
Chapter 8

Estimators

In probability theory we aim to deduce the likelihood of different outcomes based on
known probability distributions. Statistics is the inverse problem. We want to infer
unknown probability distributions from outcomes we observe. In this chapter we
begin to explore these ideas.

8.1 The Estimation Problem

Let’s start off by clarifying the nature of the problem we want to study.

8.1.1 Definitions

From a pedagogical point of view, it’s best to start our study of statistics in a set-
ting where successive observations are both independent and identically distributed.
Later we’ll extend to dependent data. In an IID setting, the fundamental problem of
econometrics and statistics is this:

Problem 8.1.1 We observe independent Z-valued draws z1, . . . , zN from a common
but unknown distribution P ∈ P , where P is a class of distributions on Z. We wish
to infer some features of P from this sample.

The set P is the universe of distributions we are willing to consider. It can be
anything, including the set of all distributions on the outcome space. One of the main
tasks of economic theory is to restrict P and thereby narrow down the set of distribu-
tions we have to search over.

Example 8.1.1 Benhabib et al. (2015) study the wealth distribution in a model with
idiosyncratic capital income risk. The model predicts that the wealth distribution will
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have a Pareto right tail. Intuitively, this is because stochastic returns on assets are mul-
tiplicative, so positive shocks are self-reinforcing, and a sequence of positive shocks
can lead to very high wealth relative to the median.

Let’s set out some notation:

• Z is the outcome space where each observation zn takes values.

• zD denotes the sample or data set (z1, . . . , zN).

• ZD := ×N
n=1Z is the sample space in which zD takes values.

• PD := L(zD) is the joint distribution of the sample.

Although calling ZD the sample space follows standard nomenclature, we are
overloading the terminology first used on page 79. (Unfortunately, statisticians and
probabilists don’t always coordinate on terminology.)

As above, P = L(zn) is the common distribution of the observations. For as long
as we continue to focus on IID data, the joint distribution PD will be the Nth product
of P, as defined on page 130.

Example 8.1.2 Let x1, . . . , xN be observations of labor income from a given population.
We model x1, . . . , xN as IID draws from a common univariate distribution P. In our
terminology, xn is an observation, the outcome space Z is R, the sample space ZD is
RN , and the sample zD is the vector (x1, . . . , xN). Features of P that we might wish to
learn about include

• the mean and higher moments of P,

• measures of dispersion, such as the variance, or properties of tails,

• the median and other quantiles, and

• P itself, or the density of P if it exists.

In example 8.1.2, the individual observations are scalar. In other scenarios, obser-
vations are vector-valued:

Example 8.1.3 Suppose that we wish to learn about the relationship between prof-
itability and R&D spending within a group of firms. Let zn = (xn, yn) be an obser-
vation of these two quantities at the nth firm. We treat the observations as IID across
firms, with common marginal distribution P = L(zn). The outcome space is Z = R2,
and the sample space is

ZD := R2 × · · · ×R2 = R2×N

Because the marginal distribution P of the observations is now multivariate, new
features of the distribution come in to play, such as
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• correlations across coordinates of P,

• the variance–covariance matrix associated with P, and

• parameters controlling dependence when, say, P is modeled via a copula over
certain marginals.

8.1.1.1 Features

We referred above to “features" of P that we might be interested in estimating. Let’s
define a feature of P to be an object of the form

γ(P) for some γ : P → S (8.1)

The set S is left arbitrary to accommodate all possible features. When P is understood,
we’ll write γ(P) as γ. Here are some examples for univariate P routinely estimated in
econometric studies:

• γ(P) =
∫

skP(ds), the kth moment of P.

• γ(P) = inf{s ∈ R : P(−∞, s] > 1/2}, the median of P.

• γ(P) = P, when we want to estimate P itself.

• γ(P) = the density of P when P is absolutely continuous.

If P is multivariate over z = (x, y), then one feature of interest is the regression
function f ∗(x) := E [y | x]. This function is uniquely determined by P (see §5.2.5).

8.1.1.2 Parametric versus Nonparametric Classes

In the statistical problems listed above, it is assumed that the unknown distribution
belongs to some class P . We call P a parametric class if it can be expressed as

P = {Pθ}θ∈Θ :=: {Pθ : θ ∈ Θ} for some Θ ⊂ RK

In other words, a class of distributions is parametric if it can be indexed by finitely
many parameters. A class of distributions is called nonparametric if it is not paramet-
ric.

Example 8.1.4 Let P be the set of all univariate normal distributions with positive
variance. Equivalently,

P :=
{

all p s.t. p(s) =
1√
2πσ

exp
{
− (s− µ)2

2σ2

}
for some µ ∈ R, σ > 0

}
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The set P is an example of a parametric class. The parameters are θ = (µ, σ). A
particular choice of the parameters determines (parameterizes) an element of the class.

Example 8.1.5 If the outcome space Z is finite, containing J elements, then every dis-
tribution P on Z can be represented by J − 1 parameters (the probability pj of each
outcome but the last) and hence any family P of distributions on Z is necessarily a
parametric class.

Example 8.1.6 The set of all distributions on R cannot be parameterized by a finite
vector of parameters because the space of distributions is infinite dimensional. Hence
P := all distributions on R is a nonparametric class.

Example 8.1.7 Let P be the set of all absolutely continuous distributions on R with
finite second moment:

P :=
{

all p : R→ R s.t. p > 0,
∫

p(s)ds = 1,
∫

s2 p(s)ds < ∞
}

This set is nonparametric.

Many traditional methods of inference are parametric in nature: The data are as-
sumed to be generated by an unknown element Pθ of a parametric class P . The aim
is to estimate θ using the data. Once we have an estimate θ̂ of θ, we can plug this
estimate back into the parametric class to obtain an estimate Pθ̂ of Pθ.

The concept of a feature defined in (8.1) is a generalization of the notion of a pa-
rameter or vector of parameters. In parametric settings, the feature γ that we are most
interested in estimating is the parameter vector θ. If we have a good estimate θ̂ of θ,
we can estimate any feature γ = γ(Pθ) via γ̂ = γ(Pθ̂).

Following common usage, we will sometimes refer to the θ associated with the
Pθ that generates the data as the true value of the parameter vector. However, it’s
important to remember that this is an assumption, not a “truth." We assume that the
data are generated by some member of a parametric class. This assumption can be
completely false.

In our initial formulation of the estimation problem we considered estimation of
features rather than just parameters because it is suboptimal to always restrict our-
selves to parametric assumptions on P . We’ll discuss the relative merits of parametric
and nonparametric estimation more in chapter 14.

8.1.2 Statistics and Estimators

A statistic is any observable function of the data. More precisely, a statistic is any
B-measurable function

T : ZD → S
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that can be evaluated once the data zD are observed. As in (8.1), the set S is left arbi-
trary to accommodate all the possible features that we might wish to estimate. Some-
times we write T as TN to emphasize dependence on the sample size. The assumption
that a statistic is B-measurable is just a basic regularity condition.

An estimator is a statistic used to infer some feature γ(P) of an unknown distri-
bution P. Thus a statistic becomes an estimator when paired with and compared to a
feature of the distribution. Note that there is nothing in the definition of an estimator
that implies it will be a sensible estimator of the target feature, let alone a good one.

