
Chapter 3

Analysis in Metric Space

Metric spaces are sets (spaces) with a notion of distance between points in the space
that satisfies certain axioms. From these axioms we can deduce many properties relat-
ing to convergence, continuity, boundedness, and other concepts needed for the study
of dynamics. Metric space theory provides both an elegant and powerful framework
for analyzing the kinds of problems we wish to consider, and a great sandpit for play-
ing with analytical ideas: A careful read of this chapter should strengthen your ability
to read and write proofs.

The chapter supposes that you have at least some exposure to introductory real
analysis or advanced calculus. A review of this material is given in appendix A. On
the other hand, if you are already familiar with the fundamentals of metric spaces,
then the best approach is to skim through this chapter quickly and return as necessary.

3.1 A First Look at Metric Space

Consider the set Rk, a typical element of which is a vector x = (x1, . . . , xk), where
xi ∈ R. There are several important topological notions we need to introduce for Rk.
These notions concern sets and functions on or into such space. In order to introduce
them, it is convenient to begin with the concept of Euclidean distance between vectors,
defined by

d2(x, y) :=: ‖x − y‖2 :=

[
k

∑
i=1

(xi − yi)
2

]1/2

(3.1)

You have surely met this notion of distance before and you might know that it satisfies
the following three conditions:
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1. d2(x, y) = 0 if and only if x = y,

2. d2(x, y) = d2(y, x), and

3. d2(x, y) ≤ d2(x, v) + d2(v, y).

for any x, y, v ∈ Rk. The first property says that a point is at zero distance from
itself, and also that distinct points always have positive distance. The second property
is symmetry, and the third—the only one that is not immediately apparent—is the
triangle inequality.

These three properties are fundamental to our understanding of distance. In fact
if you look at the proofs of many important results—for example, the proof that every
continuous function f from a closed bounded subset of Rk to R has a maximizer and
a minimizer—you will notice that no other properties of d2 are actually used.

Now it turns out that there are many other “distance” functions we can impose
on Rk that also satisfy properties 1–3. Any proof for the Euclidean (i.e., d2) case that
only uses properties 1–3 continues to hold for other distances, and in certain problems
alternative notions of distance are easier to work with. This motivates us to generalize
the concept of distance inRk.

While we are generalizing the notion of distance between vectors inRk, it is worth
thinking about distance between other kinds of objects. If we could define the distance
between two (infinite) sequences, or between a pair of functions, or two probability
distributions, we could then give a definition for things like the “convergence” of
distributions discussed informally in chapter 1.

3.1.1 Distances and Norms

Here is the key definition:

Definition 3.1.1 A metric space is a nonempty set S and a metric or distance ρ : S × S →
R such that, for any x, y, v ∈ S,

1. ρ(x, y) = 0 if and only if x = y,

2. ρ(x, y) = ρ(y, x), and

3. ρ(x, y) ≤ ρ(x, v) + ρ(v, y).

Apart from being nonempty, the set S is completely arbitrary. In the context of
a metric space the elements of the set are usually called points. As in the case of
Euclidean distance, the third axiom is called the triangle inequality.

An immediate consequence of the axioms in definition 3.1.1 (which are sometimes
referred to as the Hausdorff postulates) is that ρ(x, y) ≥ 0 for any x, y ∈ S. To see this,
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note that if x and y are any two points in S, then 0 = ρ(x, x) ≤ ρ(x, y) + ρ(y, x) =
ρ(x, y) + ρ(x, y) = 2ρ(x, y). Hence ρ(x, y) ≥ 0 as claimed.

The space (Rk, d2) is a metric space, as discussed above. The most important case
is k = 1, when d2(x, y) reduces to |x − y| for x, y ∈ R. The notation (R, | · |) will be used
to denote this one-dimensional space.

Many additional metric spaces onRk are generated by what is known as a norm:

Definition 3.1.2 A norm on Rk is a mapping Rk 3 x 7→ ‖x‖ ∈ R such that, for any
x, y ∈ Rk and any γ ∈ R,

1. ‖x‖ = 0 if and only if x = 0,

2. ‖γx‖ = |γ|‖x‖, and

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Each norm ‖ · ‖ onRk generates a metric ρ onRk via ρ(x, y) := ‖x − y‖.

Exercise 3.1 Verify the last claim by checking the axioms in definition 3.1.1.

Exercise 3.2 Prove: |‖x‖ − ‖y‖| ≤ ‖x − y‖ for any norm ‖ · ‖ onRk and x, y ∈ Rk.

The most familiar norm on Rk is ‖x‖2 := (∑k
i=1 x2

i )
1/2, which generates the Eu-

clidean distance d2. A class of norms that includes ‖ · ‖2 as a special case is the family
‖ · ‖p defined by

‖x‖p :=

(
k

∑
i=1

|xi|p
)1/p

(x ∈ Rk) (3.2)

where p ≥ 1. It is standard to admit p = ∞ in this family, with ‖x‖∞ := max1≤i≤k |xi|.
Proving that ‖ · ‖p is indeed a norm on Rk for arbitrary p ≥ 1 is not difficult, but

neither is it entirely trivial. In particular, establishing the triangle inequality (property
3 of the norm) requires the services of Minkowski’s inequality. The latter is found in
any text covering norms and is omitted.

Exercise 3.3 Confirm that ‖ · ‖p is a norm onRk for the cases p = 1 and p = ∞.

The class of norms ‖ · ‖p gives rise to the class of metric spaces (Rk, dp), where
dp(x, y) := ‖x − y‖p for all x, y ∈ Rk.

