to Exercise 2.1. Here is a modification that produces the maximizer:

set c = −∞
for x in S do

if c < f (x) then
set c = f (x)
set x∗ = x

end
end
print x∗

The reason the maximizer is more useful is that it provides more information: The
maximum is easily evaluated once we have the maximizer but the converse is not
true.

Solution to Exercise 2.2. I won’t provide a solution to this exercise or the next one, but
I encourage you to write the algorithms up in your favorite programming language
and test them. It will not be hard to iterate until the program is working correctly.
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Solution to Exercise 2.5. Fix x ∈ S and z ∈ (0, 1]. If τ(z) = x, then, since all elements
of S are distinct, the definition of τ implies z ∈ I(x). Conversely, if z ∈ I(x), then,
since all intervals are disjoint, we have τ(z) = x.

Solution to Exercise 3.2. Let ‖ · ‖ be a norm on Rk and fix x, y ∈ Rk. By the triangle
inequality, ‖x‖ = ‖x − y + y‖ ≤ ‖x − y‖+ ‖y‖. Hence ‖x‖ − ‖y‖ ≤ ‖x − y‖. Revers-
ing the roles of x and y yields ‖y‖ − ‖x‖ ≤ ‖x − y‖. The last two inequalities imply
|‖x‖ − ‖y‖| ≤ ‖x − y‖, as was to be shown.

Solution to Exercise 3.3. Only the triangle inequality is nontrivial to verify. To see that
it holds in the case p = ∞, fix x, y ∈ Rk and i ≤ k. By the triangle inequality in R
we have |xi + yi| ≤ |xi|+ |yi| ≤ ‖x‖∞ + ‖y‖∞. Maximizing over i gives the triangle
inequality for the norm.

Solution to Exercise 3.4. Let (xn) and (yn) be as stated. For any n ∈ N, the triangle in-
equality gives 0 ≤ ρ(yn, x) ≤ ρ(yn, xn) + ρ(xn, x). Since the right hand side converges
to zero as n → ∞, we have ρ(yn, x) → 0, as claimed.

Solution to Exercise 3.43. Suppose that there exists a pair x, y ∈ R with Tx = x and
Ty = y. If x < y, then Tx < Ty, which contradicts the decreasing property. The case
y < x can be ruled out in similar fashion. Hence x = y.

Solution to Exercise 3.44. Let T : S → S be nonexpansive. Fix x ∈ S and (xn) ⊂ S. We
have 0 ≤ ρ(Txn, Tx) ≤ ρ(xn, x), so xn → x implies Txn → Tx. Hence T is continuous
at all x ∈ S.

Solution to Exercise 3.45. Let T be a contraction on S. If x, y ∈ S are distinct fixed
points, then ρ(x, y) = ρ(Tx, Ty) and ρ(Tx, Ty) < ρ(x, y). Contradiction.

Solution to Exercise 3.47. Let S, T be as stated and fix distinct x, y ∈ S. Taking the
derivative will convince you that T is increasing on S. Assume without loss of gener-
ality that x < y. We then have

|Tx − Ty| = Ty − Tx = y − x + e−y − e−x < y − x = |x − y|

so T is indeed contracting. At the same time, a fixed point of T on S is an x ∈ R+

satisfying x = x + e−x. Clearly this is impossible.

Solution to Exercise 4.1. Let (S, h), x and x′ be as stated. Let xt = ht(x), so that
xt → x′. For the sequence (h(xt))t≥1, continuity implies that h(xt) → h(x′). However,
(h(xt))t≥1 = (xt)t≥2, and so h(xt) → x′ also holds. (Why?) Now we have h(xt) → x′

and h(xt) → h(x′). Since limits are unique, it must be that h(x′) = x′.
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Solution to Exercise 4.2. Fix x ∈ cl A. By the definition of closure, there exists a
sequence (an) ⊂ A such that an → x. Since h(A) ⊂ A, we have h(an) ∈ A for all n.
Therefore, h(x) = limn h(an) ∈ cl A. Hence h(cl A) ⊂ cl A, as was to be shown.

Solution to Exercise 4.3. This follows directly from the definition of open sets.

Solution to Exercise 4.4. If x′ is another fixed point, then iteration from x′ fails to
converge to x∗. Contradiction.

Solution to Exercise 4.5. Let (S, h) be as stated and fix x ∈ S. The set {hn(x)}n∈N
is bounded because S is bounded, and therefore every subsequence contains a con-
vergent subsubsequence. Since S is closed, the limit is in S. Therefore {hn(x)}n∈N is
precompact as a subset of S.

Solution to Exercise 4.6. Let (S, h) be as stated and fix x ∈ S. Either x ≤ h(x) or
h(x) ≤ x. In the first case, we can apply h to both sides of the inequality to obtain
h(x) ≤ h2(x). Continuing in this fashion proves that (hn(x))n∈N is increasing. A
similar argument shows that, in the case where h(x) ≤ x, the trajectory is decreasing.

Solution to Exercise 4.7. Here’s a counterexample: Take h(x) = 2x, in the sense of
scalar multiplication. If x = (−1, 1), then h(x) = (−2, 2). Neither x ≤ h(x) nor
h(x) ≤ x.

Solution to Exercise 4.8. The relationship ht(x) = atx + b ∑t−1
i=0 ai for each t is easily

checked by induction. When |a| < 1, the first term on the right hand side converges
to zero and the second to x∗ := b/(1 − a). The reader can confirm that h(x∗) = x∗.

Solution to Exercise 4.9. The easiest way to prove this is to break it down case by case.
For example, if a = 1 and b = 0, then h is the identity, which has a continuum of fixed
points. If a = 1 and b 6= 0, then a fixed point must satisfy x = x + b for nonzero b,
which is impossible. Further details are left to the reader.

Solution to Exercise 4.10. We know thatR is complete and, moreover, |h(x)− h(y)| =
|ax − ay| = |a||x − y| for any x, y ∈ R. As |a| < 1, we can apply Banach’s fixed point
theorem.

Solution to Exercise 4.11. For the first claim, take a Cauchy sequence (xn) in (S, ρ)
and let yn = ln xn. You will be able to verify that the Cauchy property of (xn) in (S, ρ)
implies that (yn) is Cauchy in (R, | · |). Hence there exists a y ∈ R with |yn − y| → 0.
Equivalently, ρ(xn, ey) → 0. Hence (xn) is convergent in (S, ρ) and (S, ρ) is complete.
Moreover, ρ(h(k), h(k′)) = α| ln k − ln k′| = αρ(k, k′) for any k, k′ ∈ S, so h is a uniform
contraction under the metric ρ. Hence Banach’s contraction mapping theorem applies.
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Solution to Exercise 4.12. Existence of the maximum follows from Weierstrass’ the-
orem. The bound ‖Ex‖ ≤ λ‖x‖ is trivial if x = 0 so suppose otherwise. Then
‖Ex‖ = ‖x‖‖Ey‖ where y := x/‖x‖. Since ‖y‖ = 1, we now have ‖Ex‖ ≤ ‖x‖λ,
as was to be shown. The global stability result follows from Banach’s fixed point the-
orem when λ < 1, since ‖Ex − Ey‖ = ‖E(x − y)‖ ≤ λ‖x − y‖.

Solution to Exercise 4.13. In view of exercise 4.12, we need only show that λ :=
max‖x‖=1 ‖Ax‖ < 1, where ‖ · ‖ := ‖ · ‖∞. This is true because, when ‖x‖ = maxi |xi| =
1,

‖Ax‖ = max
i

∣∣∣∣∣∑j
aijxj

∣∣∣∣∣ ≤ max
i

∑
j
|aij||xj| ≤ max

i
∑

j
|aij|.

Under the stated condition on row sums, the right hand side is < 1.

Solution to Exercise 4.14. In view of exercise 4.12, we need only show that λ :=
max‖x‖=1 ‖Bx‖ < 1, where ‖ · ‖ := ‖ · ‖1. Let β = maxj ∑i |bij|. When ‖x‖ = ∑j |xj| =
1, we have

‖Bx‖ = ∑
i

∣∣∣∣∣∑j
bijxj

∣∣∣∣∣ ≤ ∑
i

∑
j
|bij||xj| ≤ ∑

j
∑

i
|bij||xj| ≤ β

By assumption, β < 1, so λ ≤ β < 1.

Solution to Exercise 4.15. Let the stated conditions hold and let x∗ be the unique fixed
point of h in S. Fix a ∈ A. Since (S, h) is globally stable, we have an := hn(a) → x∗ as
n → ∞. As h(A) ⊂ A, the sequence (an) lies in A. Finally, because A is closed, any
limit point of a sequence in A is also in A. Therefore, x∗ ∈ A.

Solution to Exercise 4.18. To show that ĝ = τ ◦ g ◦ τ−1 holds, we can equivalently
prove that ĝ ◦ τ = τ ◦ g. For x ∈ R, we have τ(g(x)) = ln A + α ln x and ĝ(τ(x) =
ln A + α ln x. Hence ĝ ◦ τ = τ ◦ g, as was to be shown.

Solution to Exercise 4.19. Let (S, g) and (Ŝ, ĝ) be topologically conjugate, with ĝ ◦ τ =
τ ◦ g. The stated equivalence holds because

g(x) = x ⇐⇒ τ(g(x)) = τ(x) ⇐⇒ ĝ(τ(x)) = τ(x).

Solution to Exercise 4.20. From ĝ = τ ◦ g ◦ τ−1 we have ĝ2 = τ ◦ g ◦ τ−1 ◦ τ ◦ g ◦ τ−1 =
τ ◦ g2 ◦ τ−1 and, continuing in the same way (or using induction), ĝt = τ ◦ gt ◦ τ−1

for all t ∈ N. Equivalently, ĝt ◦ τ = τ ◦ gt for all t ∈ N. Hence, using continuity of τ
and τ−1,

gt(x) → x∗ ⇐⇒ τ(gt(x)) → τ(x∗) ⇐⇒ ĝt(τ(x)) → τ(x∗).
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Solution to Exercise 4.21. These facts can be established by applying the results of the
last two exercises. Details are omitted.

Solution to Exercise 4.23. See the Jupyter code book for solutions to this and other
computational exercises.

Solution to Exercise 4.25. Let p be a stochastic kernel on S and let pt be the t-th order
kernel. By definition, p1 is a stochastic kernel on S. Now suppose the same is true at
t − 1. Then pt(x, y) = ∑z∈S pt−1(x, z)p(z, y) is nonnegative and, in addition,

∑
y∈S

pt(x, y) = ∑
y∈S

∑
z∈S

pt−1(x, z)p(z, y) = ∑
z∈S

pt−1(x, z) ∑
y∈S

p(z, y) = ∑
z∈S

pt−1(x, z).

Using the induction hypothesis now completes the proof.

Solution to Exercise 4.26. The defining expression pt(x, y) = ∑z∈S pt−1(x, z)p(z, y) is
just matrix multiplication written out element by element. Regarding these kernels as
matrices, we can equivalently write pt = pt−1 p. Thus, pt(x, y) is the (x, y)-th element
of the t-th power of p, as was to be shown.

Solution to Exercise 4.27. Fixing stochastic kernel p, as well as k, j ∈ N and x, y ∈ S,
we have, by lemma 4.2.5,

pj+k(x, y) = (δxMj+k)(y) = (δxMjMk)(y) = ∑
z∈S

(δxMj)(z)pk(z, y)

Since (δxMj)(z) = pj(x, z), we recover the Chapman–Kolmogorov relation.