Example 8.1.8 If the feature γ we wish to infer is the mean of the marginal distribution
P of IID data x1, . . . , xN , then the most common estimator is the sample mean

x̄N :=
1
N

N

∑
n=1

xn

Formally, x̄N is the mapping from ZD = RN to S = R defined by

zD = (x1, . . . , xN) 7→ T(x1, . . . , xN) =
1
N

N

∑
n=1

xn ∈ R

This mapping is regarded as an estimator of the unknown mean γ(P) =
∫

sP(ds).

Example 8.1.9 The sample mean is not the only way to estimate the mean. For exam-
ple, we could also use the so-called mid-range estimator

mN :=
minn xn + maxn xn

2

Another option is a truncated sample mean, where values xn with |xn| > r are trun-
cated for some specified value of r. The truncated sample mean is often used to esti-
mate location parameters in heavy tailed distributions.

Example 8.1.10 Given sample x1, . . . , xN , let yn be the nth largest observation of the
sample. If N is the odd number 2m + 1, the sample median is defined as ym+1. If
N = 2m, the sample median is 0.5(ym + ym+1). For example,

julia> median([1, 3, 5])
3.0
julia> median([2, 4, 6, 8])
5.0
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Example 8.1.11 Following on from example 8.1.8, a common estimator of the kth mo-
ment

∫
skP(ds) of P is the kth sample moment 1

N ∑N
n=1 xk

n.

Example 8.1.12 A common estimator of the variance of P is the sample variance

s2
N :=

1
N

N

∑
n=1

(xn − x̄N)
2 (8.2)

The standard deviation is usually estimated using sample standard deviation

sN :=
√

s2
N =

[
1
N

N

∑
n=1

(xn − x̄N)
2

]1/2

(8.3)

In some texts the sample variance is defined as 1
N−1 ∑N

n=1(xn − x̄N)
2 rather than

(8.2) in order to produce an unbiased estimator. However, (8.2) fits better with the
theory in this text and is perhaps the more common definition.

Example 8.1.13 Given bivariate data zD = ((x1, y1), . . . , (xN , yN)), the sample covari-
ance is the statistic

1
N

N

∑
n=1

(xn − x̄N)(yn − ȳN) (8.4)

The sample correlation is the sample covariance divided by the product of the two
sample standard deviations. With some rearranging, this becomes

∑N
n=1(xn − x̄N)(yn − ȳN)√

∑N
n=1(xn − x̄N)2 ∑N

n=1(yn − ȳN)2
(8.5)

Example 8.1.14 In the case where our observations are vectors x1, . . . , xN in RK, the
sample mean is the random vector defined by

x̄N :=
1
N

N

∑
n=1

xn

The variance–covariance matrix defined in (5.16) is most often estimated with the
sample variance–covariance matrix

Σ̂N :=
1
N

N

∑
n=1

[(xn − x̄N)(xn − x̄N)
ᵀ
] (8.6)
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8.1.3 Empirical Distributions

The empirical distribution of a given Z-valued sample zD = (z1, . . . , zN) is the dis-
crete distribution on Z that puts equal probability 1/N on each sample point zn. An-
other way to state this is that P̂N assigns to each Borel set B ⊂ Z the number

P̂N(B) =
1
N

N

∑
n=1

1{zn ∈ B} (8.7)

This is just the fraction of the sample that falls in B. (Refer back to figure 4.2 on page 84
if you wish to see a visual representation.) The expectation of a function h with respect
to P̂N is ∫

h(s)P̂N(ds) =
1
N

N

∑
n=1

h(zn) (8.8)

as follows from (5.14) on page 134.

Example 8.1.15 Let zn be the scalar xn. The sample mean can be expressed in terms
of the empirical distribution as

x̄N =
1
N

N

∑
n=1

xn =
∫

sP̂N(ds) (8.9)

In other words, the sample mean is the mean of the empirical distribution.

The empirical distribution is a statistic, mapping observations z1, . . . , zN into P̂N =
1
N ∑N

n=1 1{zn ∈ ·}, a random element of the set of all distributions on Z. If we think of
z1, . . . , zN as independent draws from common but unknown distribution P, then P̂N
becomes an estimator of P. In particular, if the feature of P we want to infer is P itself,
the simplest natural estimator is the empirical distribution.1

With scalar data x1, . . . , xN we can visualize the empirical distribution by plotting
its CDF. The CDF of P̂N will be denoted in what follows by F̂N . Specializing B in (8.7)
to (−∞, s], we get

F̂N(s) =
1
N

N

∑
n=1

1{xn 6 s} (s ∈ R)

The CDF F̂N is called the empirical cumulative distribution function, or ECDF, corre-

1. Why not always try to infer P itself? Although it’s true that when we know P we can in principle
recover any feature γ(P), we should also bear in mind the following general principle of inference with
limited information: In solving a given problem, try to avoid first solving a more general problem as an
intermediate step. Distributions are much more complicated objects than real numbers, so if we care only
about the median of a distribution, say, it might be best to try to discover this single value directly rather
than trying to infer the entire distribution first.
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Figure 8.1 F and four observations of F̂N when N = 15

sponding to the sample. Graphically, F̂N is a step function, with an upward jump of
1/N at each data point. Figure 8.1 shows an example where draws are from the CDF

F of the Beta(5, 5) distribution. Each panel shows an observation of the ECDF, which
is in turn constructed from N = 15 observations from F.

8.1.3.1 Convergence

The empirical distribution is asymptotically an excellent estimator of P. If z1, . . . , zN
are IID with common distribution P and P̂N is the empirical distribution, then, by the
law of large numbers,

P̂N(B) =
1
N

N

∑
n=1

1{zn ∈ B} p→ P{zn ∈ B} = P(B) (8.10)

for any Borel set B. See, in particular, (6.8) on page 165.

Specializing to the scalar case with B := (−∞, s], we have F̂N(s)
p→ F(s) for any

s ∈ R, where F is the CDF of P. In fact a much stronger statement is also true. It
is sometimes called the fundamental theorem of statistics, or the Glivenko–Cantelli
theorem:
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Figure 8.2 Realizations of F̂N with four different sample sizes

Theorem 8.1.1 Let x1, . . . , xN be IID draws from F. If F̂N is the corresponding ECDF, then

‖F− F̂N‖∞
p→ 0 as N → ∞ (8.11)

The norm here is the supremum norm, meaning that

‖F− F̂N‖∞ := sup
s∈R
|F̂N(s)− F(s)|

Roughly speaking, this is the maximal deviation over the domain. (For a definition of
the supremum, see §15.4.1.) In fact the convergence occurs “almost surely,” which is
a stronger notion than in probability. See theorem 11.4.2 of Dudley (2002).

Figure 8.2 illustrates the convergence in (8.11). Each ECDF F̂N is based on a single
sample x1, . . . , xN of independent draws from F, where F is Beta(5, 5). Each subplot
shows 8 realizations of the ECDF at a different value of N. Across the subplots, the
sample size is stepped up from 10 to 500.