So far all our spaces have involved different metrics on finite-dimensional vector
space. Next let’s consider an example of a “function space.” Let U be any set, let bU
be the collection of all bounded functions f : U → R (i.e., supx∈U | f (x)| < ∞), and let

d∞( f , g) :=: ‖ f − g‖∞ := sup
x∈U

| f (x)− g(x)| (3.3)
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x

x1
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xN

{y | ρ(x, y) < ϵ}

Figure 3.1 Limit of a sequence

The space (bU, d∞) is a metric space. Readers can check the first two properties of
the definition of a metric space. The triangle inequality is verified as follows. Fix
f , g, h ∈ bU and x ∈ U. We have

| f (x)− g(x)| ≤ | f (x)− h(x)|+ |h(x)− g(x)| ≤ d∞( f , h) + d∞(h, g)

Since x is arbitrary, we obtain d∞( f , g) ≤ d∞( f , h) + d∞(h, g).1

3.1.2 Sequences

Let S = (S, ρ) be a metric space. A sequence (xn) ⊂ S is said to converge to x ∈ S
if, for all ϵ > 0, there exists an N ∈ N such that n ≥ N implies ρ(xn, x) < ϵ. In
other words (xn) converges to x if and only if the real sequence ρ(xn, x) → 0 in R as
n → ∞ (see §A.2 for more on real sequences). If this condition is satisfied, we write
limn→∞ xn = x, or xn → x. The point x is referred to as the limit of the sequence.
Figure 3.1 gives an illustration for the case of two-dimensional Euclidean space.

Theorem 3.1.3 A sequence in (S, ρ) can have at most one limit.

Proof. You might like to try a proof by contradiction as an exercise. Here is a direct
proof. Let (xn) be an arbitrary sequence in S, and let x and x′ be two limit points. We
have

0 ≤ ρ(x, x′) ≤ ρ(x, xn) + ρ(xn, x′) ∀ n ∈ N
1As an aside, you may have noticed that the metric space (bU, d∞) seems to be defined by a “norm”

‖ f ‖∞ := supx∈U | f (x)|. This is not a norm in the sense of definition 3.1.2, as that definition requires that the
underlying space is Rk , rather than bU. However, more general norms can be defined for abstract “vector
space,” and ‖ · ‖∞ is a prime example. See, for example, Aliprantis and Burkinshaw (1998), Chapter 5.
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Figure 3.2 An ϵ-ball for d∞

From theorems A.2.8 and A.2.9 (page 332) we have ρ(x, x′) = 0. Therefore x = x′.
(Why?)

Exercise 3.4 Let (xn) and (yn) be sequences in S. Show that if xn → x ∈ S and
ρ(xn, yn) → 0, then yn → x.

One of the most important creatures defined from the distance function is the hum-
ble open ball. The open ball or ϵ-ball B(ϵ; x) centered on x ∈ S with radius ϵ > 0 is the
set

B(ϵ; x) := {z ∈ S : ρ(z, x) < ϵ}

In the plane with ρ = d2 the ϵ-ball is a circle; in R3 it is a sphere. Figure 3.2 gives a
visualization of the ϵ-ball around f ∈ (b[a, b], d∞).

Exercise 3.5 Let (xn) ⊂ S and x ∈ S. Show that xn → x if and only if for all ϵ > 0, the
ball B(ϵ; x) contains all but finitely many terms of (xn).

A subset E of S is called bounded if E ⊂ B(n; x) for some x ∈ S and some (suitably
large) n ∈ N. A sequence (xn) in S is called bounded if its range {xn : n ∈ N} is a
bounded set.

Exercise 3.6 Show that every convergent sequence in S is also bounded.

Given sequence (xn) ⊂ S, a subsequence is defined analogously to the case of real
sequences: (yn) is called a subsequence of (xn) if there is a strictly increasing function
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f : N → N such that yn = x f (n) for all n ∈ N. It is common to use the notation (xnk )
to denote a subsequence of (xn).

Exercise 3.7 Show that for (xn) ⊂ S, xn → x for some x ∈ S if and only if every
subsequence of (xn) converges to x.

For the Euclidean space (Rk, d2) we have the following result:

Lemma 3.1.4 A sequence (xn) = (x1
n, . . . , xk

n) in (Rk, d2) converges to x = (x1, . . . , xk) ∈
Rk if and only if xj

n → xj inR = (R, | · |) for all j in 1, . . . , k.

Proof. For j in 1, . . . , k we have |xj
n − xj| ≤ d2(xn, x). (Why?) Hence if d2(xn, x) → 0,

then |xj
n − xj| → 0 for each j. For the converse, fix ϵ > 0 and choose for each j in

1, . . . , k an N j ∈ N such that n ≥ N j implies |xj
n − xj| < ϵ/

√
k. Now n ≥ maxj N j

implies d2(xn, x) ≤ ϵ. (Why?)

Lemma 3.1.4 is important, and you should try sketching it for the case k = 2 to
build intuition. We will see that in fact the same result holds not just for d2, but for the
metric induced by any norm onRk.

Let S and Y be two metric spaces. Parallel to §A.2.3, define f : S ⊃ A → Y to be
continuous at a ∈ A if for every sequence (xn) in A converging to a we have f (xn) →
f (a) in Y, and continuous on A whenever it is continuous at every a ∈ A. For the same
f : A → Y and for a ∈ A, we say that y = limx→a f (x) if f (xn) → y for every sequence
(xn) ⊂ A with xn → a. Clearly, f is continuous at a if and only if limx→a f (x) = f (a).

Example 3.1.5 Let S be a metric space, and let x̄ be any given point in S. The map
S 3 x 7→ ρ(x, x̄) ∈ R is continuous on all of S. To see this, pick any x ∈ S, and any
(xn) ⊂ S with xn → x. Two applications of the triangle inequality yield

ρ(x, x̄)− ρ(xn, x) ≤ ρ(xn, x̄) ≤ ρ(xn, x) + ρ(x, x̄) ∀ n ∈ N

Now take the limit (i.e., apply theorem A.2.8 on page 332).