Solution to Exercise 4.28. This follows easily from the definitions and induction on t.
The details are omitted.

Solution to Exercise 4.29. See the code book for solutions to this and other computa-
tional exercises.

Solution to Exercise 4.35. At one billion paths per second, total run time is 10100/109 =
1091 seconds. There are around 3 × 107 seconds in year, so run time in years is more
than 1083. The universe is estimated to be around 4 × 1010 years old.

Solution to Exercise 4.37. Fix ψ ∈ P(S). At each y ∈ S, we have ψM(y) = ∑x∈S p(x, y)ψ(x).
Since p is a stochastic kernel, easy arguments confirm that ψM(y) ≥ 0 and ∑y∈S ψM(y) =
1. Hence ψM ∈ P(S).

Solution to Exercise 4.38. Let ψi and Ψi be as defined in the exercise, i = 1, 2. Let
D = {x ∈ S : ψ1(x) ≥ ψ2(x)}. For any A ⊂ S, we can decompose the sum over
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A = (A ∩ D) ∪ (A ∩ Dc) and apply the triangle inequality to get

|Ψ1(A)− Ψ2(A)| ≤ ∑
x∈A∩D

|ψ1(x)− ψ2(x)|+ ∑
x∈A∩Dc

|ψ1(x)− ψ2(x)|

= ∑
A∩D

(ψ1(x)− ψ2(x)) + ∑
A∩Dc

(ψ2(x)− ψ1(x))

≤ ∑
D
(ψ1(x)− ψ2(x)) + ∑

Dc
(ψ2(x)− ψ1(x))

The right hand side evaluates to Ψ1(D) − Ψ2(D) = |Ψ1(D) − Ψ2(D)|. As a conse-
quence of this calculation, we see that

sup
A⊂S

|Ψ1(A)− Ψ2(A)| = |Ψ1(D)− Ψ2(D)|

Now observe that

‖ψ1 − ψ2‖ = ∑
D
(ψ1(x)− ψ2(x)) + ∑

Dc
(ψ2(x)− ψ1(x))

and, moreover, since ∑x∈S(ψ1(x)− ψ2(x)) = 0,

0 = ∑
D
(ψ1(x)−ψ2(x))+∑

Dc
(ψ1(x)−ψ2(x)) = ∑

D
(ψ1(x)−ψ2(x))−∑

Dc
(ψ2(x)−ψ1(x))

Combining these results gives ‖ψ1 − ψ2‖ = 2 ∑D(ψ1(x)− ψ2(x)) = 2s(ψ1, ψ2).

Solution to Exercise 4.39. Fix ψ, ψ′ ∈ P(S) and Markov operator M corresponding to
stochastic kernel p. We have

d1(ψM, ψ′M) = ∑
y

∣∣∣∣∣∑x
p(x, y)ψ(x)− ∑

x
p(x, y)ψ′(x)

∣∣∣∣∣ ≤ ∑
y

∑
x

p(x, y)|ψ(x)− ψ′(x)|

Reversing the other of the sums and using ∑y p(x, y) = 1 gives the desired conclusion.

Solution to Exercise 4.40. If p = IN , the N × N identity, then every distribution is
stationary.

Solution to Exercise 4.41. If ψ is a stationary distribution, then ψ(IN − p + 1N×N) =
ψ1N×N = 1N . The restriction that the elements of ψ sum to 1 is imposed by the last
equality.

Solution to Exercise 4.44. Let ψ∗ = (a, b). If ψ∗ is stationary, then, by ψ∗M = ψ∗ and
the choice of p, we must have (a, b) = (b, a). Hence a + b = 1 and a = b. This yields
a = b = 1/2. For a counterexample to the global stability statement, try iterating on
ψ = (1, 0).
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Solution to Exercise 4.45. This follows directly from the definition and ∑x p(x, y) = 1
for all x.

Solution to Exercise 4.46. It is clear from the definition that p(x, dy) = q ∈ P(S)
for all x ∈ S implies α(p) = 1. Regarding the converse, suppose to the contrary
that p(x, dy) and p(x′, dy) are distinct for some x, x′ ∈ S × S. Since both p(x, dy) and
p(x′, dy) are distributions, we can select a z ∈ S with p(x, z) < p(x′, z). Hence

α(p) ≤ ∑
y∈S

p(x, y) ∧ p(x′, y) ≤ ∑
y 6=z

p(x′, y) + p(x, z) < ∑
y∈S

p(x′, y) = 1.

Solution to Exercise 4.48. Evidently

α(p) > 0 ⇐⇒ ∀ (x, x′) ∈ S × S, ∃ y ∈ S s.t. p(x, y) ∧ p(x′, y) > 0

The statement on the right means precisely that p(x, dy) and p(x′, dy) overlap.

Solution to Exercise 4.49. This follows immediately from exercise 4.47, since pt is the
periodic kernel when t is odd and the identity when t is even.

Solution to Exercise 4.50. Suppose minx∈S pt(x, ȳ) =: ϵ > 0 for some ȳ ∈ S. Under
this condition, a simple calculation yields α(pt) ≥ ϵ. Hence, by theorem 4.3.5, global
stability holds.

Solution to Exercise 4.51. Shifting a minimum inside a sum makes the value (weakly)
smaller, since we can minimize term by term. Because of this,

α(pt) = min
(x,x′)

∑
y∈S

pt(x, y) ∧ pt(x′, y) ≥ ∑
y∈S

min
(x,x′)

pt(x, y) ∧ pt(x′, y) = ∑
y∈S

min
x

pt(x, y).

Hence, if the condition of Stokey and Lucas holds, then α(pt) > 0 and (P(S), M) is
globally stable.

Solution to Exercise 4.52. To show that part 2 implies part 1, suppose α(pt) > 0 for
some t ∈ N. By theorem 4.3.4 and Banach’s contraction mapping theorem, (P(S), Mt)
is globally stable. (We are also using lemma 4.2.5 from page 82 to connect pt and Mt.)
But then (P(S), M) is globally stable, by lemma 4.1.5 on page 67.

To show that part 1 implies part 2, let ψ∗ be the stationary distribution. Note
that ∃ȳ ∈ S with ψ∗(ȳ) > 0. By global stability, pt(x, ȳ) → ψ∗(ȳ) for any x. Using
finiteness of S, we can obtain a t ∈ Nwith minx∈S pt(x, ȳ) > 0. But then α(pt) > 0, by
exercise 4.50.
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Solution to Exercise 4.53. In view of exercise 4.48, it suffices to provide a pair of rows
of pQ that fail to overlap (when regarded as distributions). This is true for the first and
last rows of the matrix.

Solution to Exercise 4.54. Applying exercise 4.48, we have α(p23
q ) > 0 because any

two rows of p23
q overlap.

Solution to Exercise 4.58. Let p be the corresponding stochastic kernel. In view of
exercise 4.48, it suffices to show that any two rows of p overlap.

Notice that inventory shifts to zero in one step whenever demand is greater than
Q. Given our definition of b, this is a positive probability event. Hence p(x, 0) > 0 for
all x ∈ S. As a result, any two rows overlap.

Solution to Exercise 4.62. Let p be the identity on S and let x, y be distinct points in S.
Both δx and δy are stationary for p. But (Xt) started at x never visits y. Hence δy does
not match the fraction of time the chain spends in each state.

Solution to Exercise 5.1. Fix σ ∈ Σ and (x, y) ∈ S × S. Letting Z be a draw from ϕ,
The kernel corresponding to the SRS (5.1) obeys

pσ(x, y) = P{σ(x) + Z = y} = P{Z = y − σ(x)} = ϕ(y − σ(x))

Solution to Exercise 5.5. Some thought will convince you that p(x, y) > 0 for every
(x, y) ∈ S × S. For example, if y ≥ B(x), then the state travels from x to y whenever
Wv

t+1 = 0 and Wu
t+1 = y − B(x). This is a positive probability event. It follows directly

from strict positivity of p that α(p) > 0. Hence global stability holds.

Solution to Exercise 6.1. These results follow easily from the restrictions on the pro-
duction function and the fact that Z := (0, ∞), so every shock is positive.

Solution to Exercise 6.2. Code is in the Jupyter code book. Since the draws {ki
t}n

i=1
are IID across i, the sample mean converges to the mean, as per the LLN result in
theorem 4.3.6.

Solution to Exercise 6.10. Let fn be the kernel density estimate in (6.10). Clearly fn is
nonnegative. Also, since K is a density, for any y ∈ R and δ > 0, applying the change
of variable z = (x − y)/δ yields∫

K
(

x − y
δ

)
dx =

∫
K(z)δdz = δ

It now follows from the definition of fn that
∫

fn(x)dx = 1 for all n.
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Solution to Exercise 6.17. The proof is straightforward: If u and v are arbitrary ele-
ments of the metric space (U, d) and M and N have the stated properties, then

d(MNu, MNv) ≤ d(Nu, Nv) ≤ ρd(u, v)

This is all we need to show.

Solution to Exercise 6.20. Since continuity is directly assumed, we only need to check
that functions in C are bounded. But this is obvious because S = [a, ∞) and each
p ∈ C is decreasing. Hence p(x) ≤ p(a) < ∞ for all x ∈ S.

Solution to Exercise 6.21. These claims follow from the fact that convergence in d∞
preserves weak inequalities. For example, suppose hn ∈ C for all n and d∞(hn, h) → 0
for some function h ∈ bcS. Fixing x ∈ S and noting that uniform convergence implies
pointwise convergence, we have hn(x) ≥ P(x) for all n and hn(x) → h(x). Hence
h(x) ≥ P(x). Since x is arbitrary, h ≥ P on S.

Solution to Exercise 6.22. This is just a matter of checking the definition. Details are
omitted.

Solution to Exercise 6.23. Let h1 and h2 be as stated, with fixed points x1 and x2.
Suppose to the contrary that x1 > x2. Then, since h1 is decreasing, h1(x1) ≤ h1(x2).
Because h1 ≤ h2 and xi is a fixed point of hi, this yields x1 ≤ h2(x2) = x2. Contradic-
tion.

Solution to Exercise 6.24. This is immediate because v(x) is the maximum of α
∫

p(z)ϕ(z)dz
and P(x). Hence if α

∫
p(z)ϕ(z)dz ≤ P(x), then v(x) = P(x). Given that r ∈

[P(x), v(x)], we now have r = P(x).

Solution to Exercise 6.25. We are considering the unique r ∈ [P(x), v(x)] such that
(6.31) holds. To prove that

r = α
∫

p(α(x − D(r)) + z)ϕ(z)dz

as required by the exercise, it suffices to show that r > P(x), for then the claim will
be true by (6.31). But r > P(x) must hold. To see this, suppose to the contrary that
r = P(x). By (6.31), this leads to

r = max
{

α
∫

p(z)ϕ(z)dz, P(x)
}

At the same time, our hypothsis is α
∫

p(z)ϕ(z)dz > P(x), whence r > P(x). Contra-
diction.
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Solution to Exercise 6.27. When we compare P and p∗, we understand that the former
is the value of a commodity without storage, while the latter is the value of the same
commodity when we add the possibility of storage. The commodity is more valuable
when it can be stored. (The degree of storability is parameterized by α, so higher α
pushes up p∗.)