Theorem 8.1.1 tells us that, at least in the IID setting, if we have an infinite amount
of data, then in the limit we can learn the underlying distribution without having to
impose any assumptions at all. Moreover, once we know the distribution P, we know
any feature γ = γ(P).

Does this offer a solution to the basic problem of estimation stated on page 213?
The answer is no. In practice, we only ever have a finite amount of data. Inference is
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about generalization, as discussed in the introduction. There’s no need to generalize
if we know the full population.

Moreover, when we still have only finitely many observations, the empirical dis-
tribution puts all of its mass on these points. In other words, it treats the sample like
the unknown distribution, without acknowledging the fact that we have limited in-
formation. This can be viewed as an extreme form of overfitting. We’ll discuss related
ideas in a number of contexts throughout the book.

8.1.3.2 Identification

A class of distributions P = {Pθ} indexed by θ ∈ Θ is called identifiable if the map
θ 7→ Pθ is one-to-one (see §15.2) on Θ.

Example 8.1.16 The class of normal densities in example 8.1.4 is identifiable. In par-
ticular, it can be shown that if (µa, σa) and (µb, σb) are distinct vectors, then the distri-
butions N(µa, σ2

a ) and N(µb, σ2
b ) differ at at least one point.

Identifiability means that the parameter vector associated with the unknown dis-
tribution can eventually be distinguished from the data. To see this, suppose that {Pθ}
is identified on Θ and nature generates an infinite sequence of observations {zn} from
P = Pθ. Let θ′ be any other vector in Θ and let P′ = Pθ′ . By identifiability, there exists
at least one Borel set B with P(B) 6= P′(B). Since the empirical distribution P̂N(B)
converges to P(B), we can in the limit conclude that the data are not generated by P′.

8.2 Estimation Principles

We started off with the problem of estimating a feature γ = γ(P) of the unknown
distribution P from a sample. We’ve introduced a number of different statistics aimed
at estimating various features. Where do these estimators come from and what, if
anything, do they have in common?

8.2.1 The Sample Analogue Principle

Most of the estimators defined above can be derived from a simple principle. In the
modern statistical literature this is often called the plug-in method. In econometrics it
goes by a variety of names, including “analogue estimation" (see, in particular, Manski
1986). We’ll call it the sample analogue principle. The principle is:

to estimate γ(P), use γ(P̂N)
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Here P̂N is the empirical distribution constructed from the sample. We replace the
unknown distribution P with the observable distribution P̂N and then evaluate γ(P̂N).

Example 8.2.1 Let x1, . . . , xN be draws from unknown distribution P. Suppose we
want to estimate the mean γ(P) :=

∫
sP(ds). The sample analogue principle tells us

to replace P with P̂N , which gives

γ(P̂N) =
∫

sP̂N(ds) = x̄N

(The last equality is just (8.9).) Thus the sample mean is the estimator of the mean
produced by the sample analogue principle.

The kth sample moment applies the same principle to estimate the kth moment.

Example 8.2.2 When it exists, the variance of P can be written as

σ2 = γ(P) =
∫ [

t−
∫

sP(ds)
]2

P(dt)

Applying the sample analogue principle leads to the estimator

∫ [
t−

∫
sP̂N(ds)

]2
P̂N(dt) =

1
N

N

∑
n=1

(xn − x̄N)
2

This is precisely the sample variance from example 8.1.12.

The estimators in these two examples are relatively straightforward, but the set of
all applications of the sample analogue principle is very broad. As we’ll see below,
estimation methods that can be obtained as special cases include least squares regres-
sion, maximum likelihood, the method of moments, and the generalized method of
moments.

8.2.1.1 Best Linear Prediction

Here’s an example that illustrates the generality of the sample analogue principle.
Recall the best linear prediction problem from §4.1.5.1, where α and β are chosen to
minimize E [(y − α − βx)2]. Letting P be the distribution of (x, y), we can write the
problem as

(α∗, β∗) = γ(P) := argmin
α,β∈R

∫
[(t− α− βs)2]P(ds, dt) (8.12)

There is a corresponding statistical problem when the underlying distribution P is
unknown. The problem is to produce the best linear predictor based only on a sample
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zD = ((x1, y1), . . . , (xN , yN)) of observations from P. We proceed as follows: Given
zD , we form the empirical distribution

P̂N(B) =
1
N

N

∑
n=1

1{(xn, yn) ∈ B}

Applying the sample analogue principle, we plug P̂N into (8.12), yielding the estima-
tor

(α̂N , β̂N) = γ(P̂N) = argmin
α,β∈R

N

∑
n=1

[(yn − α− βxn)
2] (8.13)

(The term 1
N has been dropped from the right-hand side of (8.13) because it doesn’t

affect the minimizers.) This is the simple linear bivariate least squares problem. The
minimizers are

β̂N =
∑N

n=1(xn − x̄N)(yn − ȳN)

∑N
n=1(xn − x̄N)2

and α̂N = ȳN − β̂N x̄N (8.14)

(See ex. 8.5.2.) Comparing with (4.23) on page 99, we see that these estimators are
themselves the sample analogues of the underlying features α∗ and β∗.

8.2.1.2 Limitations

While the sample analogue principle produces sensible estimators in many situations,
there are also instances where it fails completely. Let’s look at one example.

Let P be the set of absolutely continuous distributions on R, so that the distri-
bution P generating the data is assumed to have a density. The density of P can be
regarded as the feature

γ(P) = DP (8.15)

Here DP := the derivative of the CDF F of P.
Let P̂N be the empirical distribution from any given sample. What happens when

we plug this empirical distribution into the right-hand side of (8.15)? In other words,
what information do we get when we differentiate the function F̂N? Since F̂N is a step
function, the derivative is zero everywhere, except at a finite number of jump points
where the derivative is undefined. Thus the density estimate produced by the sample
analogue principle is useless. This statement remains true even when N is enormous.

One way to understand this outcome is that when we wish to estimate complex
objects with finite samples, we need to combine the data with some kind of regular-
ization. Loosely speaking, this means that we penalize complexity in our search for
a solution, or impose some kind of “smoothing" a priori. This idea has a long history
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in the field of numerical methods, where certain inverse problems are unstable, or
“ill-posed," and their solution requires regularization.

Regularization is an essential element of statistics too. It says that we should not
grant the empirical distribution equal status with the unknown true distribution. That
is, we should regard the empirical distribution only as partial information, and seek
to combine it with some form of prior information or external theory. Regularization
is one application of prior information: It applies the idea that probability mass most
likely falls in places other than just the sample points observed so far. We pick up the
topic of regularization again in chapter 14.

8.2.2 Empirical Risk Minimization

Let’s now look at another inductive principle that combines the sample analogue prin-
ciple with additional structure. The principle is called empirical risk minimization,
or ERM. The terminology and main concepts come from the machine learning lit-
erature. Nonetheless, many standard estimators in econometrics are special cases of
ERM, including maximum likelihood and least squares. The ideas discussed here help
to frame these tools as part of a broader set of methods.