Exercise 3.8 Let f (x, y) = x2 + y2. Show that f is a continuous function from (R2, d2)
into (R, | · |).2

Throughout the text, if S is some set, f : S → R, and g : S → R, then f + g denotes
the function x 7→ f (x) + g(x) on S, while f g denotes the function x 7→ f (x)g(x) on S.

Exercise 3.9 Let f and g be as above, and let S be a metric space. Show that if f and g
are continuous, then so are f + g and f g.

2Hint: Use lemma 3.1.4.
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Exercise 3.10 A function f : S → R is called upper-semicontinuous (usc) at x ∈ S if,
for every xn → x, we have lim supn f (xn) ≤ f (x); and lower-semicontinuous (lsc) if,
for every xn → x, we have lim infn f (xn) ≥ f (x). Show that f is usc at x if and only if
− f is lsc at x. Show that f is continuous at x if and only if it is both usc and lsc at x.

3.1.3 Open Sets, Closed Sets

Arbitrary subsets of arbitrary spaces can be quite unruly. It is useful to identify
classes of sets that are well-behaved, interacting nicely with common functions, and
co-operating with attempts to measure them, or to represent them in terms of simpler
elements. In this section we investigate a class of sets called the open sets, as well as
their complements the closed sets.

Let’s say that x ∈ S adheres to E ⊂ S if, for each ϵ > 0, the ball B(ϵ; x) contains at
least one point of E;3 and that x is interior to E if B(ϵ; x) ⊂ E for some ϵ > 0.4 A set E ⊂
S is called open if all points in E are interior to E, and closed if E contains all points that
adhere to E. In the familiar metric space (R, | · |), canonical examples are the intervals
(a, b) and [a, b], which are open and closed respectively.5 The concepts of open and
closed sets turn out to be some of the most fruitful ideas in all of mathematics.
Exercise 3.11 Show that a point in S adheres to E ⊂ S if and only if it is the limit of a
sequence contained in E.

Theorem 3.1.6 A set F ⊂ S is closed if and only if for every convergent sequence entirely
contained in F, the limit of the sequence is also in F.

Proof. Do the proof as an exercise if you can. If not, here goes. Suppose that F is
closed, and take a sequence in F converging to some point x ∈ S. Then x adheres to F
by exercise 3.11, and is therefore in F by definition. Suppose, on the other hand, that
the limit of every convergent sequence in F belongs to F. Take any x ∈ S that adheres
to F. By exercise 3.11, there is a sequence in F converging to it. Therefore x ∈ F, and F
is closed.

Open sets and closed sets are closely related. In fact we have the following funda-
mental theorem:

Theorem 3.1.7 A subset of an arbitrary metric space S is open if and only if its complement
is closed, and closed if and only if its complement is open.

Proof. The proof is a good exercise. If you need a start, here is a proof that G open
implies F := Gc closed. Take (xn) ⊂ F with xn → x ∈ S. We wish to show that x ∈ F.

3In some texts, x is said to be a contact point of E.
4Try sketching some examples for the case of (R2, d2).
5If you find it hard to verify this now, you won’t by the end of the chapter.
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In fact this must be the case because, if x /∈ F, then x ∈ G, in which case there is an
ϵ > 0 such that B(ϵ, x) ⊂ G. (Why?) Such a situation is not possible when (xn) ⊂ F
and xn → x. (Why?)

We call D(ϵ; x) := {z ∈ S : ρ(z, x) ≤ ϵ} the closed ϵ-ball centered on x. Every
D(ϵ; x) ⊂ S is a closed set, as anticipated by the notation. To see this, take (an) ⊂
D(ϵ; x) converging to a ∈ S. We need to show that a ∈ D(ϵ; x) or, equivalently, that
ρ(a, x) ≤ ϵ. Since ρ(an, x) ≤ ϵ for all n ∈ N, since limits preserve orders and since
y 7→ ρ(y, x) is continuous, we have ρ(a, x) = lim ρ(an, x) ≤ ϵ.

Exercise 3.12 Likewise every open ball B(ϵ; x) in S is an open set. Prove this directly,
or repeat the steps of the previous example applied to B(ϵ; x)c.

You will not find it difficult to convince yourself that if (S, ρ) is any metric space,
then the whole set S is itself both open and closed. (Just check the definitions care-
fully.) This can lead to some confusion. For example, suppose that we consider the
metric space (S, | · |), where S = (0, 1). Since (0, 1) is the whole space, it is closed. At
the same time, (0, 1) is open as a subset of (R, | · |). The properties of openness and
closedness are relative rather than absolute.
Exercise 3.13 Argue that for any metric space (S, ρ), the empty set ∅ is both open and
closed.

Exercise 3.14 Show that if (S, ρ) is an arbitrary metric space, and if x ∈ S, then the set
{x} is always closed.

Theorem 3.1.8 If F is a closed, bounded subset of (R, | · |), then sup F ∈ F.

Proof. Let s := sup F. Since F is closed it is sufficient to show there exists a sequence
(xn) ⊂ F with xn → s. (Why?) By lemma A.2.13 (page 334) such a sequence exists.

Exercise 3.15 Prove that a sequence converges to a point x if and only if the sequence
is eventually in every open set containing x.

Exercise 3.16 Prove: If {Gα}α∈A are all open, then so is ∪α∈AGα.

Exercise 3.17 Show that if A is finite and {Gα}α∈A is a collection of open sets, then
∩α∈AGα is also open.

In other words, arbitrary unions and finite intersections of open sets are open. But
be careful: An infinite intersection of open sets is not necessarily open. For example,
consider the metric space (R, | · |). If Gn = (−1/n, 1/n), then ∩n∈NGn = {0} because

x ∈ ∩nGn ⇐⇒ − 1
n
< x <

1
n

∀ n ∈ N ⇐⇒ x = 0
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Exercise 3.18 Show that ∩n∈N(a − 1/n, b + 1/n) = [a, b].

Exercise 3.19 Prove that if {Fα}α∈A are all closed, then so is ∩α∈AFα.