Solution to Exercise 7.1. The claim is that if A ⊂ B, then λ(A) ≤ λ(B). As in the main
text, let CF be the set of coverings of F. In addition, let HF be the set {∑n ℓ(In) : (In) ∈
CF}. By A ⊂ B, every covering of B is also a covering of A. Hence CB ⊂ CA, and,
in turn, HB ⊂ HA. By lemma A.2.16 on page 335, HB ⊂ HA implies inf HA ≤ inf HB.
That is, λ(A) ≤ λ(B).

Solution to Exercise 7.2. The claim is that if A and B are any two subsets of Rk, then
λ(A∪ B) ≤ λ(A) + λ(B). To see this, fix ϵ > 0 and choose covers (IA

n )n≥1 and (IB
n )n≥1

of A and B respectively such that ∑n ℓ(IA
n ) ≤ λ(A) + ϵ/2 and ∑n ℓ(IB

n ) ≤ λ(B) + ϵ/2.
Clearly (∪n IA

n ) ∪ (∪n IB
n ) contains A ∪ B, so (IA

n , IB
n )n≥1 is a cover of A ∪ B.4 By the

definition of λ, we then have

λ(A ∪ B) ≤ ∑
n
ℓ(IA

n ) + ∑
n
ℓ(IB

n ) ≤ λ(A) + λ(B) + ϵ

Since ϵ was arbitrary, the claim has been established.

Solution to Exercise 7.3. The claim is that for any (An) ⊂ P(R) we have λ(∪n An) ≤
∑n λ(An). To see this, fix any such (An), and any ϵ > 0. Associate to each An a cover
(In

j )j≥1 such that ∑j ℓ(In
j ) ≤ λ(An) + ϵ2−n. The family (In

j )n,j≥1 is countable (see the
figure in the proof of theorem A.1.3 on page 324) and covers ∪n An. The rest of the
proof is similar to that of exercise 7.2.

Solution to Exercise 7.4. In view of (7.3), to show that Rk ∈ L , we need to demon-
strate that λ(B) = λ(B ∩Rk) + λ(B ∩ (Rk)c) for arbitrary B ⊂ R. Since (Rk)c = ∅,
this equality will hold provided that λ(∅) = 0. This is indeed the case, since J was
allowed to contain empty intervals in its definition, and we set ℓ(∅) = 0.

The proof that ∅ ∈ L is similar and hence omitted. Thus it remains only to show
that if N ⊂ R and λ(N) = 0, then N ∈ L . To this end, pick any such N and any
B ⊂ R. The claim will be established if we can show that

λ(B) ≥ λ(B ∩ N) + λ(B ∩ Nc)

4If you want to be more formal and insist that a cover is a single sequence (Jn)n≥1, then you can construct
such a sequence by letting the odd elements J1, J3, J5, . . . equal (IA

n )n≥1 and the even elements J2, J4, J6, . . .
equal (IB

n )n≥1.
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(The reverse inequality holds by subadditivity.) By monotonicity and λ(N) = 0, we
have λ(B ∩ N) = 0, so the claim reduces to λ(B) ≥ λ(B ∩ Nc). Since B ∩ Nc ⊂ B,
another application of monotonicity yields the desired result.

Solution to Exercise 7.5. Suppose that countable additivity holds. The claim is that
λ(∪N

n=1 An) = ∑N
n=1 λ(An) for any finite collection of disjoint sets (An)N

n=1. Let (An)N
n=1

be such a colleciton. The desired equality can be obtained by applying countable ad-
ditivity to the sequence (Bn)n≥1, where Bn := An for n ≤ N and Bn := ∅ for n > N.

Solution to Exercise 7.6. Let A and B be two sets in L with A ⊂ B and λ(B) < ∞.
The claim is that λ(B \ A) = λ(B)− λ(A). To see this, observe that B \ A and A are
disjoint sets with union B. Hence, by additivity, λ(B \ A) + λ(A) = λ(B). Since all
terms are finite, we can rearrange to obtain the desired equality.

Solution to Exercise 7.7. The claim is that λ(Rk) = ∞. Since λ(Rk) is a well-defined
element of [0, ∞], it suffices to show that λ(Rk) is bigger than any real number. To
this end, consider the intervals In := (0, n]k := (0, n]× · · · × (0, n]. By monotonicity
(exercise 7.1) we have λ(R) ≥ λ(In) for all n. By lemma 7.1.1 we have λ(In) = ℓ(In) =
nk. Hence λ(R) ≥ nk for all n ∈ N, competing the proof.

Solution to Exercise 7.8. The claim is that countable sets have zero measure. To see
this, A be any countable set, and let (an)n≥1 be an enumeration of A consisting only of
distinct points. By countable additivity and the fact that singletons have zero measure,
we have λ(A) = ∑n λ({an}) = 0.

Solution to Exercise 7.9. Let S be a σ-algebra on S. The claim is that both S ∈ S and
∅ ∈ S . Since S is closed under complements, it is enough to check that S ∈ S . Since
S is nonempty by definition, there exists at least one A ∈ S . By the definition of S ,
we then have Ac ∈ S , and therefore A ∪ Ac ∈ S . But A ∪ Ac = S.

Solution to Exercise 7.10. The claim is that if {Sα}α∈Λ is any collection of σ-algebras
on S, then their intersection S := ∩αSα is itself a σ-algebra on S. Let’s just check that
S is closed under countable unions. To see that this is so, let (An) be a sequence of
sets with An ∈ S for all n. The statement An ∈ S is equivalent to An ∈ Sα for all
α. Fixing any such α, we can use the σ-algebra property of Sα to obtain ∪n An ∈ Sα.
Since α was arbitrary, we then have ∪n An ∈ S .

Solution to Exercise 7.11. The first claim is that if C is a σ-algebra, then σ(C ) = C .
To see this, let C be any σ-algebra. On one hand, we have σ(C ) ⊂ C , because C is a
σ-algebra containing C , and, by definition, σ(C ) is contained in every such collection.
On the other hand, C ⊂ σ(C ) also holds, because, by definition, σ(C ) is a σ-algebra
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containing C .
Next, let C and D be two collections of sets with C ⊂ D . The claim is that σ(C ) ⊂

σ(D). To see this, just observe that σ(D) is, by definition, a σ-algebra containing D ,
which in turn contains C . But σ(C ) is the the smallest σ-algebra containing C . Hence
σ(C ) ⊂ σ(D).

Solution to Exercise 7.12. To see that B(S) contains the closed subsets of the metric
space S, let F be any closed subset of S. Since G = Fc is open, G ∈ B(S). Since B(S)
is a σ-algebra, and therefore closed under complementation, it follows that F = Gc is
again in B(S).

To see thatQ ∈ B(R), observe that any singleton is closed, and hence, for a ratio-
nal number r ∈ Q, we have {r} ∈ B(S). Since Q can be expressed as the countable
union of such sets, and since B(S) is closed under countable unions, we conclude that
Q ∈ B(S).

Solution to Exercise 7.13. Let A be the set of all open intervals (a, b) ⊂ R. The claim
is that σ(A ) = B(R). To see this, observe first that since A ⊂ O , we must have
σ(A ) ⊂ σ(O) = B(R). To show that σ(O) ⊂ σ(A ) it is sufficient to prove that
σ(A ) contains the open sets. (Recall that σ(O) is, by definition, contained in every
σ-algebra that contains the open sets.) As mentioned in the hint to the exercise, every
open subset ofR can be expressed as a countable union of open intervals. Since σ(A )
contains all the open intervals and is closed under countable unions, we conclude that
σ(A ) contains the open sets.

Solution to Exercise 7.14. Let µ be a function from S to [0, ∞] such that µ is countably
additive on S and µ(A) < ∞ for some A ∈ S . The claim is that µ(∅) = 0. To
see this, just observe that since A is the disjoint union of ∅ and A, we have µ(A) =
µ(∅) + µ(A). Since µ(A) is finite, we can cancel to obtain µ(∅) = 0.

Solution to Exercise 7.15. The claim is that if µ is a measure on (S, S ), E, F ∈ S and
E ⊂ F, then µ(E) ≤ µ(F). To see this, suppose first that µ(F) = ∞. In this case we have
nothing to prove. So suppose instead that µ(F) is finite. Applying F = E ∪ (F \ E), we
have λ(F) = λ(E) + λ(F \ E). All terms are nonnegative, and the desired inequality
follows.

Solution to Exercise 7.16. Let µ be a measure on (S, S ), and let A, B ∈ S . The claim
is that µ(A ∪ B) ≤ µ(A) + µ(B). To see this, note that A ∪ B can also be written as the
disjoint union (A \ B) ∪ B. By additivity and monotonicity (exercise 7.15), we have

λ(A ∪ B) = λ(A \ B) + λ(B) ≤ λ(A) + λ(B)
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Solution to Exercise 7.17. Let (An)n≥1 be a sequence in S , and let µ be a measure
on S . The first claim is that if An ↑ A, then µ(An) ↑ µ(A). To see this, let B1 = A1
and Bn = An \ An−1 for n ≥ 2. The sequence (Bn) is disjoint with ∪k

n=1Bn = Ak and
∪nBn = A. Applying countable additivity to this sequence, we have

µ(A) = µ(∪nBn) = lim
k→∞

k

∑
n=1

µ(Bn) = lim
k→∞

µ(Ak)

as was to be shown.
The second claim is that if µ(A1) < ∞ and An ↓ A, then µ(An) ↓ µ(A). To see

this, consider the sequence (Bn) defined by Bn = A1 \ An. It is not difficult to check
that the sequence (Bn) is increasing, with ∪nBn = A1 \ A. Hence, by the preceding
result, µ(Bn) ↑ µ(A1 \ A). Given that µ(A1) < ∞, we can apply exercise 7.6 to obtain
µ(A1)− µ(An) ↑ µ(A1)− µ(A), or, equivalently, µ(An) ↓ µ(A).

Solution to Exercise 7.18. The claim is that the set function µ(A) = ∑j∈A aj is a mea-
sure on (N,P(N)). The condition µ(∅) = 0 is obvious. Regarding countable ad-
ditivity, let (An) be a disjoint sequence of subsets of N. As usual, let 1{P} be the
indicator function, which is one if statement P is true and zero if it’s false. Note that
µ(A) = ∑j≥1 1{j ∈ A}aj. Using disjointness, we have 1{j ∈ ∪n An} = ∑n 1{j ∈ An}
for any j. (Convince yourself that the right-hand size is zero when the left-hand size
is zero, and one when it is one.) As a result,

µ(∪n An) = ∑
j
1{j ∈ ∪n An}aj

= ∑
j

∑
n
1{j ∈ An}aj = ∑

n
∑

j
1{j ∈ An}aj = ∑

n
µ(An)

Here the third equality holds because ∑n ∑m bn,m = ∑m ∑n bn,m whenever the sum-
mands bn,m are nonnegative.

Solution to Exercise 7.19. The claim is that δx(A) := 1A(x) :=: 1{x ∈ A} is a prob-
ability measure on (S, S ). That δx(S) = 1 is obvious. The claim δx(∅) = 0 does
not need to be checked (exercise 7.14). Regarding countable additivity, let (An) be a
disjoint sequence in S . We saw in the solution to exercise 7.18 that 1{x ∈ ∪n An} =

∑n 1{x ∈ An}. In other words, δx(∪n An) = ∑n δx(An), as was to be shown.