Consider a setting where we observe an input x ∈ RK to a system, followed by a
scalar output y. Both are random variables and the joint distribution of z := (x, y) is
P. Our aim is to predict new output values from observed input values. We’ll do this
by choosing a function f such that f (x) is our prediction of y once x is observed. In
the machine learning literature, f is called a prediction rule. In economics, f is called
a strategy or policy function.

Incorrect prediction incurs a loss. The size of this loss is written as L(y, f (x)). The
function L is called the loss function. Common choices for the loss function include

• the quadratic loss function L(y, f (x)) = (y− f (x))2,

• the absolute deviation loss function L(y, f (x)) = |y− f (x)|, and

• the discrete loss function L(y, f (x)) = 1{y 6= f (x)}.
Given loss function L, we consider choosing f so as to minimize the prediction

risk, which is defined as the expected loss

R( f ) := EL(y, f (x)) (8.16)

Sometimes R( f ) is also called the expected prediction error.2 The expectation in
(8.16) is computed using the joint distribution P of (x, y). Sometimes we’ll write
EP L(y, f (x)) to emphasize this.

2. See, for example, §2.4 of Friedman et al. (2009).
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Example 8.2.3 Let L be the quadratic loss function. As shown in §5.2.5, the minimizer
of (8.16) is the regression function, defined at x by f ∗(x) = E [y | x]. In particular, from
(5.39) on page 152, for any alternative policy g we have

R(g) = R( f ∗) +E [( f ∗(x)− g(x))2] (8.17)

In other words, with quadratic loss, good prediction equates to choosing g to be close
to the regression function, thereby minimizing the second term on the right-hand side
of (8.17). In view of (8.17), the term R( f ∗) represents a lower bound for prediction
risk.

In a statistical setting we are constrained in our ability to minimize risk by the
fact that we cannot evaluate EP , as this requires knowledge of the joint distribution
P. Suppose, however, that we have access to data z1, . . . , zN , where each pair zn =
(xn, yn) is an independent draw from P. To make use of the sample, we will apply the
sample analogue principle, replacing P in (8.16) with the empirical distribution P̂N .
This produces the new objective function

Remp( f ) := EP̂N
L(y, f (x)) =

1
N

N

∑
n=1

L(yn, f (xn)) (8.18)

This function is called the empirical risk. The empirical risk is the prediction risk eval-
uated under the empirical distribution of the sample rather than the true distribution
P. Minimizing the empirical risk is called empirical risk minimization (ERM).

There is an additional step. When we choose a decision rule the problem that we
actually solve is

f̂ = argmin
f∈H

Remp( f ) (8.19)

We have restricted the domain to a class of functionsH. This set of functions is called
the hypothesis space. Choice ofH is structure we impose on the estimation problem.

It might seem at first pass that we should set H to be the set of all functions
f : RK → R. After all, if the risk-minimizing function f ∗ := argmin f R( f ) is not
in H, as visualized in figure 8.3, then the solution to (8.19) is not equal to f ∗, and we
are making a suboptimal choice.

Actually this reasoning is false. In fact we usually want to be quite restrictive in
our choice of H. This is because minimizing the empirical risk is not the same as
minimizing the prediction risk. Occam’s razor comes in to play here: we are solving
a complex problem on the basis of limited information. It would be a serious mistake
to act as if we had unlimited information. These ideas are explored further in §8.2.3.

Example 8.2.4 Specializing to scalar x and quadratic loss function L(y, f (x)) = (y−
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H

all f : RK → R

f ∗ := argmin f R( f )

Figure 8.3 Choosing the hypothesis space

f (x))2, and observing that the term 1
N makes no difference to the solution, the ERM

problem becomes

min
f∈H

N

∑
n=1

(yn − f (xn))
2 (8.20)

For obvious reasons, this optimization problem is called the least squares problem. If
we specializeH to be the set of affine functions

H` := { all functions of the form `(x) = α + βx} (8.21)

then the problem reduces to the simple linear least squares problem

min
`∈H`

N

∑
n=1

(yn − `(xn))
2 = min

α, β

N

∑
n=1

(yn − α− βxn)
2 (8.22)

This is exactly the same minimization problem we obtained in (8.13). The solutions
are given in (8.14).

While we ended up with the same minimization problem in two different ways,
the reasoning here is more natural. When we first came to this problem in (8.13) it
was by applying the sample analogue principle to the problem of finding best linear
predictors. Here we are simply trying to find the best predictor. At the same time we
have restricted ourselves to linear approximations in recognition of the fact that we
are basing our estimate on limited information. Linearity implements Occam’s razor
by bounding the complexity of the learning algorithm.
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8.2.2.1 Quantile Regression

Quantile regression is used when we want to estimate a quantile of a given distribu-
tion based on a set of predictive variables. For example, quantile regression has been
used to estimate quantiles of CEO compensation as a function of the market value of
their firms (Koenker and Hallock 2001). In this section we show how quantile regres-
sion can be regarded as a special case of empirical risk minimization.

To describe the idea, let F be a strictly increasing CDF on R and let τ ∈ (0, 1) be
given. Recall from §4.2.6 that the τth quantile of F is the ξ that solves F(ξ) = τ.
Although it might not be immediately obvious, the τth quantile can also be defined
as the solution to the optimization problem

min
ξ∈R

ELτ(y, ξ) (8.23)

where y is a random variable with distribution F and

Lτ(y, ξ) := |(y− ξ)(τ − 1{y < ξ})|

Exercise 8.5.6 asks you to confirm that the solution to (8.23) is precisely the ξ that
solves F(ξ) = τ.

Suppose now that we want to estimate the τth quantile of F using some input
variable x (e.g., a CEO compensation quantile as a function of firm size). Motivated
by (8.23), we can frame the search for a suitable function as a problem of minimizing
the prediction risk

R( f ) := ELτ(y, f (x)) (8.24)

where Lτ is as defined above. If we employ the principle of empirical risk minimiza-
tion with data set (x1, y1), . . . , (xN , yN), we get min f∈H ∑N

n=1 Lτ(yn, f (xn)), where H
is the hypothesis space. WhenH = H` as defined in (8.21), the ERM problem is

min
α, β

N

∑
n=1
|(yn − α− βxn)(τ − 1{yn < α + βxn})|

This is the standard expression for the quantile regression problem.
If τ = 0.5, then the objective function is proportional to ∑N

n=1 |yn − α− βxn|. This
case is called median regression or least absolute deviation regression.

8.2.3 The Choice of Hypothesis Space

Let’s return to the issue of choosing the hypothesis space. We begin with a straight-
forward result:
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Fact 8.2.1 Let H1 and H2 be two hypothesis spaces. If f̂i is the empirical risk mini-
mizer overHi as defined in (8.19), then

H1 ⊂ H2 =⇒ Remp( f̂1) > Remp( f̂2)

In other words, we can always decrease empirical risk by increasing the hypothesis
space. The reason that fact 8.2.1 holds is that we are minimizing over a larger set.

At the same time, our actual objective is to minimize the prediction risk. The pre-
diction risk of a given predictor f measures the out-of-sample fit of f , which is the
expected performance of f when confronted with new data. A statistical procedure
that takes a given data set and produces a predictor f with low prediction risk (rela-
tive to the benchmark f ∗—see (8.17)) means that we have succeeded in meeting the
goal we set at the start of the book: we have generalized from data.