Exercise 3.20 Show that if A is finite and {Fα}α∈A is a collection of closed sets, then
∪α∈AFα is closed. On the other hand, show that the union ∪n∈N[a + 1/n, b − 1/n] =
(a, b). (Why is this not a contradiction?)

Exercise 3.21 Show that G ⊂ S is open if and only if it can be formed as the union of
an arbitrary number of open balls.

Remark 3.1.9 Later, when we try to make precise statements about dynamic systems
evolving on some set S ⊂ Rn, we will want S to be a “nice” set, in some sense, to
prevent the construction of strange and obscure counterexamples. We could assume
that S is open, since open sets are nice, but sometimes we want to work with closed
sets. We could assume “either open or closed,” but this also rules out some plausible
scenarios (e.g., S = [0, 1)). Faced with this problem, we will typically assume that the
set S is a Gδ set, which means that S can be expressed as a countable union of open
sets. By constructions such as the one seen in exercise 3.18, we can represent every
state space S we care about in this text as a Gδ set. At the same time, elements of Gδ

are regular enough to rule out most nasty counterexamples.

The closure of E is the set of all points that adhere to E, and is written cl E. In view
of exercise 3.11, x ∈ cl E if and only if there exists a sequence (xn) ⊂ E with xn → x.
The interior of E is the set of its interior points, and is written int E.

Exercise 3.22 Show that cl E is always closed. Show in addition that for all closed sets
F such that F ⊃ E, cl E ⊂ F. Using this result, show that cl E is equal to the intersection
of all closed sets containing E.

The last exercise tells us that the closure of a set is the smallest closed set that
contains that particular set. The next one shows us that the interior of a set is the
largest open set contained in that set.

Exercise 3.23 Show that int E is always open. Show also that for all open sets G such
that G ⊂ E, int E ⊃ G. Using this result, show that int E is equal to the union of all
open sets contained in E.

Exercise 3.24 Show that E = cl E if and only if E is closed. Show that E = int E if and
only if E is open.

Open sets and continuous functions interact very nicely. For example, we have the
following fundamental theorem.
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Theorem 3.1.10 A function f : S → Y is continuous if and only if the preimage f−1(G) of
every open set G ⊂ Y is open in S.

Proof. Suppose that f is continuous, and let G be any open subset of Y. If x ∈ f−1(G),
then x must be interior, for if it is not, then there is a sequence xn → x where xn /∈
f−1(G) for all n. But, by continuity, f (xn) → f (x), implying that f (x) ∈ G is not
interior to G. (Why?) Contradiction.

Conversely, suppose that the preimage of every open set is open, and take any
{xn}n≥1 ∪ {x} ⊂ S with xn → x. Pick any ϵ-ball B around f (x). The preimage f−1(B)
is open, so for N sufficiently large we have xn ∈ f−1(B) for all n ≥ N, in which case
f (xn) ∈ B for all n ≥ N.

Exercise 3.25 Let S, Y, and Z be metric spaces, and let f : S → Y and g : Y → Z. Show
that if f and g are continuous, then so is h := g ◦ f .

Exercise 3.26 Let S = Rk, and let ρ∗(x, y) = 0 if x = y and 1 otherwise. Prove
that ρ∗ is a metric on Rk. Which subsets of this space are open? Which subsets are
closed? What kind of functions f : S → R are continuous? What kinds of sequences
are convergent?

3.2 Further Properties

Having covered the fundamental ideas of convergence, continuity, open sets and
closed sets, we now turn to two key concepts in metric space theory: completeness
and compactness. After stating the definitions and covering basic properties, we will
see how completeness and compactness relate to existence of optima and to the theory
of fixed points.

3.2.1 Completeness

A sequence (xn) in metric space (S, ρ) is said to be a Cauchy sequence if, for all ϵ > 0,
there exists an N ∈ N such that ρ(xj, xk) < ϵ whenever j ≥ N and k ≥ N . A subset A
of a metric space S is called complete if every Cauchy sequence in A converges to some
point in A. Often the set A of interest is the whole space S, in which case we say that
S is a complete metric space. As discussed in §A.2, the set of reals (R, | · |) has this
property. Many other metric spaces do not.

Notice that completeness is intrinsic to a given set A and a metric ρ on A. Either
every Cauchy sequence in (A, ρ) converges or there exists a Cauchy sequence that
does not. On the other hand, openness and closedness are relative properties. The set
A := [0, 1) is not open as a subset of (R, | · |), but it is open as a subset of (R+, | · |).
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The significance of completeness is that when searching for the solution to a prob-
lem, it sometimes happens that we are able to generate a Cauchy sequence whose limit
would be a solution if it does in fact exist. In a complete space we can rest assured
that our solution does exist as a well-defined element of the space.

Exercise 3.27 Show that a sequence (xn) in metric space (S, ρ) is Cauchy if and only
if limn→∞ supk≥n ρ(xn, xk) = 0.

Exercise 3.28 Show that if a sequence (xn) in metric space (S, ρ) is convergent, then
it is Cauchy. Show that if (xn) is Cauchy, then it is bounded.

Which metric spaces are complete? Observe that while R = (R, | · |) is complete,
subsets of R may not be. For example, consider the metric space (S, ρ) = ((0, ∞), | ·
|). Some manipulation proves that while (xn) = (1/n) is Cauchy in S, it converges
to no point in S. On the other hand, for (S, ρ) = (R+, | · |) the limit point of the
sequence (1/n) is in S. Indeed this space is complete, as is any closed subset of R.
More generally,

Theorem 3.2.1 Let S be a complete metric space. Subset A ⊂ S is complete if and only if it
is closed as a subset of S.