Solution to Exercise 7.20. The claim is that F(x) = µ((−∞, x]) is a cumulative dis-
tribution function on R. Nonnegativity of F is obvious. To see that right-continuity
holds, let (xn) be a real sequence with xn ↓ x. Let An := (−∞, xn]. It is not difficult
to check that An ↓ A := (−∞, x]. Hence, by exercise 7.17, we have µ(An) ↓ µ(A),
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or F(xn) ↓ F(x). Since x was arbitrary, F is right-continuous on R. The proofs that
limx→−∞ F(x) = 0 and limx→∞ F(x) = 1 are similar and left to you, the reader.

Solution to Exercise 7.21. The claim is that λ(1Q) = 0. This follows directly from the
fact thatQ has zero Lebesgue measure (exercise 7.8) and the definition of the integral
for simple functions on page 170. In particular, λ(1Q) = λ(Q) = 0.

Solution to Exercise 7.22. We have s, s′ ∈ sS + and γ ≥ 0. The first claim is that
γs ∈ sS + and µ(γs) = γµ(s). This is straightforward, since for s = ∑N

n=1 αn1An we
have

γs(x) = γ
N

∑
n=1

αn1An(x) =
N

∑
n=1

γαn1An(x)

(In what follows, the argument x is usually omitted.) It is now clear that γs ∈ sS +,
and

µ(γs) =
N

∑
n=1

γαnµ(An) = γ
N

∑
n=1

αnµ(An) = γµ(s)

The second claim is that s + s′ ∈ sS + and µ(s + s′) = µ(s) + µ(s′). We prove it only
for s = α1A and s′ = β1B, where A, B ∈ S . A little thought will convince you that

s + s′ = α1A\B + (α + β)1B∩A + β1B\A (7.12)

These three sets are disjoint, and the constants are all nonnegative, so s + s′ ∈ sS + as
claimed. Moreover, by (7.12) and additivity of µ,

µ(s + s′) = αµ(A \ B) + (α + β)µ(B ∩ A) + βµ(B \ A)

= α{µ(A \ B) + µ(B ∩ A)}+ β{µ(B \ A) + µ(B ∩ A)}
= αµ ((A \ B) ∪ (B ∩ A)) + βµ ((B \ A) ∪ (B ∩ A))

= αµ(A) + βµ(B)

The last expression is just µ(s) + µ(s′), and the proof is done.
The last claim is monotonicity: s ≤ s′ implies µ(s) ≤ µ(s′). We prove it only for

s = α1A and s′ = β1B, where A, B ∈ S . The general case can be found in any text on
measure theory. To this end, let s and s′ be as above. Note that α, β ≥ 0 by assumption.
If β = 0, then s′ = 0 and hence α = 0, in which µ(s) = µ(s′) = 0. If, on the other hand,
β > 0, then we must have both α ≤ β and A ⊂ B, as any other possibility would
contradict s ≤ s′. Hence µ(A) ≤ µ(B), and µ(s) = αµ(A) ≤ βµ(B) = µ(s′).

Solution to Exercise 7.24. The first claim is that every f : S → R is P(S)-measurable.
To see this, we only need to check that f−1(B) ∈ P(S) for arbitrary B ∈ B(R). This is
trivial, because f−1(B) is a subset of S by definition. The second claim is that for S :=
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{S, ∅}, only the constant functions are S -measurable. To see this, let f (x) = α ∈ R
for all x ∈ S. Pick any B ∈ B. Suppose first that α ∈ B. In this case, f−1(B) = S, and
S ∈ S . On the other hand, if α /∈ B, then f−1(B) = ∅, which is once again an element
of S . Finally, to see that any nonconstant f is not S -measurable, let f take at least
two distinct values α and β. Let B ∈ B(R) contain α but not β. Then f−1(B) is neither
the empty set nor the whole set S. Hence f−1(B) /∈ S , and f is not S -measurable.

Solution to Exercise 7.25. The claim is that for arbitrary measurable space (S, S ), we
have sS ⊂ mS . To see this, let s be any element of sS . Recall from the definition
that s = ∑N

n=1 αn1An , where the sets A1, . . . , AN are nonempty, disjoint and An ∈ S
for all n. Pick any B ∈ B(R). Let I be all n in 1, . . . , N such that αn ∈ B. Then
f−1(B) = ∪n∈I An. Since An ∈ S for all n and S is a σ-algebra, we conclude that
f−1(B) ∈ S , and hence s ∈ mS .

Solution to Exercise 7.26. Let S be a metric space, and let f : S → R be continuous.
The claim is that f is Borel measurable, in the sense that elements of B(R) are pulled
back into elements of B(S). To see this, let O be the open sets of R. By definition, O
is a generating class of B(R), and hence, by lemma 7.2.3 on page 173, it is enough to
show that f−1(O) ∈ B(S) for all O ∈ O . By theorem 3.1.10 on page 48, we know that
f−1(O) is an open subset of S. But B(S) contains all the open sets, so we are done.

Solution to Exercise 7.27. The claim is that if f : R → R is either increasing or de-
creasing, then f is Borel measurable. Let’s check the increasing case, since the de-
creasing case is very similar. To this end, recall that f will be Borel measurable if
{ f ≤ b} ∈ B(R) for all b ∈ R. Fix any b ∈ R, and consider the set { f ≤ b} = {x ∈
R : f (x) ≤ b}. A little thought will convince you that this set is either of the form
(−∞, a) or (−∞, a]. The first set is open, and hence Borel measurable. The second
set is closed, and closed sets are also Borel measurable (theorem 7.1.7 on page 163).
Hence f is Borel measurable as claimed.

Solution to Exercise 7.28. The claim is that if (S, S ) is a measurable space, if ( fn) ⊂
mS , and if f = supn fn is finite (i.e., real-valued at each x ∈ S), then f ∈ mS . To see
this, fix any b ∈ R. From the definition of the supremum we have

{ f ≤ b} = {x ∈ S : f (x) ≤ b} = ∩n{x ∈ S : fn(x) ≤ b} ∈ S

The result now follows from lemma 7.2.4.

Solution to Exercise 7.29. Let f ∈ mS . The claim is that | f | ∈ mS . To see this, fix
b ∈ R. By lemma 7.2.4 on page 173, it is enough to show that {| f | ≤ b} ∈ S . Clearly
{| f | ≤ b} = { f ≤ b} ∩ { f ≥ −b}. The intersection is in S by the measurability of f
and the fact that S is a σ-algebra.
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Solution to Exercise 7.30. Let γ ∈ R+ and f ∈ mS +. The first claim is that µ(γ f ) =
γµ( f ). To see this, let (sn) ⊂ sS + with sn ↑ f . Clearly γsn ↑ γ f also holds. Recalling
the definition of the integral in (7.13) and proposition 7.2.1 on page 171, we have

µ(γ f ) = lim
n→∞

µ(γsn) = lim
n→∞

γµ(sn) = γ lim
n→∞

µ(sn) = γµ( f )

A subtle point here is that, as discussed after the definition of the integral was given,
if (s′n) is any sequence in sS + with s′n ↑ g, then limn µ(s′n) = µ(g). It doesn’t matter
which one we pick. This is why the first equality in the preceding expression is valid.

The next thing we need to check is that if f , g ∈ mS +, then µ( f + g) = µ( f ) +
µ(g). The proof is very similar to the last one. Observing that if sn ↑ f and s′n ↑ g, then
sn + s′n ↑ f + g. Using proposition 7.2.1 again, we get

µ( f + g) = lim
n→∞

µ(sn + s′n) = lim
n→∞

[µ(sn) + µ(s′n)] = µ( f ) + µ(g)

Using the last two results one after another yields M3.

Solution to Exercise 7.31. Let Ah = {s ∈ sS + : 0 ≤ s ≤ h} for h ∈ { f , g}. If f ≤ g
pointwise on S, then A f ⊂ Ag. The expression for the integral in (7.14) now implies
that µ( f ) ≤ µ(g).

Solution to Exercise 7.32. Let µ̂ be as defined in the exercise and fix (An) ⊂ S . If
(An) is disjoint, then 1∪n An = ∑n 1An holds. Using M3 and M5, we obtain

µ̂(∪n An) = µ

(
∑
n
1An

)
= lim

k→∞
µ

(
∑
n≤k

1An

)
= lim

k→∞
∑
n≤k

µ(1An) = ∑
n

µ̂(An)

Hence countable additivity holds. The property µ̂(∅) = 0 follows directly from M1.

Solution to Exercise 7.33. Let (En) ⊂ S have the stated properties. If f := 1∪nEn and
fn := 1En , then fn ↑ f pointwise on S. Hence, by M5, µ( f ) = limn→∞ µ( fn). In view
of M1, this becomes µ(∪nEn) = limn→∞ µ(En), which is what we need to show.

Solution to Exercise 7.34. Regarding the first statement, we have f = f1E + f1Ec .
Hence µ( f ) = µ( f1E) + µ( f1Ec). Since µ(E) = 0, part 2 of theorem 7.3.5 gives µ( f ) =
µ( f1Ec).

Regarding the second statement, fix f , g ∈ L1(µ) with f = g µ-a.e. Let E be the set
on which f and g disagree. Then, since µ(E) = 0 and f = g on Ec,

µ( f − g) = µ(1E( f − g)) + µ(1Ec( f − g)) = 0.

Hence µ( f ) = µ(g).
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Solution to Exercise 7.35. The claim is that f ≤ g µ-a.e. implies µ( f ) ≤ µ(g). So
suppose f ≤ g µ-a.e. Then, using f = f+ − f− and g = g+ − g−, we have

1Ec f+ + 1Ec g− ≤ 1Ec g+ + 1Ec f− (7.16)

everywhere on S, where E is all x such that f (x) > g(x). We now have ordered
nonnegative functions, so, applying M3 of theorem 7.3.5 combined with additivity
(M1) yields

µ(1Ec f+) + µ(1Ec g−) ≤ µ(1Ec g+) + µ(1Ec f−), (7.17)

Rearranging gives µ(1Ec f ) ≤ µ(1Ec g). Since E has measure zero, µ( f ) ≤ µ(g).

Solution to Exercise 7.36. We need to show that | f | ∈ L1(µ) and |µ( f )| ≤ µ(| f |).
The first part follows from | f | = f+ + f− and the definition of L1(µ), which requires
µ( f+) < ∞ and µ( f−) < ∞. For the second claim, we have

|µ( f )| = |µ( f+ − f−)| = |µ( f+)− µ( f−)| ≤ µ( f+) + µ( f−) = µ( f+ + f−) = µ(| f |)

Solution to Exercise 7.37. To see that (µ ◦ T−1)(∅) = 0, just observe that, for any
transformation T, we have T−1(∅) = ∅. (Since T is a function, each point in the
domain has to be mapped to some point in S′.)

Regarding countable additivity, let (An) ⊂ S ′ be disjoint and let Bn = T−1(An).
By lemma A.1.1 on page 323, we have T−1(∪n An) = ∪nT−1(An) = ∪nBn. Since T
is a function and (An) ⊂ S ′ is disjoint, the sequence (Bn) is also disjoint. Hence
µ(∪nBn) = ∑n µ(Bn). That is,

µ(T−1(∪n An)) = µ(∪nBn) = ∑
n

µ(Bn) = ∑
n

µ(T−1(An))

Put differently, (µ ◦ T−1)(∪n An) = ∑n(µ ◦ T−1)(An), as was to be shown.