Of course, prediction risk is unobservable. Sometimes it is tempting to use empir-
ical risk Remp( f ) as an estimator of R( f ). However, empirical risk, which measures
in-sample fit of f , is a downward biased estimator of risk. In particular, as we vary
the hypothesis space, prediction risk can rise even when empirical risk is falling.

Let’s illustrate this by way of an example, where empirical risk is minimized over
progressively larger hypothesis spaces. The model we will consider is one that gener-
ates input-output pairs via

x ∼ U[−1, 1] and then y = cos(πx) + u where u ∼ N(0, 1) (8.25)

Here U[−1, 1] is the uniform distribution on the interval [−1, 1]. Our hypothesis
spaces for predicting y from x will be sets of polynomial functions. To fix notation,
let Pd be the set of all polynomials of degree d. That is,

Pd := { all functions fd(x) = c0x0 + c1x1 + · · · cdxd where each ci ∈ R}

This sequence of hypothesis spaces is increasing, in the sense that

P1 ⊂P2 ⊂P3 ⊂ · · ·

Indeed, if f is a polynomial of degree d, then f can be represented as a polynomial of
degree d + 1 just by setting the last coefficient cd+1 to zero. The set of linear functions
H` defined in (8.21) is equal to P1.

If we seek to predict y from x using quadratic loss and the set Pd as our candidate
functions, the risk minimization problem is

min
f∈Pd

R( f ) where R( f ) = E [(y− f (x))2] (8.26)
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Figure 8.4 Risk and empirical risk as a function of d

while the empirical risk minimization problem is

min
f∈Pd

Remp( f ) where Remp( f ) =
1
N

N

∑
n=1

(yn − f (xn))
2 (8.27)

To illustrate the difference between risk and empirical risk, we first generate N =
25 data points from the model (8.25). Taking this as our data set, we then solve (8.27)
repeatedly, once for each d in 1, 2, . . . , 20. The solution to the dth minimization prob-
lem is denoted f̂d, and is, by construction, a polynomial of degree d. Finally, we com-
pare the risk R( f̂d) and empirical risk Remp( f̂d).3 The results are in figure 8.4.

As expected, empirical risk falls monotonically with d. But the risk decreases
slightly and then increases rapidly. For large d, the minimizer f̂d of the empirical
risk is associated with very high risk in the sense of large expected loss.

We can get a sense for what is happening by plotting the data and the functions.
In figures 8.5–8.8, the N data points are plotted alongside the function y = cos(πx)
from the true model (8.25) in black, and fitted polynomial f̂d in red. The function

3. The risk R( f̂d) is evaluated by substituting f̂d into the expression for R in (8.26). You can find the code
at johnstachurski.net/emet.html.
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Figure 8.5 Fitted polynomial, d = 1

y = cos(πx) is the risk minimizer, and represents the ideal prediction function. In
figure 8.5 we have d = 1, and the fitted polynomial f̂1 is the linear regression line. In
figures 8.6, 8.7 and 8.8 we have d = 3, d = 11 and d = 14 respectively. The fitted
polynomials are f̂3, f̂11 and f̂14.

On the one hand, when d = 1, the hypothesis space Pd = P1 is small and no func-
tion in this class can effectively fit the underlying model. This is called underfitting,
and is reflected in the poor fit of the red line to the black line in figure 8.5.

When d = 3, the class of functions Pd = P3 is considerably larger. Given that the
data are relatively noisy, and that we only have 25 observations, the fit of the function
is good (figure 8.6). If we look at the risk for d = 3 on the right-hand side of figure 8.4,
we see that it is lower than for d = 1.

On the other hand, if we take d larger, the fit to the underlying model becomes
poor and the risk is high. Examining figures 8.7 and 8.8, which correspond to d = 11
and d = 14, we see that the fitted polynomial has been able to fit the observed data
closely, passing near many of the data points. Too much emphasis has been given to
this particular realization of the data. When a new input x is drawn, the prediction
f̂d(x) is likely to be a poor predictor of y. This situation is called overfitting.

To summarize, the choice ofH is central to our ability to generalize from the data.
When H is too small, no function in H provides a good fit to the regression function.



232 Chapter 8

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

degree = 3

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 8.6 Fitted polynomial, d = 3
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Figure 8.8 Fitted polynomial, d = 14

If this is so, the prediction risk cannot be made small regardless of the data. This can
be seen directly from (8.17). Any estimate f̂ inH must satisfy

R( f̂ ) > R( f ∗) + min
f∈H

E [( f ∗(x)− f (x))2]

Conversely, if H is too large, then we can attain low empirical risk but the prediction
risk itself is large.

Of course, in statistical applications we do not have the luxury of knowing the true
data-generating process when we choose H. The best scenario is that we have firm
theory that guides us to a suitable hypothesis space. The worst scenario is that we
have no idea and choose blindly. Once again, the message is that statistical learning
equals prior knowledge plus data.

8.3 Some Parametric Methods

In this section we review some standard parametric estimation methods, including
maximum likelihood, Bayesian estimation, and the generalized method of moments.
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x µ̂

N(µ̂, 1)

Figure 8.9 Maximizing the likelihood

8.3.1 Maximum Likelihood

One standard approach to deriving estimators in a parametric setting is the principle
of maximum likelihood. Let’s begin with a simple case and then progress to more
complex applications.

Suppose that we observe a single draw x from distribution N(µ, 1) where µ is un-
known. The variance is known and set to 1 for simplicity. Our task is to guess the
value of µ given the observation x. A guess µ̂ of µ also pins down the distribution
N(µ̂, 1), so we could equivalently state that our job is to guess the distribution that
generated x. In guessing this distribution, if we centered it around some number µ̂
much larger than x, say, then our observed data point x would be an “unlikely” out-
come for this distribution. See figure 8.9. The same logic would apply if we centered
the density at a point much smaller than x.4

In fact, in the absence of any additional information, the most obvious guess would
be that the normal density is centered on x. To center the density on x, we just set
µ̂ = x.

Maximum likelihood formalizes these steps: The density of x is the density p(s; µ)
of the distribution N(µ, 1). Plugging the observed value x into this density gives

p(x; µ) = (2π)−1/2 exp
{
− (x− µ)2

2

}
Think of p(x; µ) as representing the probability of realizing our sample point x. The
principle of maximum likelihood suggests that we take as our guess µ̂ of µ the value
that maximizes this probability. It’s not hard to show that µ̂ = x is the maximizer.
This coincides with our intuition from figure 8.9.

The same principle applies when the data are independent draws x1, . . . , xN from
N(µ, 1), where µ is unknown. The joint density of the sample is the product of the

4. The scare quotes on “unlikely" are just a reminder that our distribution is absolutely continuous and
hence all individual outcomes s ∈ R have probability zero. When we say that an outcome x is unlikely, we
mean that there is little probability mass in the neighborhood of x.
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marginals. Plugging the sample values into the joint density, one then maximizes the
joint density with respect to µ:

µ̂ := argmax
µ∈R

1
(2π)N/2

N

∏
n=1

exp
{
− (xn − µ)2

2

}
(8.28)

The maximizer µ̂ is precisely the sample mean of x1, . . . , xN (see ex. 8.5.4).
We can generalize these ideas in several ways. Let’s suppose now that the data

x1, . . . , xN has joint density p in the sense of (5.8) on page 132. We will assume that
p = p(· ; θ) is a member of a parametric class P indexed by parameter vector θ ∈ Θ.
Each choice of θ pins down a particular density p = p(· ; θ), but the value of θ that
generated the data is unknown.