Proof. Let A be complete. To see that A is closed, let (xn) ⊂ A with xn → x ∈ S.
Since (xn) is convergent it must be Cauchy (exercise 3.28). Because A is complete we
have x ∈ A. Thus A contains its limit points, and is therefore closed. Conversely,
suppose that A is closed. Let (xn) be a Cauchy sequence in A. Since S is complete,
(xn) converges to some x ∈ S. As A is closed, the limit point x must be in A. Hence A
is complete.

The Euclidean space (Rk, d2) is complete. To see this, observe first that

Lemma 3.2.2 A sequence (xn) = (x1
n, . . . , xk

n) in (Rk, d2) is Cauchy if and only if each
component sequence xj

n is Cauchy inR = (R, | · |).

The proof of lemma 3.2.2 is an exercise.6 The lemma is important because it implies
that (Rk, d2) inherits the completeness ofR (axiom A.2.3, page 330):

Theorem 3.2.3 The Euclidean space (Rk, d2) is complete.

Proof. If (xn) is Cauchy in (Rk, d2), then each component is Cauchy in R = (R, | · |),
and, by completeness ofR, converges to some limit inR. It follows from lemma 3.1.4
that (xn) is convergent in (Rk, d2).

6Hint: You might like to begin by rereading the proof of lemma 3.1.4.
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Recall that (bU, d∞) is the bounded real-valued functions f : U → R, endowed
with the distance d∞ defined on page 41. This space also inherits completeness from
R:

Theorem 3.2.4 Let U be any set. The metric space (bU, d∞) is complete.

Proof. Let ( fn) ⊂ bU be Cauchy. We claim the existence of a f ∈ bU such that
d∞( fn, f ) → 0. To see this, observe that for each x ∈ U we have supk≥n | fn(x) −
fk(x)| ≤ supk≥n d∞( fn, fk) → 0, and hence ( fn(x)) is Cauchy (see exercise 3.27). By
the completeness of R, ( fn(x)) is convergent, and we define a new function f ∈ bU
by f (x) = limn→∞ fn(x).7

To show that d∞( fn, f ) → 0, fix ϵ > 0, and choose N ∈ N such that d∞( fn, fm) <
ϵ/2 whenever n, m ≥ N. Pick any n ≥ N. For arbitrary x ∈ U we have | fn(x) −
fm(x)| < ϵ/2 for all m ≥ n, and hence, taking limits with respect to m, we have
| fn(x)− f (x)| ≤ ϵ/2. Since x was arbitrary, d∞( fn, f ) ≤ ϵ/2 < ϵ.

This is a good opportunity to briefly discuss convergence of functions. A sequence
of functions ( fn) from arbitrary set U into R converges pointwise to f : U → R if
| fn(x) − f (x)| → 0 as n → ∞ for every x ∈ U; and uniformly if d∞( fn, f ) → 0.
Pointwise convergence is certainly important, but it is also significantly weaker than
convergence in d∞. For example, suppose that U is a metric space, that fn → f , and
that all fn are continuous. It might then be hoped that the limit f inherits continuity
from the approximating sequence. For pointwise convergence this is not generally
true,8 while for uniform convergence it is:

Theorem 3.2.5 Let ( fn) and f be real-valued functions on metric space U. If fn is continuous
on U for all n and d∞( fn, f ) → 0, then f is also continuous on U.

Proof. Take (xk) ⊂ U with xk → x̄ ∈ U. Fix ϵ > 0. Choose n ∈ N such that | fn(x)−
f (x)| < ϵ/2 for all x ∈ U. For any given k ∈ N the triangle inequality gives

| f (xk)− f (x̄)| ≤ | f (xk)− fn(xk)|+ | fn(xk)− fn(x̄)|+ | fn(x̄)− f (x̄)|

∴ | f (xk)− f (x̄)| ≤ | fn(xk)− fn(x̄)|+ ϵ (k ∈ N)

From exercise A.20 (page 335) we have 0 ≤ lim supk | f (xk) − f (x̄)| ≤ ϵ. Since ϵ is
arbitrary, lim supk | f (xk)− f (x̄)| = limk | f (xk)− f (x̄)| = 0.

Now let’s introduce another important metric space.

Definition 3.2.6 Given any metric space U, let (bcU, d∞) be the continuous functions
in bU endowed with the same metric d∞.

7Why is f ∈ bU (i.e., why is f bounded on U)? Consult exercise 3.28.
8A counterexample is U = [0, 1], fn(x) = xn, f (x) = 0 on [0, 1) and f (1) = 1.
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Theorem 3.2.7 The space (bcU, d∞) is always complete.

Proof. This follows from theorem 3.2.1 (closed subsets of complete spaces are com-
plete), theorem 3.2.4 (the space (bU, d∞) is complete) and theorem 3.2.5 (which implies
that the space bcU is closed as a subset of bU).

3.2.2 Compactness

Now we turn to the notion of compactness. A subset K of S = (S, ρ) is called precom-
pact in S if every sequence contained in K has a subsequence that converges to a point
of S. The set K is called compact if every sequence contained in K has a subsequence
that converges to a point of K. (Thus every compact subset of S is precompact in S,
and every closed precompact set is compact.) Compactness will play a major role in
our analysis. As we will see, the existence of a converging subsequence often allows
us to track down the solution to a difficult problem.

As a first step, note that there is another important characterization of compact-
ness, which at first sight bears little resemblance to the sequential definition above. To
state the theorem, recall that for a set K in S, an open cover is a collection {Gα} of open
subsets of S such that K ⊂ ∪αGα. The cover is called finite if it consists of only finitely
many sets.

Theorem 3.2.8 A subset K of an arbitrary metric space S is compact if and only if every open
cover of K can be reduced to a finite cover.

In other words, a set K is compact if and only if, given any open cover, we can
discard all but a finite number of elements and still cover K. The proof of theorem 3.2.8
can be found in any text on real analysis.

Exercise 3.29 Exhibit an open cover ofRk that cannot be reduced to a finite subcover.
Construct a sequence inRk with no convergent subsequence.