Solution to Exercise 7.38. The proof that ρ satisfies the definition of a pseudometric is
routine. Distinct points can indeed be at zero distance, since x = (1, 0) and y = (1, 1)
obey ρ(x, y) = 0.

Solution to Exercise 8.2. Although the functional form for the law of motion is more
complex, the solution is conceptually the same as the solution to the previous exercise.
Further details are omitted.

Solution to Exercise 8.3. It suffices to show that

Y = s f (x)W + (1 − δ)x and W ∼ ϕ =⇒ Y ∼ ϕ

(
y − (1 − δ)x

s f (x)

)
1

s f (x)
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where the right hand side is understood as a density in y. This implication follows
from theorem 8.1.3 with γ := (1 − δ)x and Γ = s f (x).

Solution to Exercise 8.4. We can follow the same reasoning we used for exercise 8.1.4
to obtain

p(x, y) = ϕ

(
y

sA(x) f (x)

)
1

sA(x) f (x)

Solution to Exercise 8.5. The solution is essentially the same as that for Exercise 4.25
on page 81, after replacing sums with integrals.

Solution to Exercise 8.6. We need to show that
∫

p(x, y)ψ(x)dx = ψ(y) for any given
y ∈ R, where p has the form p(x, y)dy = N(ax, 1) and ψ(dy) = N(0, 1/(1 − a2)). If
we fix y ∈ R, write out the relevant densities and cancel constants, this is equivalent
to showing that

1√
2π

∫
exp

(
− (y − ax)2

2
− x2(1 − a2)

2

)
dx = exp

(
−y2(1 − a2)

2

)
Expanding the squares, the left hand side can be written as

1√
2π

∫
exp

(
−y2 + 2axy − x2

2

)
dx

= exp
(
−y2(1 − a2)

2

)
1√
2π

∫
exp

(
−(ay)2 + 2axy − x2

2

)
dx

Since −(ay)2 + 2axy− x2 = −(x− ay)2, the integral evaluates to
√

2π. This completes
the proof.

Solution to Exercise 8.7. Suppose that ψ∗ is a stationary density for p. Then ψ∗Mt =
ψ∗ for all t, which means that ψ∗(y) =

∫
pt(x, y)ψ∗(x)dx for all t ∈ N and y ∈ R. Fix

y ∈ R and note that, for any t ∈ N and x ∈ R, we have pt(x, y) ≤ 1/
√

2πt ≤ 1/
√

2π.
Hence pt(x, y)ψ∗(x) is dominated by the integrable function (1/

√
2π)ψ∗(x). Since

pt(x, y) → 0 as t → ∞ for any given x, the dominated convergence theorem implies
that

ψ∗(y) = lim
t→∞

∫
pt(x, y)ψ∗(x)dx = 0

Since y ∈ R was chosen arbitrarily, we conclude that ψ∗ is not a density. Contradic-
tion.
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Solution to Exercise 8.8. If m 6= n, then |ϕn − ϕm| = 1[n,n+1) +1[m,m+1), due to the fact
that the supports of these functions are completely disjoint. Hence d1(ϕn, ϕm) = 2, as
claimed. As a result, all points in the sequence (ϕn)n≥1 are isolated in D(S), and no
convergent subsequence exists.

Solution to Exercise 8.9. Fix ϕ ∈ D(S) and n ∈ N. We have

λ(ϕ) = λ(1(0,1/n]ϕ) + λ(1(1/n,1)ϕ) = λ(1(0,1/n]ϕ) + λ(1(1/n,1)|ϕn − ϕ|)

Invoking monotonicity gives

λ(ϕ) ≤ λ(1(0,1/n]ϕ) + λ(|ϕn − ϕ|).

The first term converges to zero in n by the dominated convergence theorem. The
second converges to zero in n by assumption. Hence λ(ϕ) = 0.

Solution to Exercise 8.10. Fix x ∈ R. By the triangle inequality and 0 ≤ G(x) ≤ 1, we
have

|g(x)| ≤ {|α1|(1 − G(x)) + |β1|G(x)} |x|+ c

with c = |α0|+ |β0|. The convex combination of two numbers is less than their maxi-
mum, so |g(x)| ≤ γ|x|+ c.

Solution to Exercise 9.1. Let G be any open subset ofR. Since g is continuous, g−1(G)
is open in S, and hence f−1(g−1(G)) is in F . Since (g ◦ f )−1(G) = f−1(g−1(G)), the
function g ◦ f pulls open sets back to measurable sets and is therefore Borel measur-
able. (We are using lemma 7.2.3 on page 173.)

Solution to Exercise 9.2. We can ignore the measure zero set 1{x 6= z} when integrat-
ing, so

E f =
∫

f (x)1{x = z}δz(dx) = f (z)
∫
1{x = z}δz(dx) = f (z)

Solution to Exercise 9.3. These are standard results and details are omitted.

Solution to Exercise 9.4. Let (Ω, F ,P) = (S, S , µ) and X be as stated, so that X(s) = s
for all s ∈ S. For any B ∈ S , we have X−1(B) = B ∈ S , so X is certainly measurable.
Moreover, P{X ∈ B} = P(B) = µ(B), so X has distribution µ.

Solution to Exercise 9.5. The claim is that X = H−1 is a Borel measurable function,
where H is a strictly increasing cdf. Since H is strictly increasing, it follows that H−1

is itself increasing. (You can verify it in a simple proof by contradiction.) The result
now follows from exercise 7.27.
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Solution to Exercise 9.6. Since H is increasing it preserves inequalities, which means
that

P{X ≤ z} = λ{x : H−1(x) ≤ z} = λ{x : x ≤ H(z)} = H(z)

Solution to Exercise 9.7. Pick any A, B ∈ T . We have

P{g(X) ∈ A} ∩ {h(Y) ∈ B} = P{X ∈ g−1(A)} ∩ {Y ∈ h−1(B)}
= P{X ∈ g−1(A)} ·P{Y ∈ h−1(B)}

where the second equality is by independence of X and Y. We conclude that g ◦ X and
h ◦ Y are also independent.

Solution to Exercise 9.8. Let µX := EX and µY := EY. To see that independence
implies Cov(X, Y) = 0, we note that X − µX and Y − µY are also independent (see
exercise 9.7 on page 215), so

E(X − µX)(Y − µY) = E(X − µX)E(Y − µY) = 0 · 0 = 0

Solution to Exercise 9.9. Clearly

{Xt /∈ A, ∀t ∈ N} = ∩t∈N{Xt /∈ A} ⊂ ∩t≤T{Xt /∈ A}

for all T ∈ N. By monotonicity of P and independent of the (Xt), we then have

P{Xt /∈ A, ∀t ∈ N} ≤ P∩t≤T {Xt /∈ A} = (P{Xt /∈ A})T = (1 − µ(A))T

Since µ(A) > 0, the sequence (1 − µ(A))T converges to zero in T, implying that the
probability on the left hand side is zero.

Solution to Exercise 9.10. Let (Bn) be a disjoint sequence of Borel sets. Recall that, for
such a sequence, we have 1∪nBn = ∑∞

n 1Bn . Hence, by linearity of the integral and the
monotone convergence theorem,

µϕ(∪nBn) = λ

(
∞

∑
n
1Bn ϕ

)
=

∞

∑
n

λ(1Bn ϕ) =
∞

∑
n

µϕ(Bn)

Solution to Exercise 9.11. If such a ϕ exists, then, by setting B = 1{x = a}, we get∫
B ϕ(x)dx = δa(B) = 1. But theorem 7.3.5 tells us that λ(B) = 0 implies

∫
B ϕ(x)dx =

0. Contradiction.
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Solution to Exercise 9.12. Evidently h ≥ 0 implies Mh(x) =
∫

h(y)P(x, dy) ≥ 0 for all
x ∈ S. In addition, if |h| ≤ M, then

|Mh(x)| =
∣∣∣∣∫ h(y)P(x, dy)

∣∣∣∣ ≤ ∫
|h(y)|P(x, dy) ≤ M

∫
P(x, dy) = M

Solution to Exercise 9.13. This is easy: For any given x, we have M1S(x) =
∫

P(x, dy) =
1 = 1S(x).

Solution to Exercise 9.14. This follows directly from monotonicity of the integral. See,
for example, theorem 7.3.5 on page 179.

Solution to Exercise 9.15. This follows easily from linearity of the integral. See theo-
rem 7.3.5 on page 179.

Solution to Exercise 9.16. Fix x ∈ S. Observe that P(x, B) = ϕ{z ∈ Z : F(x, z) ∈ B}
is the image measure of ϕ under z 7→ F(x, z). As a consequence of theorem 7.3.9, in-
tegrating measurable h : S → R with respect to the image measure means integrating
h[F(x, z)] with respect to ϕ. This confirms (9.17).

Solution to Exercise 10.1. Let M ∈ N satisfy |r| ≤ M. If (xn) is any sequence inR and
∑n |xn| converges in R, then so does ∑n xn. (We say that absolute convergence of the
sum implies convergence.) Moreover, for any ω ∈ Ω,

∞

∑
t=0

|ρtrσ(Xt(ω))| ≤
∞

∑
t=0

ρt M = M
1

1 − ρ
.

Solution to Exercise 10.2. Set YN := ∑N
t=0 ρtrσ(Xt). Observe that |YN | ≤ M/(1 − ρ)

where M is an upper bound on |r|. Since constant functions are integrable when the
measure is finite, we can apply the dominated convergence theorem and linearity of
the integral to obtain

E

[
∞

∑
t=0

ρtrσ(Xt)

]
= E lim

N→∞
YN = lim

N→∞
EYN =

∞

∑
t=0

ρtErσ(Xt)

Solution to Exercise 10.3. Fix x ∈ S. The supremum in (10.3) is well-defined because
the set of values {vσ(x)}σ∈Σ is bounded above by M/(1 − ρ), where M ∈ N obeys
|r| ≤ M.
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Solution to Exercise 10.4. The only nontrivial part of this problem is checking that
the correspondence Γ defined by Γ(a) = [0, a] is continuous. This fact is implied by
lemma B.1.1 on page 341.

Solution to Exercise 10.5. Fix w ∈ bcS. Boundedness of Tw follows directly from
lemma A.2.18 on page 336, which tells us that linear combinations of bounded func-
tions are bounded. Proving continuity is just a matter of checking that all the con-
ditions of Berge’s theorem (page 342) are satisfied. That they are follows from the
assumption that w ∈ bcS, the dominated convergence theorem, and the restrictions
on the primitives. Full details are omitted.

Solution to Exercise 10.6. The aim is to apply Blackwell’s condition. For this we need
to check that T : bcS → bcS is monotone and, for all w ∈ bcS and γ ∈ R+,

T(w + γ1S) ≤ Tw + ργ1S (10.13)

That T is monotone has already been established. To verify the inequality (10.13), we
observe that, at any x ∈ S and with fixed γ ∈ R+,

T(w + γ1S)(x) = max
u∈Γ(x)

{
r(x, u) + ρ

∫
w[F(x, u, z)]ϕ(dz) + ργ

}
= Tw(x) + ργ

Hence (10.13) holds, and T is uniformly contracting on (bcS, d∞) with modulus ρ.

Solution to Exercise 10.7. Let (Pi)
k
i=1 be a partition of S. Fix w, v ∈ bB(S) and x ∈ S.

