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Summary. This note studies conditions under which sequences of state variables
generated by discrete-time stochastic optimal accumulation models have law of
large numbers and central limit properties. Productivity shocks with unbounded
support are considered. Instead of restrictions on the support of the shock, an “av-
erage contraction” property is required on technology.
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1 Introduction

Dynamic properties of the one-sector stochastic optimal growthmodelwith concave
production technology were first studied in the well-known paper of Brock and
Mirman [4]. Using standard Inada-type assumptions, they showed that there exists a
unique and globally stable equilibriumwhenever the shock that perturbs production
is supportedona closedbounded interval of thepositive real numbers. Subsequently,
the asymptotic behavior of the concave one-sector model with bounded shock
was studied by many authors [12,13,5,14,6,10,17,8,1]. More general proofs were
established, and various complications were incorporated.

Stochastic models that have an equilibrium or steady state distribution may
also have asymptotic statistical properties related to the existence of a steady state
distribution, such as convergence of sample averages from time series to the mean

� The author thanks John Creedy and Rabee Tourky for helpful comments, and the Economic Theory
Center, University of Melbourne for financial support.



2 J. Stachurski

of this limiting distribution, or asymptotic normality of the partial sums. The first
question concerns a law of large numbers (LLN) result, while the latter pertains to
the central limit theorem (CLT).

The importance of these questions can be summarized as follows. If an LLN
condition holds, then it is possible to test a given theoretical model by comparing
the mean of the limiting distribution with a sample average from a sufficiently large
data set generated by the systemunder study.Conversely, suppose that an expression
is available for the mean of the hypothetical model in terms of its parameters. Then
the implied equality of this expression and the sample mean calculated from data
provides a consistent method for estimating parameter values. If, in addition, a CLT
result is available, then inference can be drawn as to the likelihood of values in the
parameter space.

It is known that both the LLN and CLT results are realized for the general
discrete-time concave stochastic optimal growthmodelwhen the shock has compact
support [17,7,2,3]. Central to the proofs is boundedness of the productivity shock,
which, in combination with Inada conditions, allows the state space to be taken to
be compact.

Recently, general conditions for existence, uniqueness and stability of equilib-
rium in the Brock-Mirman model without restrictions on the support of the pro-
ductivity shock were found [15]. When the influence of the shock is not bounded,
however, compactness of the state space typically fails. In this case it is not clear
whether LLN and CLT properties are available.

Herewe begin to address this question by introducing amethodology and study-
ing some specific parameterizations. The techniques are based on results recently
obtained by Ĺoskot and Rudnicki [9], who study the LLN and CLT properties of
pertubed dynamical systems on Polish space.

Section 2 formulates the problem and gives the major definitions. Section 3
provides a general stability result. Section 4 gives applications. Section 5 gives
proofs.

2 The model

Let (X, ρ) be ametric space, and letB be theBorel subsets ofX . RealB-measurable
functions onX are referred to as Borel functions. A finite Borel measure onX is a
nonnegative, countably additive set function µ : B → R. The vector lattice of finite
Borel measures is denoted by M. All integrals are taken over the space X unless
otherwise stated.

Weconsider a growthmodel evolvingon state spaceX . Preferences, technology,
market conditions and other primitives of the model imply a transition rule that
associates a current state value xt and a state of nature-a random variable εt-with
next-period state xt+1.

Formally, let (S, S,P) be a probability space, and let ε : S → X be an (S,B)-
measurable random variable. At time t, a point st ∈ S is drawn independently
according to P, and mapped intoX by ε. As anticipated by the above notation, the
realized value ε(st) is written simply as εt.
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Let the transition rule be denoted by T . That is,

T : X ×X � (xt, εt) �→ xt+1 ∈ X. (1)

Corresponding to the random variable ε is a finite Borel measureψ ∈ M defined
at B ∈ B by ψ(B) = P[ε−1(B)]. The measure ψ is called the distribution of ε,
and

∫
S
f [ε(s)]P(ds) =

∫
X
f(z)ψ(dz) for any Borel function f .

Analogous to the definition in Brock and Mirman [4, p. 492], an equilibrium
for the economy (1) is a probability measure φ ∈ M that satisfies∫ [∫

1B [T (x, z)]ψ(dz)
]
φ(dx) = φ(B) (2)

for all B ∈ B.1 The equilibrium is unique if there exists no other point in M

satisfying (2).
Suppose that the growth model (1) has a unique equilibrium φ ∈ M. For the

purposes of this paper, (1) is said to satisfy the law of large numbers if, for any
Lipshitz function g : X → R,

1
N

N−1∑
t=0

g(xt) →
∫
g(x)φ(dx) (3)

P-almost surely as N → ∞.2

The economy is said to have the central limit property if, for any g as above,

1√
N

N−1∑
t=0

g(xt) → N(m,σ2) (4)

in distribution, where N(m,σ2) is a normal distribution with meanm =∫
g(x)φ(dx) and variance σ2 ≥ 0.