In this setting, the likelihood function is p evaluated at the sample x1, . . . , xN , and
regarded as a function of θ:

L(θ) := p(x1, . . . , xN ; θ) (θ ∈ Θ) (8.29)

The principle of maximum likelihood tells us to estimate θ by maximizing L(θ) over
θ ∈ Θ. A statistic θ̂ is called a maximum likelihood estimate (MLE) of θ if

θ̂ ∈ argmax
θ∈Θ

L(θ) (8.30)

This is equivalent to maximizing the log likelihood function

`(θ) := ln(L(θ)) (θ ∈ Θ)

The set of MLEs can in general be a singleton, contain multiple elements or be empty.

In the preceding discussion, p was a density function, but it can be a probability
mass function as well. Examples are given below.

To implement maximum likelihood estimation, we need to compute the joint dis-
tribution of the data. As we saw in (8.28), when the data points are independent this
is easy because the joint density p is the product of the marginals. More generally, if
each xn is drawn independently from fixed arbitrary (marginal) density pn(· ; θ) onR,
then

L(θ) =
N

∏
n=1

pn(xn; θ) and `(θ) =
N

∑
n=1

ln pn(xn; θ) (8.31)

If each data point is multivariate, just replace xn with xn.

Example 8.3.1 Suppose that x1, . . . , xN are IID draws from a normal distribution N(µ, v)
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with θ = (µ, v) unknown. The log likelihood function is

`(µ, v) = −N
2

ln(2πv)− 1
2

N

∑
n=1

(xn − µ)2

v
(8.32)

Joint maximization over (µ, v) gives the maximum likelihood estimators

µ̂ =
1
N

N

∑
n=1

xn and v̂ =
1
N

N

∑
n=1

(xn − x̄N)
2 (8.33)

Thus, the MLEs of µ and v are the sample mean and sample variance respectively.

Maximum likelihood estimation is a much celebrated theory of estimation. MLE
estimators typically have excellent asymptotic properties. But good finite sample
properties are not guaranteed (more about this soon) and the attractive asymptotic
theory is dependent on correct specification of the underlying parametric class. In-
deed we need to bring a lot of knowledge to the table just to form the estimator. (To
specify the likelihood function, we must specify the entire joint distribution of the
sample.)

Example 8.3.2 Let x1, . . . , xN be IID observations from some unknown density on R.
If the class of candidate distributions is too large, maximum likelihood estimation will
fail. For example, there is no solution to the problem

max
p

N

∏
n=1

p(xn)

where the maximization is over all densities. We can make this expression arbitrar-
ily large by choosing p to concentrate its mass in small neighborhoods around each
sample point. The limit of this process is not a density.

8.3.1.1 Conditional Maximum Likelihood

As in §8.2.2, suppose that we observe inputs x1, . . . , xN to some system and corre-
sponding outputs y1, . . . , yN . The pairs (xn, yn) are assumed to be IID. Our aim is to
estimate θ in p(y | x; θ) in order to pin down the conditional density of y given x.

The principle of maximum likelihood tells us to maximize

`(θ) =
N

∑
n=1

ln p(xn, yn; θ) where p := the joint density of (xn, yn)
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Letting π be the marginal density of x, we can use the decomposition (5.27) on page 142
to write

p(x, y; θ) = p(y | x; θ)π(x)

The density π is unknown but we have not parameterized it because we aren’t trying
to estimate it. We can now rewrite the log likelihood as

`(θ) =
N

∑
n=1

ln p(yn | xn; θ) +
N

∑
n=1

ln π(xn)

The second term on the right-hand side is independent of θ and as such it does not
affect the maximizer. Hence the MLE is

argmax
θ∈Θ

N

∑
n=1

ln p(yn | xn; θ)

The objective function here is called the conditional log likelihood. The preceding ar-
gument tells us that, when we want to estimate parameters in the conditional density
of y given x, we can maximize the conditional log likelihood directly, which is simpler
and more direct than maximizing the full log likelihood.

Example 8.3.3 Consider a discrete response model with binary output yn, where yn =
1 indicates that the nth individual in a sample of women participates in the labor force.
This decision is influenced by a vector xn measuring characteristics such as income
from the rest of the household. Let

q(s) := P{y = 1 | x = s}
(

s ∈ RK
)

One modeling approach is to take q(s) = F(β
ᵀs), where β is a vector of parameters

and F is a specified CDF. We can then write

P{y = i | x = s} = F(β
ᵀs)i(1− F(β

ᵀs))1−i for s ∈ RK and i ∈ {0, 1}

This is the conditional PMF of y given x, so the conditional log likelihood of the sample
is

`(β) =
N

∑
n=1

ln[F(β
ᵀxn)

yn(1− F(β
ᵀxn))

1−yn ]

=
N

∑
n=1

yn ln F(β
ᵀxn) +

N

∑
n=1

(1− yn) ln(1− F(β
ᵀxn))
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If F is the standard normal CDF Φ, then this model is called the probit model. If F is
the logistic CDF F(s) = 1/(1 + e−s), then it is called the logit model.

To find the MLE in this example, we can differentiate ` to obtain first order con-
ditions, but this does not in general lead to an analytical solution. Instead, numerical
optimization of the likelihood is required. Discussion of numerical optimization is
given in §13.2.2.

8.3.2 Maximum Likelihood via ERM

Maximum likelihood is a special case of empirical risk minimization. To see this,
suppose that we wish to learn unknown density q on the basis of observations from q.
We take our loss function to be

L(p, x) := − ln p(x)

The meaning is this: if our guess of q is p and the value x is realized, then our loss is
− ln p(x). Thus we suffer large loss when p puts small probabilities near where x is
realized. The corresponding risk function is

R(p) = E q[L(p, x)] = −
∫

ln[p(s)]q(s)ds

Now suppose that we observe IID draws x1, . . . , xN from q. To estimate q, the ERM
principle indicates we should solve for

p̂ := argmin
p∈P

{
1
N

N

∑
n=1
− ln p(xn)

}
= argmax

p∈P

{
N

∑
n=1

ln p(xn)

}

where P is a hypothesis space of densities. To clarify the connection with maximum
likelihood, take P to be a parametric class {p(· ; θ)}θ∈Θ. Choosing our estimate p̂ of q
now reduces to choosing an estimate θ̂ of θ. Rewriting our optimization problem for
this case, we obtain

θ̂ = argmax
θ

{
N

∑
n=1

ln p(xn; θ)

}
= argmax

θ

`(θ)

Here ` is the log-likelihood. It follows from this expression that the ERM estimator is
precisely the maximum likelihood estimator.