We have

|Mv(x)− Mw(x)| =
∣∣∣∣∣ k

∑
i=1

v(xi)1Pi (x)−
k

∑
i=1

w(xi)1Pi (x)

∣∣∣∣∣
Applying the triangle inequality gives

|Mv(x)− Mw(x)| ≤
k

∑
i=1

|v(xi)− w(xi)|1Pi (x) ≤ sup
1≤i≤k

|v(xi)− w(xi)|

(The last inequality uses the fact that partitions are disjoint.) Nonexpansiveness fol-
lows directly, since sup1≤i≤k |v(xi)− w(xi)| ≤ d(v, w)∞.

Solution to Exercise 10.8. Fix w, v ∈ bB(S) and x ∈ S. Choose i such that x ∈
[xi, xi+1]. We have

|Nw(x)− Nv(x)| = |λ(x)(w(xi)− v(xi)) + (1 − λ(x))(w(xi+1)− v(xi+1))|

Since convex combinations are less than suprema, we then have

|Nv(x)− Nw(x)| ≤ sup
1≤j≤k

|v(xj)− w(xj)|
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Nonexpansiveness follows directly.

Solution to Exercise 11.1. To confirm that Xn → 0 almost surely, it suffices to show
that Xn(ω) → 0 for all ω in (0, 1). But this is certainly true, since any ω ∈ (0, 1)
satisfies 1/n ≥ ω for sufficiently large n. The expectation of Xn is n2 · (1/n) = n,
which converges to +∞.

Solution to Exercise 11.2. Linear combinations of real-valued Borel measurable func-
tions are Borel measurable. Hence Xn − X is Borel measurable. Continuous transfor-
mations of Borel measurable functions are Borel measurable, so |Xn − X| is also Borel
measurable. Hence {|Xn − X| ≥ ϵ} ∈ F for all ϵ < 0, as required.

Solution to Exercise 11.3. Let (Xt)t≥1 be a zero mean sequence satisfying the stated
conditions. Since each Xi is zero mean, so is X̄n. Applying (11.1) on page 251, we have

Var(X̄n) = E

(
1
n

n

∑
i=1

Xi

)2

=
1
n2

n

∑
i=1

n

∑
j=1
EXiXj =

1
n2

n

∑
i=1

n

∑
j=1

Cov(Xi, Xj)

Since Cov(Xi, Xj) = 0 for all i 6= j and Cov(Xi, Xi) ≤ M for all i, the double sum
above is bounded by (1/n2)nM = M/n.

Solution to Exercise 11.4. Fix ϵ > 0. By the Chebychev inequality (page 214) and
exercise 11.3, we have P{|X̄n| ≥ ϵ} ≤ M/(nϵ2). Now take n → ∞.

Solution to Exercise 11.5. It is easy to verify that if T is a uniform contraction with
modulus γ and fixed point x∗ on metric space (U, ρ), then for any given x ∈ U we
have ρ(Tkx, x∗) ≤ γkρ(x, x∗) . Applying this to the Markov operator M associated
with p, along with theorem 4.3.4 on page 92, we have∥∥∥pk(x, dy)− ψ∗(dy)

∥∥∥
1
≤ γk‖δx − ψ∗‖1

for all x ∈ S, where γ := 1 − α(p). Using the definition of the norm and the fact that
the norm on the right is bounded by 2 yields the statement in exercise 11.5.

Solution to Exercise 11.6. Since S is finite there exists an H ∈ N with |h| ≤ H. The
definition of m and the triangle inequality give∣∣∣∣∣∑y∈S

h(y)pk(x, y)− m

∣∣∣∣∣ =
∣∣∣∣∣∑y∈S

h(y)pk(x, y)− ∑
y∈S

h(y)ψ∗(y)

∣∣∣∣∣
≤ ∑

y∈S
|h(y)|

∣∣∣pk(x, y)− ψ∗(y)
∣∣∣
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Combining with |h| ≤ H and the result in exercise 11.5 completes the proof.

Solution to Exercise 11.7. Let L ∈ N be such that |h(x)− m| ≤ L for all x ∈ S. Using
the computations just above exercise 11.7, we have

|Cov(h(Xi), h(Xi+k))| ≤ ∑
x∈S

|h(x)− m|ψ∗(x)

∣∣∣∣∣∑y∈S
[h(y)− m]pk(x, y)

∣∣∣∣∣
≤ L ∑

x∈S

∣∣∣∣∣∑y∈S
h(y)pk(x, y)− m

∣∣∣∣∣ψ∗(x)

From the result in exercise 11.6, the right hand side is bounded by L ∑x∈S Kγkψ∗(x) =
LKγk, where γ ∈ [0, 1). This verifies the claim in exercise 11.7.

Solution to Exercise 11.8. We just need to check the two conditions of theorem 11.1.7
for the process (Yt) := (h(Xt)). The bound on the covariance terms follows directly
from exercise 11.7. We also require thatEh(Xt) converges to some constant. However,
we assumed that (Xt) is stationary, with Eh(Xt) = m for all t. So this convergence is
trivial. Hence all the conditions of the theorem are verified.

Solution to Exercise 11.9. Fix µ ∈ bM (S). We have S = S ∪ ∅ and the union is
disjoint, so µ(S) = µ(S) + µ(∅). That µ(∅) = 0 now follows from finiteness of µ(S),
which is part of the definition of a signed measure.

Solution to Exercise 11.11. For both claims, we discuss only µ+, since the case of µ−

is similar. Regarding the first claim, we need only show that µ+ is nonnegative and
countably additive. Nonnegativity is obvious. For countable additivity, take (Bn) to
be a disjoint sequence in B(S). Since (Bn ∩ S+) is also disjoint, we have

µ+(∪nBn) = µ((∪nBn) ∩ S+) = µ(∪n(Bn ∩ S+)) = ∑
n

µ(Bn ∩ S+) = ∑
n

µ+(Bn)

Regarding the claim µ(S+) = maxB∈B(S) µ(B), for any B ∈ B(S), we have

µ(B) = µ(B ∩ S+) + µ(B ∩ S−) ≤ µ(B ∩ S+) ≤ µ(S+)

where the last inequality is by monotonicity of µ restricted to S+.

Solution to Exercise 11.12. Fix f ∈ mB(S) with λ(| f |) < ∞ and let µ(B) := λ(1B f ).
To verify that µ ∈ bM (S), we only need to check countable additivity. So let (Bn) ⊂
B(S) be disjoint and recall that, for such a sequence, 1∪nBn = ∑n 1Bn . Hence, by
additivity of λ and the dominated convergence theorem,

µ(∪nBn) = λ(∑
n
1Bn f ) = ∑

n
λ(1Bn f ) = ∑

n
µ(Bn)
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To see that S+ and S− form a Hahn decomposition of S with respect to µ, we need
only verify that they form a measurable partition of S with µ(B) ≥ 0 for measurable
B ⊂ S+ and µ(B) ≤ 0 for measurable B ⊂ S−. All of these results are obvious from
the definitions S+ = {x ∈ S : f (x) ≥ 0} and S− = {x ∈ S : f (x) < 0}.

In addition, µ+(B) = λ(1B f+) holds because

µ+(B) = µ(B ∩ S+) = µ(B ∩ { f ≥ 0}) = λ(1B1{ f ≥ 0} f ) = λ(1B f+)

The proof for µ− is similar. Finally,

‖ f ‖1 = λ(| f |) = λ( f+) + λ( f−) = λ(1S+ f ) + λ(1S− f ) = µ(S+) + µ(S−)

as was to be shown.

Solution to Exercise 11.13. Fix µ ∈ bM (S). Let M = maxπ∈Π ∑A∈π |µ(A)|. Let π̂ =
{S+, S−}, where S+ and S− are as in theorem 11.1.9. Then π̂ is in Π and, moreover,

‖µ‖TV = µ(S+)− µ(S−) = |µ(S+)|+ |µ(S−)| = ∑
A∈π̂

|µ(A)| ≤ M

Moreover, for other π ∈ Π, we have

∑
A∈π

|µ(A)| ≤ ∑
A∈π

µ(A ∩ S+)− ∑
A∈π

µ(A ∩ S−) = µ(S+)− µ(S−) = ‖µ‖TV

Hence M ≤ ‖µ‖TV . We conclude that M = ‖µ‖TV , as was to be shown.

Solution to Exercise 11.14. Let ‖ · ‖ := ‖ · ‖TV . As you can easily verify, it suffices to
show that ‖ · ‖ has all the properties of a norm on bM . In particular, we need to show
that, for any µ, ν ∈ bM , we have (a) ‖µ‖ = 0 iff µ = 0, (b) ‖αµ‖ = |α|‖µ‖ for all α ∈ R
and (c) ‖µ + ν‖ ≤ ‖µ‖+ ‖ν‖.

For (a), that ‖µ‖ = 0 when µ = 0 is clear from ‖µ‖ = maxπ∈Π ∑A∈π |µ(A)|. To
see that the reverse implication holds, suppose µ is not the zero measure. Then there
exists a B ∈ B(S) with |µ(B)| > 0. Hence

‖µ‖ = max
π∈Π

∑
A∈π

|µ(A)| ≥ |µ(B)|+ |µ(Bc)| > 0.

Part (b) follows from

‖αµ‖ = max
π∈Π

∑
A∈π

|αµ(A)| = max
π∈Π

∑
A∈π

|α||µ(A)|

Regarding part (c), we have

‖µ + ν‖ = max
π∈Π

∑
A∈π

|µ(A) + ν(A)| ≤ max
π∈Π

∑
A∈π

|µ(A)|+ max
π∈Π

∑
A∈π

|ν(A)|

The proof is now done.
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Solution to Exercise 11.15. For each n ∈ Nwe have

sup
B∈B(S)

|ϕn(B)− ϕ(B)| ≥ |ϕn((0, ∞))− ϕ(((0, ∞))| = |ϕn((0, ∞))| = 1

From this fact, combined with lemma 11.1.13, we see that dTV(ϕn, ϕ) → 0 fails.

Solution to Exercise 11.16. Let ϕn := δ1/n and ϕ := δ0. For fixed h ∈ bcS, we have
ϕn(h) = h(1/n) → h(0) = ϕ(h). Hence ϕn → ϕ weakly.

Solution to Exercise 11.17. We give a counterexample to the claim that convergence
in distribution implies convergence in probability. Suppose (Xn) is IID and binary,
hitting −1 and 1 with equal probability. The distribution sequence is constant and
therefore convergence in distribution holds. Now suppose there exists a Z such that
Xn → Z in probability. Fix ϵ > 0. Note that |Xn − Xm| ≤ |Xn − Z|+ |Xm − Z|, so

|Xn − Xm| > ϵ =⇒ |Xn − Z| > ϵ/2 or |Xm − Z| > ϵ/2

Therefore, since P(A ∪ B) ≤ P(A) +P(B) for all A, B,

P{|Xn − Xm| > ϵ} ≤ P{|Xn − Z| > ϵ/2}+P{|Xm − Z| > ϵ/2}

Hence P{|Xn − Xn+1| > ϵ} → 0 as n → ∞. But Xn and Xn+1 are independent, so, for
small ϵ,

P{|Xn − Xn+1| > ϵ} ≥ P{Xn = −1 and Xn+1 = 1} =
1
4

Contradiction.