Exercise 3.30 Use theorem 3.2.8 to prove that every compact subset of a metric space
S is bounded (i.e., can be contained in an open ball B(n; x) for some x ∈ S and some
(suitably large) n ∈ N).

Exercise 3.31 Prove that every compact subset of a metric space is closed.

On the other hand, closed and bounded subsets of metric spaces are not always
compact.

Exercise 3.32 Let (S, ρ) = ((0, ∞), | · |), and let K = (0, 1]. Show that although K is a
closed, bounded subset of S, it is not precompact in S.
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Exercise 3.33 Show that every subset of a compact set is precompact, and every closed
subset of a compact set is compact.

Exercise 3.34 Show that in any metric space the intersection of an arbitrary number
of compact sets and the union of a finite number of compact sets are again compact.

Exercise 3.35 For a more advanced exercise, you might like to try to show that the clo-
sure of a precompact set is compact. It follows that every precompact set is bounded.
(Why?)

When it comes to precompactness and compactness, the space (Rk, d2) is rather
special. For example, the Bolzano–Weierstrass theorem states that

Theorem 3.2.9 Every bounded sequence in Euclidean space (Rk, d2) has at least one conver-
gent subsequence.

Proof. Let’s check the case k = 2. Let (xn) = (x1
n, x2

n) ⊂ (R2, d2) be bounded. Since
(x1

n) is itself bounded inR (why?), we can find a sequence n1, n2, . . . =: (nj) such that
(x1

nj
) converges in R (theorem A.2.6, page 332). Now consider (x2

nj
). This sequence is

also bounded, and must itself have a convergent subsequence, so if we discard more
terms from n1, n2, . . . =: (nj) we can obtain a subsubsequence (ni) ⊂ (nj) such that
(x2

ni
) converges. Since (ni) ⊂ (nj), the sequence (x1

ni
) also converges. It follows from

lemma 3.1.4 (page 44) that (xni ) converges in (Rk, d2).

The next result (called the Heine–Borel theorem) follows directly.

Theorem 3.2.10 A subset of (Rk, d2) is precompact in (Rk, d2) if and only if it is bounded,
and compact if and only if it is closed and bounded.

As we have seen, some properties of (Rk, d2) carry over to arbitrary metric spaces,
while others do not. For example, we saw that in an arbitrary metric space, closed
and bounded sets are not necessarily compact. (This has important implications for
the theory of Markov chains developed below.) However, we will see in §3.2.3 that
any metric d onRk induced by a norm (see definition 3.1.2 on page 41) is “equivalent”
to d2, and that, as a result, subsets of (Rk, d) are compact if and only if they are closed
and bounded.

3.2.3 Optimization, Equivalence

Optimization is important not only to economics, but also to statistics, numerical com-
putation, engineering, and many other fields of science. In economics, rationality is
the benchmark assumption for agent behavior, and is usually imposed by requiring
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agents solve optimization problems. In statistics, optimization is used for maximum
likelihood and other related procedures, which search for the “best” estimator in some
class. For numerical methods and approximation theory, one often seeks a simple rep-
resentation fn of a given function f that is the “closest” to f in some suitable metric
sense.

In any given optimization problem the first issue we must confront is whether or
not optima exist. For example, a demand function is usually defined as the solution
to a consumer optimization problem. It would be awkward then if no solution to
the problem exists. The same can be said for supply functions, or for policy functions,
which return the optimal action of a “controller” faced with a given state of the world.
Discussions of existence typically begin with the following theorem:

Theorem 3.2.11 Let f : S → Y, where S and Y are metric spaces and f is continuous. If
K ⊂ S is compact, then so is f (K), the image of K under f .

Proof. Take an open cover of f (K). The preimage of this cover under f is an open
cover of K (recall theorem 3.1.10 on page 48). Since K is compact we can reduce this
to a finite cover (theorem 3.2.8). The image of this finite cover under f contains f (K),
and hence f (K) is compact.

Exercise 3.36 Give another proof of theorem 3.2.11 using the sequential definitions of
compactness and continuity.

The following theorem is one of the most fundamental results in optimization the-
ory. It says that in the case of continuous functions on compact domains, optima
always exist.

Theorem 3.2.12 (Weierstrass) Let f : K → R, where K is a subset of arbitrary metric space
(S, ρ). If f is continuous and K is compact, then f attains its supremum and infimum on K.

In other words, α := sup f (K) exists, and, moreover, there is an x ∈ K such that
f (x) = α. A corresponding result holds for the infimum.

Proof. Regarding suprema, the result follows directly from theorem 3.2.11 combined
with theorem 3.1.8 (page 46). By these theorems you should be able to show that
α := sup f (K) exists, and, moreover, that α ∈ f (K). By the definition of f (K), there is
an x ∈ K such that f (x) = α. This proves the assertion regarding suprema. The proof
of the assertion regarding infima is similar.

In general, for f : S → R, a value y ∈ R is called the maximum of f on A ⊂ S if
f (x) ≤ y for all x ∈ A and f (x̄) = y for some x̄ ∈ A. At most one maximum exists.
The maximizers of f on A are the points

argmax
x∈A

f (x) := {x ∈ A : f (x) = y} = {x ∈ A : f (z) ≤ f (x) for all z ∈ A}
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Minima and minimizers are defined in a similar way.
With this notation, we can restate theorem 3.2.12 as follows: If K is compact and

f : K → R is continuous, then K contains at least one maximizer and one minimizer
of f on K. (Convince yourself that this is so.)

Exercise 3.37 Let f : K → R, where K is compact and f is continuous. Show that if f
is strictly positive on K, then inf f (K) is strictly positive.

