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Abstract

This note proves a simple but useful central limit theorem for Hilbert space valued functions of geometri-
cally ergodic Markov chains on general state spaces. The theorem is valid for chains starting at an arbitrary
point in the state space.
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1. Introduction

Let (Xt)t≥1 be a geometrically ergodic Markov chain on state space X (full definitions follow) and let
π be the unique stationary distribution. It is well-known (see, for example, [5] or [8, chapter 17]) that if T
is a measurable function from the state space X to R satisfying a suitable second moment condition, then
n−1/2 ∑n

t=1[T(Xt)−
∫

Tdπ] converge in law to a centered Gaussian distribution on R. Using the Cramer-
Wold device, the same result can be extended without technical difficulties to the case where T takes values
in Rn.1

In this paper we provide an analogous CLT result for the case where T takes values in is a separable
Hilbert space. The aim is not to provide a particularly general Hilbert central limit theorem for dependent
variables, but rather to provide a set of conditions that are straightforward to check in applications. The
proof of our result is based on the dependent variable Hilbert CLT of Merlevède et al. [7].

2. Set Up

Let (Ω, F , P) denote an arbitrary probability space on which all random variables are supported. As
usual, if (E, B) is any measurable space, then an E-valued random variable X is a measurable map from
(Ω, F ) to (E, B). We use the symbol LX to denote its law (i.e., LX = P ◦ X−1). In what follows, if E has a
topology then, the σ-algebra B is always taken to be the Borel sets. Unless otherwise stated, measurability
of functions refers to Borel measurability. If µ is a measure on (E, B) and h is a real-valued measurable
function on E, then µ(h) denotes

∫
hdµ whenever the latter is defined. If E is a topological space and (µn)n≥0

are probabilities (i.e., Borel probability measures) on E, then µn → µ0 in distribution if µn(h) → µ0(h) in
R for every continuous bounded h : E → R. The sequence (µn)n≥1 is called tight if for all ε > 0 there is a
compact K ⊂ E with supn≥1 µn(E \ K) ≤ ε.

Below we consider a stochastic process taking values in a separable Hilbert spaceH. Let ‖ · ‖ denote the
norm on H, and 〈h, g〉 the inner product of h and g. If Y is an H-valued random variable with E‖Y‖ < ∞,
then, by the Riesz representation theorem, there exists a unique element EY of H such that E〈h, Y〉 =
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〈h, EY〉 for all h ∈ H. The vector EY is called the expectation (or Pettis integral) of Y. For any H-valued
random variable Y with E‖Y‖2 < ∞ and EY = 0, the covariance operator C : H → H of Y is defined by
〈g, Ch〉 = E〈g, Y〉 〈h, Y〉 for all g, h ∈ H. A random variable V taking values in H is called Gaussian if
〈h, V〉 is Gaussian on R for each h ∈ H. To simplify the presentation, in what follows we regard degenerate
random variables on R as Gaussians with zero variance.2

3. Main Result

Let (X, X ) be a measure space, and let P be a stochastic kernel on X. In particular, P(x, dy) is a proba-
bility measure on (X, X ) for each x ∈ X, and x 7→ P(x, B) is measurable for every B ∈ X . In what follows,
we use the standard notation

(ψP)(B) :=
∫

P(x, B)ψ(dx) and (P f )(x) :=
∫

f (y)P(x, dy).

Here ψ is a probability measure on (X, X ) and f : X→ R is a measurable function such that the integral is
defined. Let Pt denote the t-th iterate of either one of these operators. A probability π on (X, X ) is called
stationary for P if πP = π.

Let ‖ · ‖TV be the total variation norm over the space of finite signed measures on (X, X ). We assume
throughout that P is geometrically ergodic, which is to say that (i) P has a unique stationary distribution π,
(ii) ‖ψPt− ϕPt‖TV → 0 as t→ ∞ for any probabilities ψ and ϕ on (X, X ), and (iii) there exists a measurable
function V : X 7→ [0, ∞) and constants R ∈ R+ and α ∈ [0, 1) such that∫

Vdπ < ∞ and sup
B∈X

∣∣Pt(x, B)− π(B)
∣∣ ≤ αtRV(x) for all x ∈ X, t ∈N (1)

Sufficient conditions for geometric ergodicity are discussed in many sources. See, for example, [8] and [4].
See also [6, Theorem 21.12] for a range of conditions equivalent to (ii).

Letting ψ be a probability measure on X, we call an X-valued stochastic process (Xt)t≥1 Markov-(P, ψ)
if X1 is drawn from ψ and P is the transition probability function for (Xt)t≥1. More formally, this means
that

E[h(Xt+k) |Ft] = Pkh(Xt) (2)

almost surely for any t, k ∈ N and any bounded measurable h : X → R, and, in addition, LX1 = ψ. Here
Ft is the σ-algebra generated by (X1, . . . , Xt), and E[· |Ft] is conditional expectation with respect to Ft.
Existence of at least one such a sequence (Xt)t≥1 follows from a well-known theorem of Ionescu-Tulcea
(see, e.g., [11, theorem II.9.2]). If ψ is a Dirac probability measure concentrated at a single point x, then we
call (Xt)t≥1 Markov-(P, x). If (Xt)t≥1 is Markov-(P, π), then (Xt)t≥1 is stationary, and LXt = π for all t (see,
e.g., [8, chapter 3]).