Solution to Exercise 11.18. Suppose ϕn → ϕ and ϕn → ϕ′, where ϕ and ϕ′ are elements
of P(S). Then, for any h ∈ bcS, we have ϕ(h) = limn ϕn(h) = ϕ′(h). But then ϕ = ϕ′,
by part 2 of theorem 11.1.16,

Solution to Exercise 11.19. For this model, we have P(x, B) = 1B(x). Given any
distribution ψ ∈ P(S) and Borel set B,∫

P(x, B)ψ(dx) =
∫
1B(x)ψ(dx) = ψ(B)

Hence ψ is stationary for P.

Solution to Exercise 11.20. Let G(x) = Ax+ b, where A and b are as in example 11.2.10.
Clearly G is continuous. We also need to show that there exists an M < ∞ and α < 1
such that ‖G(x)‖ ≤ α‖x‖ whenever ‖x‖ > M. To see that this is so, note that, as
discussed in example 11.2.10, ‖G(x)‖ = ‖Ax + b‖ ≤ λ‖x‖+ ‖b‖. We then have

‖G(x)‖
‖x‖ ≤ λ +

‖b‖
‖x‖
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Now choose α ∈ (λ, 1). Since ‖b‖/‖x‖ → 0 as ‖x‖ → ∞, we will have ‖G(x)‖/‖x‖ ≤
α when ‖x‖ is sufficiently large (more precisely, when ‖x‖ ≥ ‖b‖/(α − λ)).

Solution to Exercise 11.21. The only challenge is to show existence of a norm-like
function w : S := (0, ∞) → R+ and constants α ∈ [0, 1) and β ∈ R+ with

∫
w[skαz]ϕ(dz) ≤

αw(k)+ β for all k ∈ S. For this purpose we take w(k) := | ln k|. We saw in lemma 8.2.12
that this function is norm-like on S. Moreover,∫

w[skαz]ϕ(dz) =
∫

| ln s + α ln k + ln z|ϕ(dz) ≤ α ln |k|+ | ln s|+
∫

| ln z|ϕ(dz)

We now have the desired bound with β := | ln s|+
∫
| ln z|ϕ(dz).

Solution to Exercise 11.22. Let µ have density f and ν have density g. The claim is
that µ ∧ ν has density f ∧ g. To see that this is so, we need to show that η := µ ∧ ν
obeys η(B) = λ(1B f ∧ g) for all B ∈ B(S). Fixing such a B, we easily see that η(B) ≤
λ(1B f ) = µ(B) and similarly for ν. Hence η ≤ µ and η ≤ ν. All that remains to be
shown is that, for any κ ∈ bM (S) with κ ≤ µ and κ ≤ ν we have κ ≤ η. But this is
also clear, since

κ(B) ≤ λ(1B f ) and κ(B) ≤ λ(1Bg) =⇒ κ(B) ≤ λ(1B f ∧ g)

Solution to Exercise 11.23. Fix µ and ν in P(S). Set M := minπ∈Π ∑A∈π µ(A) ∧ ν(A)
and π̂ = {S+, S−}, where S+ and S− are the positive and negative set for µ − ν used
in the proof of lemma 11.2.14 on page 265. By construction, µ(B) ≤ ν(B) for B ∈ S−

and µ(B) ≥ ν(B) for B ∈ S+. Since π̂ is a measurable partition, we have

M ≤ ∑
A∈π̂

µ(A) ∧ ν(A) = (µ ∧ ν)(S−) + (µ ∧ ν)(S+) = µ(S−) + ν(S+) = aff(µ, ν)

At the same time, for any π ∈ Π,

aff(µ, ν) = ∑
A∈π

(µ ∧ ν)(A) ≤ ∑
A∈π

µ(A) ∧ ν(A)

so aff(µ, ν) ≤ M also holds. Hence aff(µ, ν) = M, as claimed.
Regarding the second part of the question, clearly

aff(µ, ν) = (µ ∧ ν)(S) ≤ µ(S) = 1

Moreover, if µ = ν, then, since every π ∈ Π is a measurable partition.

aff(µ, ν) = min
π∈Π

∑
A∈π

µ(A) ∧ µ(A) = min
π∈Π

∑
A∈π

µ(A) = 1
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Finally, if µ and ν are distinct, then there exists a B ∈ B(S) with µ(B) < ν(B). As a
result,

aff(µ, ν) = min
π∈Π

∑
A∈π

µ(A) ∧ ν(A) ≤ µ(B) ∧ ν(B) + µ(Bc) ∧ ν(Bc) < ν(B) + ν(Bc) = 1

Solution to Exercise 11.24. Suppose (11.15) holds and fix x, x′ ∈ S. We have Pm
x ≥ ϵν

and Pm
x′ ≥ ϵν, so Pm

x ∧ Pm
x′ ≥ ϵν. Evaluating at S gives aff(Pm

x , Pm
x′ ) ≥ ϵ. Hence

α(Pm) ≥ ϵ > 0.

Solution to Exercise 11.25. Suppose condition M holds for some m ∈ N and ϵ > 0.
Fix x, x′ ∈ S. We have (Pm

x ∧ Pm
x′ )(S) = Pm(x, S−) + Pm(x′, S+), where S− and S+ are

negative and positive for Pm(x, dy)− Pm(x′, dy) respectively. In addition, S+ = (S−)c.
Hence, by condition M,

aff(Pm
x , Pm

x′ ) = (Pm
x ∧ Pm

x′ )(S) = Pm(x, S−) + Pm(x′, (S−)c) ≥ ϵ > 0.

As a result, α(Pm) > 0.

Solution to Exercise 11.28. If the SRS is monotone increasing and h ∈ ibS, then x ≤ x′

implies h[F(x, z)] ≤ h[F(x′, z)] for all z ∈ Z, so, by monotonicity of the integral,

Mh(x) =
∫

h[F(x, z)]ϕ(dz) ≤
∫

h[F(x′, z)]ϕ(dz) = Mh(x′)

Hence Mh ∈ ibS, as was to be shown.

Solution to Exercise 11.29. Let B ∈ B(S) be an increasing set. The function 1B is
bounded and Borel measurable. In addition, with x ≤ x′, we have x ∈ B implies
x′ ∈ B and hence 1B(x) ≤ 1B(x′). The reverse implication follows from similar logic.

Solution to Exercise 11.30. Let B be an increasing set and let the SRS be monotone
increasing. Fix m ∈ N. In view of exercise 11.29, the function M1B is increasing.
Applying M to this function proves that M21B is increasing and so on up to Mm1B.
But Pm(x, B) = Mm1B(x), so x 7→ Pm(x, B) is increasing as required.

Solution to Exercise 11.31. Let ψ∗∗ ∈ P(S) satisfy ψ∗∗M = ψ∗∗ and suppose that
(11.31) holds. Fix h ∈ ibS. We then have

ψ∗∗(h) = (ψ∗∗Mt)(h) → ψ∗(h)

From this argument we see that ψ∗∗(h) = ψ∗(h) for all h ∈ ibS. Applying theo-
rem 11.1.16 on page 257 now gives ψ∗∗ = ψ∗.
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Solution to Exercise 11.32. The claim in exercise 11.32 holds because Nj := ∪t≤j{Xt ≤
X′

t} is increasing in the sense of set inclusion: if the paths have become ordered some
time prior to j, then they have become ordered some time prior to j + 1. Hence, by
exercise 7.17 on page 165, we have

P∪t≥0 {Xt ≤ X′
t} = lim

j→∞
P∪t≤j {Xt ≤ X′

t} = 1 − lim
j→∞

P∩t≤j {Xt ≰ X′
t}

Solution to Exercise 11.33. We prove only the first inequality. Since a ≤ c ≤ b, the set
[c, b] is an increasing subset of S = [a, b], so, by exercise 11.30 and the fact that the SRS
is monotone increasing, the function x 7→ Pm(x, [b, c]) is increasing. As a consequence,

Pm(x, [c, b]) ≥ Pm(a, [c, b]) ≥ ϵ

for all x ∈ S.
(If you wish to check the second inequality, you can introduce the notion of a de-

creasing set, defined analogously to an increasing set, and then show that (i) the inter-
val [a, c] is decreasing in S and (ii) the function x 7→ Pm(x, B) is decreasing whenever
B is decreasing.)

Solution to Exercise 11.34. The first claim is that all measurable subsets of order in-
ducing sets are order inducing. This is quite obvious because infima over smaller sets
are larger. So if, say, infx∈C Pm(x, {z : z ≤ c}) > 0, then the same is true when we take
the infimum over C′ ⊂ C.

The second claim follows from the first. It says that, to check the order norm-
like property, we only need to check that sufficiently large sublevel sets are ordering
inducing. This is true because smaller sublevel sets are contained in these larger ones,
and hence are automatically order inducing.

Solution to Exercise 11.35. If v(x) := 1/x + x, then sublevel sets of v are closed inter-
vals in S. Hence, by the argument immediately above the exercise, the function v is
order norm-like on S.

Solution to Exercise 11.36. Fix any constant α1 ∈ (0, 1). Since limx→∞ f (x)/x = 0, we
can choose a γ ∈ S satisfying

s f (x)EW1 ≤ α1x ∀ x > γ

Given monotonicity of f , we can take a β1 ∈ R+ with

s f (x)EW1 ≤ β1 ∀ x ≤ γ

Combining these two inequalities, we get

Mv1(x) = s f (x)EW1 ≤ α1x + β1 = α1v1(x) + β1 ∀ x ∈ S
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Solution to Exercise 11.37. Fix any constant α2 ∈ (0, 1). Since limx→0 f (x)/x = ∞, we
can obtain a γ ∈ S satisfying

E

[
1

s f (x)W1

]
≤ α2

1
x

∀ x < γ

Using monotonicity of f , we can also choose a β2 ∈ R+ with

E

[
1

s f (x)W1

]
≤ β2 ∀ x ≥ γ

Combining these two inequalities, we get

Mv2(x) = E
[

1
s f (x)W1

]
≤ α2

1
x
+ β2 = α2v2(x) + β2 ∀ x ∈ S

Solution to Exercise 11.38. This is straightforward: Fix x, x′ ∈ C. By the (ν, ϵ)-small
property, we have Px ≥ ϵν and Px′ ≥ ϵν. As a consequence, by the definition of the
infimum, Px ∧ Px′ ≥ ϵν. Evaluating at S yields γ(x, x′) ≥ ϵ, as claimed.

Solution to Exercise 11.39. The claim is that C′ ⊂ C is small whenever C is small and
C′ is measurable. This is obvious: If the bound P(x, A) ≥ ϵν(A) is true for all x ∈ C,
then certainly it is true for any x ∈ C′ ⊂ C.

Solution to Exercise 11.40. Let P(x, dy) = p(x, y)dy. Let g have the stated property (g
is nonnegative, measurable,

∫
g(y)dy > 0 and p(x, y) ≥ g(y) for all x ∈ C and y ∈ S).

Fix x ∈ C and A ∈ B(S). We have
∫

A p(x, y)dy ≥ η(A) when η is the Borel measure
given by η(B) :=

∫
B g(y)dy. Set ϵ := η(S) =

∫
g(y)dy > 0 and ν(A) = η(A)/ϵ. Then

P(x, A) ≥ ϵν(A). Hence C is small for P.

Solution to Exercise 11.41. It suffices to show that, for all b ∈ R, the interval C :=
[−b, b] is small for this kernel, since every bounded measurable set lies in such an
interval. We will only use the fact that p is everywhere positive and continuous on
R×R, which in turn implies the existence of a constant r > 0 such that p(x, y) ≥ r
whenever −b ≤ x, y ≤ b. Now set g = r1[−b,b]. For x ∈ C, we have p(x, y) ≥
r1[−b,b] = g. Applying exercise 11.40, we see that C is small for P.