As an application of theorem 3.2.12, let’s show that all norms on Rk induce essen-
tially the same metric space. We begin with a definition: Let S be a nonempty set,
and let ρ and ρ′ be two metrics on S. We say that ρ and ρ′ are equivalent if there exist
constants K and J such that

ρ(x, y) ≤ Kρ′(x, y) and ρ′(x, y) ≤ Jρ(x, y) for any x, y ∈ S (3.4)

The notion of equivalence is important because equivalent metrics share the same
convergent sequences and Cauchy sequences, and the metric spaces (S, ρ) and (S, ρ′)
share the same open sets, closed sets, compact sets and bounded sets:

Lemma 3.2.13 Let ρ and ρ′ be equivalent on S, and let (xn) ⊂ S. The sequence (xn) ρ-
converges to x ∈ S if and only if it ρ′-converges to x.9

Proof. If ρ(xn, x) → 0, then ρ′(xn, x) ≤ Jρ(xn, x) → 0, and so forth.

Exercise 3.38 Let ρ and ρ′ be equivalent on S, and let (xn) ⊂ S. Show that (xn) is
ρ-Cauchy if and only if it is ρ′-Cauchy.10

Exercise 3.39 Let ρ and ρ′ be equivalent on S, and let A ⊂ S. Show that A is ρ-complete
if and only if it is ρ′-complete.

Exercise 3.40 Let ρ and ρ′ be equivalent on S. Show that (S, ρ) and (S, ρ′) share the
same closed sets, open sets, bounded sets and compact sets.

Exercise 3.41 Let ρ and ρ′ be equivalent on S, and let f : S → R = (R, | · |). Show that
f is ρ-continuous if and only if it is ρ′-continuous.

Exercise 3.42 Let S be any nonempty set, and let ρ, ρ′, and ρ′′ be metrics on S. Show
that equivalence is transitive, in the sense that if ρ is equivalent to ρ′ and ρ′ is equiva-
lent to ρ′′, then ρ is equivalent to ρ′′.

Theorem 3.2.14 All metrics onRk induced by a norm are equivalent.
9Here ρ-convergence means convergence in (S, ρ), etc., etc.

10Hint: Try a proof using exercise 3.27 (page 49).
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Proof. The claim is that if ‖ · ‖ and ‖ · ‖′ are any two norms onRk (see definition 3.1.2
on page 41), and ρ and ρ′ are defined by ρ(x, y) := ‖x − y‖ and ρ′(x, y) := ‖x − y‖′,
then ρ and ρ′ are equivalent. In view of exercise 3.42, it is sufficient to show that any
one of these metrics is equivalent to d1. To check this, it is sufficient (why?) to show
that if ‖ · ‖ is any norm onRk, then there exist constants K and J such that

‖x‖ ≤ K‖x‖1 and ‖x‖1 ≤ J‖x‖ for any x ∈ Rk (3.5)

To check the first inequality, let ej be the j-th basis vector inRk (i.e., the j-th component
of vector ej is 1 and all other components are zero). Let K := maxj ‖ej‖. Then for any
x ∈ Rk we have

‖x‖ = ‖x1e1 + · · · xkek‖ ≤
k

∑
j=1

‖xjej‖ =
k

∑
j=1

|xj|‖ej‖ ≤ K‖x‖1

To check the second inequality in (3.5), observe that x 7→ ‖x‖ is continuous on (Rk, d1)
because if xn → x in d1, then

|‖xn‖ − ‖x‖| ≤ ‖xn − x‖ ≤ K‖xn − x‖1 → 0 (n → ∞)

Now consider the set E := {x ∈ Rk : ‖x‖1 = 1}. Some simple alterations to the-
orem 3.2.10 (page 52) and the results that lead to it show that, just as for the case
of (Rk, d2), closed and bounded subsets of (Rk, d1) are compact.11 Hence E is d1-
compact. It now follows from theorem 3.2.12 that x 7→ ‖x‖ attains its minimum on E,
in the sense that there is an x∗ ∈ E with ‖x∗‖ ≤ ‖x‖ for all x ∈ E. Clearly, ‖x∗‖ 6= 0.
(Why?) Now observe that for any x ∈ Rk we have

‖x‖ =

∥∥∥∥ x
‖x‖1

∥∥∥∥ ‖x‖1 ≥ ‖x∗‖‖x‖1

Setting J := 1/‖x∗‖ gives the desired inequality.

3.2.4 Fixed Points

Next we turn to fixed points. Fixed point theory tells us how to find an x that solves
Tx = x for some given T : S → S.12 Like optimization it has great practical impor-
tance. Very often the solutions of problems we study will turn out to be fixed points

11Alternatively, you can show directly that (Rk , d2) and (Rk , d1) are equivalent by establishing (3.5) for
‖ · ‖ = ‖ · ‖2. The first inequality is already done, and the second follows from the Cauchy–Schwartz
inequality (look it up).

12It is common in fixed point theory to use upper case symbols like T for the function, and no brackets
around its argument. One reason is that S is often a space of functions, and standard symbols like f and g
are reserved for the elements of S.
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45 degree line

x∗ = Tx∗

T

Figure 3.3 Fixed points in one dimension

of some appropriately constructed function. Of the theorems we treat in this section,
one uses convexity and is due to L. E. J. Brouwer while the other two are contraction
mapping arguments: a famous one due to Stefan Banach and a variation of the latter.

Incidentally, fixed point and optimization problems are closely related. When we
study dynamic programming, an optimization problem will be converted into a fixed
point problem—in the process yielding an efficient means of computation. On the
other hand, if T : S → S has a unique fixed point in metric space (S, ρ), then finding
that fixed point is equivalent to finding the minimizer of g(x) := ρ(Tx, x).

So let T : S → S, where S is any set. An x∗ ∈ S is called a fixed point of T on S if
Tx∗ = x∗. If S is a subset of R, then fixed points of T are those points in S where T
meets the 45 degree line, as illustrated in figure 3.3.

Exercise 3.43 Show that if S = R and T : S → S is decreasing (x ≤ y implies Tx ≥ Ty),
then T has at most one fixed point.