3 Results

Ĺoskot and Rudnicki [9] consider stochastic models that satisfy the following con-
traction condition.

Definition 1. The pair (T, ψ), where T is the map in (1) and ψ is the distribution
of the shock ε, is called an average contraction on (X, ρ) if there exists a Borel
function λ : X → R such that E(λ) =

∫
λ(z)ψ(dz) < 1 and

ρ(T (x, z), T (x′, z)) ≤ λ(z)ρ(x, x′), ∀x, x′, z ∈ X.

By adapting the results of Ĺoskot and Rudnicki and using additional restrictions
on the space X , we obtain the following stability condition.

1 Here 1B : X → {0, 1} is the characteristic function of B.
2 A real function g on X is called Lipshitz if there exists a constant λ such that |g(x) − g(x′)| ≤

λρ(x, x′) for any x, x′ ∈ X .
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Theorem 1. Let T be the map in (1). Let the state space (X, ρ) be both locally
compact and σ-compact.3 If the growth model defined by the law of motion T and
the distribution of the shock ψ is an average contraction, and if there exists at least
one point x̄ ∈ X such that∫

ρ(x̄, T (x̄, z))ψ(dz) < ∞, (5)

then there exists a unique stochastic equilibrium φ ∈ M satisfying (2), and, in
addition, the model satisfies the law of large numbers property (3). If, moreover,
E(λ2) < 1 and ∫

[ρ(x̄, T (x̄, z))]2ψ(dz) < ∞ (6)

holds, then the model also satisfies the central limit property (4).

The proof (Section 5) is a straightforward consequence of the results of Ĺoskot
and Rudnicki. The only technical difficulty is to verify that the steady state notion
used by Ĺoskot and Rudnicki is equivalent to the definition (2), which is standard
in the economic literature. This can be done under local and σ-compactness of the
state space, as was assumed in the theorem.

4 Applications

Let X = (0,∞). Consider the one-sector optimal growth problem

maxE

[ ∞∑
t=0

βtu(ct)

]
(7)

s.t. kt+1 = f(kt, εt) − ct (8)

where ct ∈ X is consumption, kt ∈ X is capital per head, β ∈ (0, 1) is a discount
factor, and f : X×X → X and u : X → R are the production and utility functions
respectively [4, pp. 484–488]. The utility function u is assumed to satisfy u′(0) =
∞, which assures interiority of solutions, and therefore eliminates the possibility
of zero savings or consumption. The shocks εt ∈ X are independent draws from
P as before.

The solution to the planning problem, if it exists, is an optimal policy π : X →
X , which associates realized output f(kt, εt) with optimal current consumption
ct. Optimal consumption π(f(kt, εt)) can then be substituted into (8) to obtain the
closed loop law of motion for the system, which is in the form of (1). A unique and
well-defined stochastic process is specified by this law and any initial condition
k0 ∈ X . The process so generated is called an optimal program.

3 Recall that a topological space is called locally compact if every point in the space has a neighbor-
hood with compact closure, and σ-compact if every open set can be obtained as the union of a countable
number of compact sets.
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Example 1. Consider first the unit-elastic decreasing returns model u(c) = ln c,
f : (k, ε) �→ Akαε, A > 0, α ∈ (0, 1). For such a specification, the optimal policy
consumes a fraction 1 − αβ of realized output Akαε, implying the law of motion

kt+1 = αβAkα
t εt. (9)

Define a binary ρ onX×X by ρ(x, y) = | lnx−ln y|. Evidently ρ is ametric on
X . Moreover, the space (X, ρ) is isometrically isomorphic to R under the mapping
x �→ lnx when the latter space is endowed with its usual Euclidean metric. Hence
(X, ρ) is both locally and σ-compact.

It can be verified that (9) is an average contraction on (X, ρ) for every random
variable ε. If E| ln ε| is finite, then condition (5) of Theorem 1 holds for x̄ = 1,
implying the existence of a unique stochastic equilibrium φ ∈ M, and the LLN
result (3) for the process (kt)t≥0.

Evidently E(λ2) < 1 also holds. If, in addition, E[(ln ε)2] is finite, then (6) is
satisfied for x̄ = 1, and the CLT result (4) obtains.