Solution to Exercise 11.42. Assume the conditions of lemma 11.3.16. We can also
assume, without loss of generality, that v in the lemma satisfies v ≥ 1. (It is not
difficult to confirm that if the lemma holds for some v, α and β then it also holds
for the function v′ := v + 1 and constants α′ := α and β′ = β + 1.) Now pick any
λ ∈ (α, 1), set C := {x : v(x) ≤ β/(λ − α)} and L := β. Note that C, a sublevel
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set, is small (by assumption). We claim that then v, C, λ, and L satisfy the conditions
of definition 11.3.15. To see this, we first take x ∈ C. Then Mv(x) ≤ αv(x) + β ≤
λv(x) + L1C(x) At the same time, if x /∈ C, then v(x) > β/(λ − α), so

Mv(x)
v(x)

≤ α +
β

v(x)
≤ α + (λ − α) = λ.

Hence, in both cases, Mv(x) ≤ λv(x) + L1C(x).

Solution to Exercise 11.43. Recall from the solution to exercise 11.40 that, under the
stated conditions, C is (ϵ, ν)-small for P with ϵ :=

∫
g(y)dy > 0 and ν defined by

ν(A) =
∫

A g(y)dy/ϵ. Since
∫

C g(x)dx = ϵν(C), it is clear that
∫

C g(x)dx > 0 implies
ν(C) > 0. Hence P is aperiodic.

Solution to Exercise 11.44. Recall that the kernel P for the STAR model satisfies P(x, dy) =
p(x, y)dy where p(x, y) = ϕ(y − g(x)). Fix f ∈ D(S) and let µ ∈ P(S) be defined by
µ(B) =

∫
B f (x)dx. Since ϕ is everywhere positive, for any x ∈ S and B ∈ B(S) with

positive Lebesgue measure, we have P(x, B) =
∫

B ϕ(y − g(x))dy > 0. If µ(B) > 0,
then λ(B) > 0, so P(x, B) > 0. (Integrals of positive functions over sets of positive
measure have positive value.) Hence P is µ-irreducible.

Solution to Exercise 11.45. We need to show (a) that p(x, y) ≥ g(y) for all x ∈ C
and y ∈ R, and (b) that

∫
C g(x)dx > 0. Regarding (a), fix x ∈ C. If y ∈ C, then

p(x, y) ≥ δ = δ1C(y) =: g(y) by definition of δ. If y /∈ C, then g(y) = 0, so the
inequality is trivial. Hence (a) holds. Regarding (b), recalling that λ(C) > 0, we have
δ
∫

C 1C(x)dx = δλ(C) > 0. The proof is now done.

Solution to Exercise 12.1. Recall that fn → f uniformly implies fn → f pointwise.
Hence, if ( fn) ⊂ ibcS and fn → f ∈ bcS uniformly, then f is increasing. Indeed,
x ≤ x′ implies fn(x) ≤ fn(x′) for all n and limits in R preserve weak inequalities.
Hence f (x) ≤ f (x′). The same is not true for the set of strictly increasing functions
because limits to not in general preserve strict inequalities.

Solution to Exercise 12.2. Under the stated hypothesis, the weak inequality Tw(x) ≤
Tw(x′) in the proof of theorem 12.1.1 can be strengthened to Tw(x) < Tw(x′). Hence T
sends ibcS into the strictly increasing functions in ibcS. Since v∗ ∈ ibcS, as established
by theorem 12.1.1, it follows that Tv∗ is strictly increasing. But then v∗ is strictly
increasing, since v∗ = Tv∗.

Solution to Exercise 12.3. This just a matter of checking the conditions of theorem 12.1.1.
Clearly a ≤ a′ implies Γ(a) = [0, a] ⊂ [0, a′] = Γ(a′). Also, both rewards and the
next period state are increasing in the current state. (The transition function is f (s, z),
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which is a function of s, the action, and not the state. Hence f (s, z) is weakly increas-
ing in the state a.)

Solution to Exercise 12.4. Let g and h satisfy the stated conditions and let f = g + h.
Fix x, x′ ∈ S with x < x′ and u, u′ ∈ Γ(x) ∩ Γ(x′) with u < u′. We have

f (x, u′)− f (x, u) = g(x, u′) + h(x, u′)− g(x, u)− h(x, u)

= [g(x, u′)− g(x, u)] + [h(x, u′)− h(x, u)]

Since g has strictly increasing differences and h has increasing differences, the last
term is strictly dominated by g(x′, u′) − g(x′, u) + h(x, u′) − h(x, u), which equals
f (x′, u′)− f (x′, u).

Solution to Exercise 12.5. The correspondence is Γ(a) = [0, a], which is a decreas-
ing set in R+. That rewards have strictly increasing differences under the stated
assumptions was proved in 12.1.3. Hence we need only check the last condition
of corollary 12.1.5, which is that (x, u) 7→

∫
w[F(u, x, z)]ϕ(dz) has increasing differ-

ences whenever w ∈ ibcS. In the optimal savings model, this translates to (x, u) 7→∫
w[ f (u, z)]ϕ(dz), which certainly has (weakly) increasing differences on gr Γ, being

independent of x.

Solution to Exercise 12.6. In exercise 12.1, we proved that ibcS is a closed subset of
(bcS, d∞) by invoking the fact that weak inequalities are preserved under pointwise
limits. The proof that C ibcS is a closed subset of ibcS is very similar in spirit and
further details are omitted.

Solution to Exercise 12.7. The argument is very similar to that of exercise 12.2. Un-
der the stated condition, T maps elements of C ibcS into strictly concave elements of
C ibcS. Since v∗ ∈ C ibcS and Tv∗ = v∗, strict concavity of v∗ holds.

Solution to Exercise 12.8. The steps are quite routine by now, given the previous re-
sults, and the details are omitted.

Solution to Exercise 12.9. Let g : [a, b] → R be strictly concave and suppose that x
and x′ are distinct maximizers in [a, b], with (necessarily) common value m = g(x) =
g(x′). Then, by strict concavity,

g(0.5x + 0.5x′) > 0.5g(x) + 0.5g(x′) = m.

Since x′′ := 0.5x + 0.5x′ is in [a, b], this contradicts the statement that x and x′ are
maximizers. Hence g has at most one maximizer, as claimed. Under the conditions of
exercise 12.8, the right hand side of the Bellman equation is strictly concave, so there
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is one and only one optimal policy for the savings model. Continuity now follows
from Berge’s theorem (page 342).

Solution to Exercise 12.10. Under the conditions of corollary 12.1.10 we have (v∗)′(a) =
U′(a − σ(a)) for all a > 0. Since U is strictly concave, U′ is strictly decreasing and
therefore invertible with strictly decreasing inverse. Denoting that inverse by h, we
have a − σ(a) = h((v∗)′(a)). Because v∗ is strictly concave, its derivative is strictly
decreasing. Hence a 7→ a − σ(a) is strictly increasing.

Solution to Exercise 12.11. We provide the key ideas of the proof. Fix a0 ∈ (0, ∞), set
s0 := σ(a0) and let

h(a) := U(a − s0) + ρ
∫

v∗[ f (s0, z)]ϕ(dz)

Then h(a) ≤ v∗(a) in a sufficiently small neighborhood of a0, where s0 is a feasible
choice. (The neighborhood is nonempty because s0 is interior.) Moreover, h(a0) =
v∗(a0) holds. Hence the derivative of v∗ at a0 exists and is equal to h′(a0). By the
definition of h, this is U′(a0 − s0) = U′(a0 − σ(a0).

Solution to Exercise 12.12. We have Mwi ≤ αiwi + βi pointwise on S for i = 1, 2. As a
result, by linearity of M,

Mw = Mw1 + Mw2 ≤ α1w1 + β1 + α2w2 + β2 ≤ α(w1 + w2) + β

where α := max{α1, α2} and β := β1 + β2.

Solution to Exercise 12.13. This equivalence follows directly from the definition of
bκS.

Solution to Exercise 12.14. If v ∈ bB(S), then |v| ≤ M for some M ∈ N. But then
|v|/κ ≤ M, since κ ≤ 1. Hence v ∈⊂ bκB(S). The proof of the second case is similar.

Solution to Exercise 12.15. The only nontrivial part of the proof is the triangle inequal-
ity. This is still quite straightforward: If u, v, w ∈ bκS, then, using add and subtract
followed by the triangle inequality inR,∣∣∣u

κ
− w

κ

∣∣∣ ≤ ∣∣∣u
κ
− v

κ

∣∣∣+ ∣∣∣v
κ
− w

κ

∣∣∣ ≤ ‖u − v‖κ + ‖v − w‖κ

Taking the supremum yields dκ(u, w) ≤ dκ(u, v) + dκ(v, w), as was to be shown.

Solution to Exercise 12.16. Regarding the first claim, suppose κ is Borel measurable.
Pointwise limits of measurable functions are measurable and dκ convergence implies
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pointwise convergence, so bκB(S) is closed in (bκS, dκ). Regarding the second claim,
suppose κ is continuous and let (vn) be a sequence in bκcS converging to v ∈ bκS.
Since vn/κ → v/κ uniformly, and since uniform limits of continuous functions are
continuous, the function v/κ is continuous. Products of continuous functions are con-
tinuous, so κ(v/κ) is continuous. That is, v ∈ bκcS.

Solution to Exercise 12.17. We provide the proof that T is invariant on bκcS. Continu-
ity of Tw follows from lemma 12.2.15, the continuity of r and Berge’s theorem of the
maximum (page 342). Hence we need only show that Tw is κ-bounded. To verify this,
we use lemma A.2.18 on page 336, combined with the triangle inequality, to obtain

|Tw(x)| ≤ max
u∈Γ(x)

|r(x, u)|+ max
u∈Γ(x)

ρ
∫

|w[F(x, u, z)]|ϕ(dz)

By assumption 12.2.9, the first term is bounded by Rκ(x). Applying the second part
of the same assumption yields

max
u∈Γ(x)

ρ
∫

|w[F(x, u, z)]|ϕ(dz) ≤ max
u∈Γ(x)

ρ
∫

‖w‖κκ[F(x, u, z)]ϕ(dz) ≤ ρ‖w‖κ βκ(x)

As a result, |Tw(x)| ≤ Rκ(x) + ρ‖w‖κ βκ(x). It follows directly that Tw is κ-bounded.

Solution to Exercise 12.18. We claim the existence of a λ < 1 such that

T(v + aκ) ≤ Tv + λaκ for all v ∈ bκcS and a ∈ R+ (12.18)

To see that this is so, fix v ∈ bκcS and a ∈ R+. We have

(T(v + aκ))(x) = max
u∈Γ(x)

{
r(x, u) + ρ

∫
(v + aκ)[F(x, u, z)]ϕ(dz)

}
= Tv(x) + ρ max

u∈Γ(x)
a
∫

κ[F(x, u, z)]ϕ(dz)

Applying assumption 12.2.9 leads to the bound

(T(v + aκ))(x) ≤ Tv(x) + aρβκ(x)

In this expression, as part of assumption 12.2.9, β can be chosen to satisfy βρ < 1.
With λ := βρ, the proof is now complete.