Incidentally, the minimizer of the true risk R(p) is the unknown density q. To see
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this, let us first transform our expression for the risk function to

R(p) =
∫

ln
[

q(s)
p(s)

]
q(s)ds−

∫
ln[q(s)]q(s)ds

The term on the far right is called the entropy of q, and does not involve p. Hence
minimization of the risk comes down to minimization of

D(q, p) :=
∫

ln
[

q(s)
p(s)

]
q(s)ds (8.34)

This quantity is called the Kullback–Leibler (KL) deviation between q and p. The KL
deviation is possibly infinite, always nonnegative, and zero if and only if p = q.5 It
follows that the unique minimizer of the risk is the true density q.

8.3.3 The Method of Moments and GMM

Suppose that we wish to estimate a vector θ that solves an equation of the form

g(θ) = Eh(x) (8.35)

In this expression, g and h are observable vector-valued functions (taking values in
RK, say). We cannot solve this expression because the distribution P of x is unknown,
and hence the expectation cannot be evaluated. If, however, we have observations
x1, . . . , xN from P then we can apply the sample analogue principle and replace the
population expectation with the expectation under the empirical distribution. This
yields the method of moments estimator, which is the solution θ̂, if it exists, to the
equation

g(θ̂) =
1
N

N

∑
n=1

h(xn) (8.36)

Example 8.3.4 The mean of the Pareto distribution with scale parameter s0 = 1 and
shape parameter α is α/(α − 1). (The condition for existence of the mean is α > 1.)
Letting g(α) := α/(α− 1), we can write the same statement as

g(α) = Ex where L(x) = Pareto(α, 1)

The first equation is a version of (8.35). To estimate α with observations x1, . . . , xN
from a Pareto(α, 1) distribution, we can apply the method of moments, which tells us
to solve g(α̂) = 1

N ∑N
n=1 xn for α̂. The result is α̂ := x̄N/(x̄N − 1).

5. More precisely, D(q, p) = 0 if and only if p = q almost everywhere. Densities are equal almost
everywhere when the set of points at which they fail to be equal has Lebesgue measure zero.
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Generalized method of moments (GMM) is a small step from method of mo-
ments. If we express (8.35) as E [g(θ)− h(x)] = 0, then it becomes natural to consider
the more general expression

EG(θ, x) = 0 (8.37)

This expression is called the orthogonality condition. The generalized method of
moments estimator of θ is the solution θ̂ to the empirical counterpart, which is

1
N

N

∑
n=1

G(θ̂, xn) = 0 (8.38)

Of course, there is no guarantee that a solution will exist here, partly because the func-
tion G can be nonlinear and partly because the number of equations can be greater
than the number of unknowns. If the number of equations is greater, then the estima-
tion problem is said to be overidentified.

Our study of overdetermined systems of equations in §3.3.2 suggests a logical way
to handle the overidentified case: Minimize the norm of the left-hand side of (8.38).
This leads to the expression

θ̂ = argmin
θ∈Θ

∥∥∥∥∥ 1
N

N

∑
n=1

G(θ, xn)

∥∥∥∥∥ (8.39)

In practice, we usually make two adjustments to this expression. The first is trivial: we
minimize the squared norm, instead of the norm, leaving the minimizer unchanged.
The second is to replace the Euclidean norm ‖ · ‖with a weighted norm ‖ · ‖W defined
by ‖x‖2

W = xᵀWx, where W is a positive definite weighting matrix. Positive definite-
ness is desired here because it shares with the Euclidean norm the property that led
us to (8.39). That is, ‖x‖W = 0 if and only if x = 0. The estimation problem is then

θ̂ = argmin
θ∈Θ

[
1
N

N

∑
n=1

G(θ, xn)

]ᵀ
Ŵ

[
1
N

N

∑
n=1

G(θ, xn)

]
(8.40)

The weighting matrix has been written as Ŵ because it is allowed to depend on the
sample. Evidently the choice of Ŵ affects the minimizer, and the objective in choosing
this matrix is to produce an estimator that has small variance asymptotically.

Example 8.3.5 GMM is often used to estimate and test asset pricing models. Many
asset pricing models lead to equations of the form

pt = E [Mt+1xt+1 | Gt]
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where xt+1 is a vector of payoffs on K assets at t + 1, pt is a corresponding vector of
time t asset prices, Mt+1 is a stochastic discount factor and Gt is the time t information
set. See, for example, Hansen (2014b). If Zt is a conformable matrix of observable
variables adapted to the filtration Gt, then we can postmultiply by Zt, pass through
the conditional expectation and rearrange to obtain

E [Mt+1xt+1Zt − ptZt | Gt] = 0

Taking the unconditional expectation and using the law of iterated expectations gives
an expression in the form of (8.37). In Hansen and Singleton (1982), the variables in
Zt include lagged values of asset returns and aggregate consumption growth.

8.3.4 Bayesian Estimation

Bayesian inference adopts a rather different strategy from the methods discussed so
far. The main idea is to treat parameters as unknown quantities for which we hold
subjective beliefs regarding their values. These subjective beliefs are called priors. The
Bayesian approach to estimation suggests that we take both data and prior knowledge
into account when forming an estimate or prediction.

Example 8.3.6 Consider the expression “when you hear hooves, think horses, not
zebras." Prior knowledge should be given some weighting when assessing evidence.

For the purposes of estimation, a prior can be thought of as a distribution over P ,
the set of distributions in play. The standard Bayesian approach is parametric, so we
can specialize this further to a density over parameter space. Thus the primitives in
our analysis are:

• θ, the parameter vector, which takes values in Θ ⊂ RJ ,

• π, the prior distribution, a density over Θ,

• x, the data, and

• p(· | θ), the joint density of the data given θ.

Note that L(θ) := p(x | θ) is the likelihood function.
Priors are reassessed based on evidence in the data. This process leads to an up-

dated density over parameter space called the posterior distribution, which we rep-
resent by π(θ | x). The posterior is obtained via an application of Bayes’ law (see
page 142), which leads us to

π(θ | x) = p(x | θ)π(θ)

p(x)
=

p(x | θ)π(θ)∫
p(x | θ′)π(θ′)dθ′

(8.41)
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Here p(x) represents the unconditional density of x evaluated at the outcome. The
term on the far right shows why this unconditional density is not listed as a primitive:
we can recover it from the other primitives using the law of total probability.

The same method can be applied when the densities are replaced with probability
mass functions and the integral is replaced with a sum. Here’s a standard example
that mixes a density over priors with a binomial PMF for the likelihood:

Example 8.3.7 Consider a one-armed bandit (slot machine) with binary response v
indicating a fixed payout (v = 1) or nothing (v = 0). We would like to know the
probability θ of v = 1. Let v1, . . . , vN be a sequence of independent outcomes and let
x := ∑N

n=1 vn be the total number of payouts. Recalling example 4.2.6 on page 104, the
likelihood for x conditional on θ is

p(x | θ) =
(

N
x

)
θx(1− θ)N−x

For our prior we take a Beta(α, β) distribution, so

π(θ) =
θα−1(1− θ)β−1

B(α, β)
(8.42)

for 0 < θ < 1. (Parameters like α and β that are used to define the prior density are
called hyperparameters.) Applying (8.41) gives

π(θ | x) = θx+α−1(1− θ)N−x+β−1

c(x)
(8.43)

where c(x) := p(x)B(α, β)/(N
x ). We could try to calculate c(x) directly but there’s an

easier way. We know that (8.43) is a density in θ given x. Hence c(x) must be the
normalizing constant at x. Moreover, in comparing (8.42) with (8.43), it’s clear that
π(θ | x) is a beta density. This leads us to the full form of the posterior, which is

π(θ | x) = θα+x−1(1− θ)N−x+β−1

B(x + α, N − x + β)
(8.44)

Figure 8.10 shows evolution of the posterior density (8.44) in a simulation. The
prior is set to Beta(3, 5). The true payout probability is θ0 = 0.7. Despite the poor
prior, the data shift probability mass towards θ0. See johnstachurski.net/emet.html
for code.