A set S ⊂ Rk is called convex if for all λ ∈ [0, 1] and a, a′ ∈ S we have λa + (1 − λ)a′ ∈
S. Here is Brouwer’s fixed point theorem:

Theorem 3.2.15 (Brouwer) Consider the space (Rk, d), where d is the metric induced by
any norm.13 Let S ⊂ Rk, and let T : S → S. If T is continuous and S is both compact and
convex, then T has at least one fixed point in S.

The proof is rather long and we omit it. I recommend you sketch the case S = [0, 1]
to gain some intuition.

13All such metrics are equivalent. See theorem 3.2.14.
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Let (S, ρ) be a metric space, and let T : S → S. The map T is called nonexpansive on
S if

ρ(Tx, Ty) ≤ ρ(x, y) ∀ x, y ∈ S (3.6)

It is called contracting on S if

ρ(Tx, Ty) < ρ(x, y) ∀ x, y ∈ S with x 6= y (3.7)

It is called uniformly contracting on S with modulus λ if 0 ≤ λ < 1 and

ρ(Tx, Ty) ≤ λρ(x, y) ∀ x, y ∈ S (3.8)

Exercise 3.44 Show that if T is nonexpansive on S then it is also continuous on S
(with respect to the same metric ρ).

Exercise 3.45 Show that if T is a contraction on S, then T has at most one fixed point
in S.

For n ∈ N the notation Tn refers to the n-th composition of T with itself, so Tnx
means apply T to x, apply T to the result, and so on for n times. By convention, T0 is
the identity map x 7→ x.14

Exercise 3.46 Let T be uniformly contracting on S with modulus λ, and let x0 ∈ S.
Define xn := Tnx0 for n ∈ N. Use induction to show that ρ(xn+1, xn) ≤ λnρ(x1, x0)
for all n ∈ N.

The next theorem is one of the cornerstones of functional analysis:

Theorem 3.2.16 (Banach) Let T : S → S, where (S, ρ) is a complete metric space. If T is a
uniform contraction on S with modulus λ, then T has a unique fixed point x∗ ∈ S. Moreover
for every x ∈ S and n ∈ N we have ρ(Tnx, x∗) ≤ λnρ(x, x∗), and hence Tnx → x∗ as
n → ∞.

Proof. Let λ be as in (3.8). Let xn := Tnx0, where x0 is some point in S. From exer-
cise 3.46 we have ρ(xn, xn+1) ≤ λnρ(x0, x1) for all n ∈ N, suggesting that the sequence
is ρ-Cauchy. In fact with a bit of extra work one can show that if n, k ∈ N and n < k,
then ρ(xn, xk) ≤ ∑k−1

i=n λiρ(x0, x1).

∴ ρ(xn, xk) <
λn

1 − λ
ρ(x0, x1) (n, k ∈ Nwith n < k)

Since (xn) is ρ-Cauchy, this sequence has a limit x∗ ∈ S. That is, Tnx0 → x∗ ∈ S. Next
we show that x∗ is a fixed point of T. Since T is continuous, we have T(Tnx0) → Tx∗.

14In other words, T0 := {x 7→ x} and Tn := T ◦ Tn−1 for n ∈ N.
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But T(Tnx0) → x∗ clearly also holds. (Why?) Since sequences in a metric space have
at most one limit, it must be that Tx∗ = x∗.

Regarding uniqueness, let x and x′ be fixed points of T in S. Then

ρ(x, x′) = ρ(Tx, Tx′) ≤ λρ(x, x′)

∴ ρ(x, x′) = 0, and hence x = x′

The estimate ρ(Tnx, x∗) ≤ λnρ(x, x∗) in the statement of the theorem is left as an
exercise.

If we take away uniformity and just have a contraction, then Banach’s proof of
stability does not work, and indeed a fixed point may fail to exist. Under the action
of a uniformly contracting map T, the motion induced by iterating T slows down at a
geometric rate. The limit of this process is a fixed point. On the other hand, with a
contraction we know only that the process slows down at each step, and this is not
enough to guarantee convergence. Imagine a particle that travels at speed 1 + 1/t at
time t. Its motion slows down at each step, but the particle’s speed is bounded away
from zero.

Exercise 3.47 Let S := R+ with distance | · |, and let T : x 7→ x + e−x. Show that T is
a contraction on S, and that T has no fixed point in S.

However, if we add compactness of S to the contractiveness of T the problem is
rectified. Now our particle cannot diverge, as that would violate the existence of a
convergent subsequence.

Theorem 3.2.17 If (S, ρ) is compact and T : S → S is contracting, then T has a unique fixed
point x∗ ∈ S. Moreover Tnx → x∗ for all x ∈ S.

The proof is provided in the appendix to this chapter (p. 343).

3.3 Commentary

The French mathematician Maurice Fréchet (1878–1973) introduced the notion of met-
ric space in his dissertation of 1906. The name “metric space” is due to Felix Hausdorff
(1868–1942). Other important spaces related to metric spaces are topological spaces (a
generalization of metric space) and normed linear spaces (metric spaces with addi-
tional algebraic structure). Good references on metric space theory—sorted from ele-
mentary to advanced—include Light (1990), Kolmogorov and Fomin (1970), Alipran-
tis and Burkinshaw (1998), and Aliprantis and Border (1999). For a treatment with
economic applications, see Ok (2007).
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This chapter’s discussion of fixed points and optimization only touched the sur-
face of these topics. For a nice treatment of optimization theory, see Sundaram (1996).
Various extensions of Brouwer’s fixed point theorem are available, including Kaku-
tani’s theorem (for correspondences, see McLennan and Tourky 2005 for an interesting
proof) and Schauder’s theorem (for infinite-dimensional spaces). Aliprantis and Bor-
der (1999) is a good place to learn more. See Aguiar and Amador (2019) for a creative
use of contraction maps in the setting of sovereign debt models.