Remark 1. The conditions E| ln ε| < ∞ and E[(ln ε)2] < ∞ can be viewed as
restrictions on the left- and right-hand tails of the distribution. See the discussion
in Stachurski [16, Remark 4.1].

Example 2. The second example is from Mirman and Zilcha [13, Example A, p.
333]. The state space (X, ρ), the shock ε, the discount factor β, the productivity
parameterA and utility u(c) = ln c are as before. Let α be a Borel function fromX
into (0, 1). The production function is (k, ε) �→ Akα(ε). For such a specification,
the law of motion is

kt+1 = ᾱβAk
α(εt)
t , ᾱ =

∫
S

α[ε(s)]P(ds). (10)

Once again, the system is an average contraction on X under ρ, this time using
λ(z) = α(z). Note that in this case (5) holds for any shock ε when x̄ = 1. Hence
for any strictly positive initial condition k0, a unique equilibrium distribution φ
exists and the LLN condition (3) holds.

Moreover, E(λ2) < 1, and (6) holds for any shock ε when x̄ = 1, implying
that the CLT condition (4) also holds.

5 Proofs

This section contains the proof of Theorem 1. Throughout, Cb denotes the Banach
lattice of continuous bounded real functions on X , and C0 ⊂ Cb denotes the
continuous real functions with compact support. In what follows, the scalar product
notation is used for integration. Thus, for Borel function f : X → R and µ ∈ M,
we write 〈f, µ〉 for ∫

fdµ.
For f ∈ C0 and fixed µ ∈ M,

Λ(f) = 〈f, µ〉 (11)
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defines a positive linear functionalΛ onC0. Denote byC∗
0 the class of positive linear

functionals on C0. We will make use of the well-known fact that the association
µ �→ Λ from the finite Borel measures M to the linear functionals C∗

0 defined by
(11) is one-to-one [, Theorems 38.3 and 38.4].

Ĺoskot andRudnicki [9,Theorems1and3] proved thatwhen (T, ψ) is an average
contraction, (X, ρ) is complete and separable, and (5)–(6) holds, then there exists
a unique distribution φ ∈ M such that∫ [∫

f [T (x, z)]ψ(dz)
]
φ(dx) =

∫
f(x)φ(dx), ∀f ∈ Cb, (12)

and, moreover, the LLN and CLT results (3) and (4) both hold for φ.
All of the Ĺoskot-Rudnicki conditions are satisfied under the assumptions of

Theorem 1. It remains only to verify that φ in (12) is also a Brock-Mirman equi-
librium in the sense of (2).

Lemma 1. Let (X, ρ) be a locally and σ-compact metric space, and let φ be any
finite Borel measure on X . If φ satisfies (12), then it also satisfies (2).

Proof. Define an operatorP from the set of all boundedBorel functions f : X → R

into itself by

(Pf)(x) =
∫
f [T (x, z)]ψ(dz), x ∈ X.

Define in addition an operator P ∗ from the space of finite measures M into itself
by

(P ∗µ)(B) =
∫ ∫

1B [T (x, z)]ψ(dz)µ(dx), B ∈ B.

The operator P ∗ is adjoint to P in the sense that

〈f, P ∗µ〉 = 〈Pf, µ〉 (13)

for every bounded Borel function f and every finite Borel measure µ. To see this,
pick any µ ∈ M. Evidently (13) holds when f = 1B . By linearity of the inner
product, (13) also holds when f is a step function taking only finitely many values.
This canbe extended fromstep functions to anyboundednonnegativeBorel function
by pointwise approximation and a monotone convergence result in the usual way.
Linearity then implies the result for an arbitrary bounded Borel function f , which
can always be written as the difference between two nonnegative parts.

Assume now that φ satisfies (12). Then

〈Pf, φ〉 = 〈f, φ〉, ∀f ∈ Cb.

Therefore,

〈Pf, φ〉 = 〈f, φ〉, ∀f ∈ C0. (14)
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Since φ is a finite Borel measure, and since each f ∈ C0 is a bounded Borel
function, together (13) and (14) imply that

〈f, P ∗φ〉 = 〈f, φ〉, ∀f ∈ C0. (15)

This says precisely that the positive linear functionals on C0 generated by the two
measures P ∗φ and φ in the manner of (11) are identical. Given that P ∗φ and φ are
finite Borel measures, and that the association (11) fromM toC∗

0 is one-to-one, this
implies that the representing measures P ∗φ and φ are identical. This is equivalent
to stating that φ satisfies (2), and completes the proof of the lemma.
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