Point estimates are extracted from the posterior distribution based on some mea-
sure of central tendency, such as the mean, the median, or the mode of the posterior
(i.e., the maximizer in the unimodal case).
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Figure 8.10 Evolution of the posterior from Beta(3, 5) prior

Example 8.3.8 The mean of the posterior in (8.44) yields the estimator

θ̂ :=
α + x

α + β + N

More payouts shift our estimator upwards. In the limit, θ̂ is near x
N , which is the MLE

of θ. This illustrates a common theme: The difference between maximum likelihood
and Bayesian estimates typically concerns finite sample properties.

The posterior we came up with in (8.44) belongs to the same parametric class as
the prior. Priors where the parametric class is preserved under Bayesian updating for
a specific likelihood function are called conjugate. Conjugacy makes application of
Bayes’ law particularly simple.

In applications, the existence of a closed-form solution for the posterior is rare,
and the integration over the parameter space in (8.41) has to be carried out numer-
ically. The standard technique is Markov chain Monte Carlo. An exposition of the
Metropolis–Hastings algorithm was given in §7.4.2. If you return to (7.38), you will
notice how implementation of this algorithm only requires us to evaluate ratios of of
the posterior, which means that the integral term on the right-hand side of (8.41) can-
cels out. Because the integral can be very high dimensional, this often eliminates a
huge amount of complexity.

Bayesian inference has experienced a surge of popularity in recent years. One rea-
son is that in high dimensions, exploring the posterior via MCMC has proved to be
more successful in practice than the numerical optimization required to obtain maxi-
mum likelihood estimates. Another is that Bayesian estimation provides a form of reg-
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ularization that stabilizes and typically improves estimation of complex models. See
§14.2.3. A third is that Bayesian estimation comes with an elegant, unified decision-
theoretic approach to inference. Some discussion is given in §9.2.5.

8.4 Further Reading

The ERM principle is a very general principle for solving statistical problems and
producing estimators. For such a general method it is difficult to give a set of strong
results showing that ERM produces good estimators. Indeed, there will be instances
when ERM produces poor estimators, as discussed in 8.2.3. Having said that, some
rather general consistency results have been obtained. Additional discussion can be
found in Vapnik (2000).

There are many good treatments of Bayesian estimation available in the literature,
including Geweke (2005), Geweke et al. (2011), and Kroese and Chan (2014).

Chernozhukov and Fernández-Val (2011) discuss quantile regression of the τth
quantile in cases where τ is close to zero or one.

8.5 Exercises

Ex. 8.5.1 Let x be a random variable with µ := E [x] and finite second moment.
Consider the risk function given by R(θ) = E [(θ− x)2]. Show that µ is the minimizer
of R(θ) over all θ ∈ R.

Ex. 8.5.2 Confirm the solutions in (8.14) by differentiating (8.13).

Ex. 8.5.3 Show that the method of moments estimator α̂ in example 8.3.4 converges in
probability to α whenever α > 1. (Later we will call this property consistency.)

Ex. 8.5.4 Confirm that the maximizer of (8.28) is the sample mean of x1, . . . , xN .

Ex. 8.5.5 Confirm the results in (8.33) by differentiating (8.32).

Ex. 8.5.6 Let F be a strictly increasing CDF on R and let τ ∈ (0, 1) be given. Let y be
a random variable with L(y) = F. Adopting the notation of §8.2.2.1, show that the
solution to the optimization problem minξ∈R ELτ(y, ξ) is the ξ that solves F(ξ) = τ.

Ex. 8.5.7 Consider the one-armed bandit problem in example 8.3.7. Directly obtain the
log likelihood function of θ given v1, . . . , vN . Use the principle of maximum likelihood
to show that the sample mean v̄N is the MLE for θ.
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Ex. 8.5.8 Let f and g be two fixed densities, let x1, . . . , xN be IID and consider the
likelihood ratio statistic

yn :=
n

∏
i=1

g(xi)

f (xi)

Show that if L(xn) = f for all n, then {yn} is a martingale with respect to the filtration
{Fn} defined by Fn := {x1, . . . , xn}.

Ex. 8.5.9 Let D(p1, p2) be the KL deviation between normal densities p1 and p2 where
pi = N(µi, σ2

i ) for i = 1, 2. Show that

D(p1, p2) = ln
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1
2

8.5.1 Solutions to Selected Exercises

Solution to Ex. 8.5.1. Adding and subtracting µ, we can express R(θ) as

R(θ) = E{[(θ − µ) + (µ− x)]2}

Expanding this out and usingE [x] = µ, we obtain R(θ) = (θ− µ)2 + var x. Evidently
a minimum is obtained when θ = µ.

Solution to Ex. 8.5.6. We can write the minimization problem as

min
ξ∈R

{
(τ − 1)

∫ ξ

−∞
(t− ξ) F(dt) + τ

∫ ∞

ξ
(t− ξ) F(dt)

}
The first-order condition is (1− τ)F(ξ)+ τ(F(ξ)− 1) = 0. Simplifying gives F(ξ) = τ,
as was to be shown.

Solution to Ex. 8.5.7. Each vn is binary, with PMF given by p(s; θ) := θs(1− θ)1−s for
s ∈ {0, 1}. By independence, the joint distribution is the product of the marginals, and
hence the log likelihood is

`(θ) =
N

∑
n=1

log p(vn; θ) =
N

∑
n=1

[vn log θ + (1− vn) log(1− θ)]

Differentiating with respect to θ and setting the result equal to zero yields θ̂ = v̄N as
claimed.



246 Chapter 8

Solution to Ex. 8.5.8. It is clear that yn is Fn-measurable, and hence {yn} is adapted
to {Fn}. In addition, we have

E [yn+1 |Fn] = E

[
n+1

∏
i=1

g(xi)

f (xi)
|Fn

]
=

n

∏
i=1

g(xi)

f (xi)
E

[
g(xn+1)

f (xn+1)
|Fn

]
Since {xn} is IID, L(xn+1) = f and g is a density, we have

E

[
g(xn+1)

f (xn+1)
|Fn

]
= E

[
g(xn+1)

f (xn+1)

]
=
∫ g(s)

f (s)
f (s) ds =

∫
g(s) ds = 1

∴ E [yn+1 |Fn] =
n

∏
i=1

g(xi)

f (xi)
= yn