Our main result concerns sequences of the form [T0(Xt)]t≥1, where T0 is a measurable map from X into
a separable Hilbert spaceH. On T0 we impose the following assumption:

Assumption 3.1. There exists nonnegative constants m0, m1 and γ < 1 such that

‖T0(x)‖2 ≤ m0 + m1V(x)γ for all x ∈ X.

The following lemma assures us that if LX = π, then ET0(X) exists.

Lemma 3.1. If LX = π and assumption 3.1 holds, then E‖T0(X)‖ < ∞.

2For more details on Hilbert-space valued stochastic processes, see, for example, [1].
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Proof. Assume the conditions of the lemma. It suffices to show that E‖T0(X)‖2 < ∞. Applying assump-
tion 3.1 and Jensen’s inequality, we have

E‖T0(X)‖2 ≤ m0 + m1E[V(X)γ] ≤ m0 + m1[EV(X)]γ

The final expression is finite by the left-hand side of (1).

We need two final definitions. Let (Xt)t≥1 be Markov-(P, π). By lemma 3.1, ET0(X1) exists inH. Define
T : X→ H be the map

T(x) = T0(x)− ET0(X1) (x ∈ X),

and let C be the covariance operator defined by

〈g, Ch〉 = E〈g, T(X1)〉〈h, T(X1)〉+ ∑
t≥2

E〈g, T(X1)〉〈h, T(Xt)〉+ ∑
t≥2

E〈h, T(X1)〉〈g, T(Xt)〉. (3)

for g, h ∈ H. We can now state our main result:

Theorem 3.1. Let assumption 3.1 hold. If x ∈ X and (Xt)t≥1 is Markov-(P, x), then

L
[

n−1/2
n

∑
t=1

T(Xt)

]
→ N(0, C) (n→ ∞). (4)

Here N(0, C) represents the distribution of an H-valued Gaussian random variable with expectation
equal to the origin ofH and covariance operator C.

3.1. Example
Before turning to the proof of theorem 3.1, we present a simple illustration. Let µ be any probability

measure on (R, B), and consider the separable Hilbert space L2 := L2(R, B, µ). Let P be a geometrically
ergodic stochastic kernel on R, and let F be the cumulative distribution function of its stationary distri-
bution. In many cases, no closed form expression for F is available. Suppose that we wish to compute it
by simulation. A natural technique is to pick any x ∈ R, simulate a Markov-(P, x) process (Xt)t≥1, and
evaluate the empirical cumulative distribution function Fn(y) := 1

n ∑n
t=1 1{Xt ≤ y}. Let us investigate

the error Fn − F, measured in L2 norm. Define T0(x) to be the function y 7→ 1{x ≤ y}. We then have
‖T0(x)‖2 =

∫
1{x ≤ y}2µ(dy) = µ([x, ∞)) ≤ 1. Taking m0 = 1 and m1 = 0, we see that assumption 3.1 is

alway satisfied. Moreover, a straightforward application of Fubini’s theorem shows that if LX1 = F, then
ET0(X1) = F. As a result, setting T := T0 − F, theorem 3.1 gives

√
n(Fn − F) =

√
n

{
1
n

n

∑
t=1

T0(Xt)− F

}
= n−1/2

n

∑
t=1

T(Xt)→ N(0, C)

where C is defined by (3). As a corollary, continuity of the norm now implies that ‖Fn − F‖ = OP(n−1/2).

4. Proof of theorem 3.1

Our first lemma shows that, given our ergodicity assumptions on P, we can restrict attention to the case
where LX1 = π when proving (4).

Lemma 4.1. Let (Xt)t≥1 and (X′t)t≥1 be two P-Markov chains, where LX1 = π and X′1 = x ∈ X. For any Borel
probability measure ν on L2(µ),

L
[

n−1/2
n

∑
t=1

T(Xt)

]
→ ν implies L

[
n−1/2

n

∑
t=1

T(X′t)

]
→ ν
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Proof. Given our assumption of geometric ergodicity (and hence ergodicity), it is well known (see Lindvall,
[6, Theorem 21.12]) that one can construct P-Markov processes (Xt)t≥1 and (X′t)t≥1 on a common probabil-
ity space (Ω, F , P) such that

τ := inf{t ∈N : Xt = X′t}
is finite almost surely, and Xt = X′t for all t ≥ τ. Let Sn := ∑n

t=1 T(Xt) and S′n := ∑n
t=1 T(X′t), and assume

as in the statement of the lemma that n−1/2Sn → ν. To prove that n−1/2S′n → ν it suffices to show that
the (norm) distance between n−1/2S′n and n−1/2Sn converges to zero in probability (cf., e.g., Dudley, [3,
Lemma 11.9.4]). Fixing ε > 0, we need to show that

P{‖n−1/2S′n − n−1/2Sn‖ > ε} → 0 (n→ ∞) (5)

Clearly

{‖n−1/2S′n − n−1/2Sn‖ > ε} ⊂
{

n

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
Fix k ∈N, and partition the last set over {τ ≤ k} and {τ > k} to obtain the disjoint sets{

n

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
∩ {τ ≤ k} ⊂

{
k

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}

and {
n

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
∩ {τ > k} ⊂ {τ > k}

Together, these lead to the bound

{‖n−1/2S′n − n−1/2Sn‖ > ε} ⊂
{

k

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
∪ {τ > k}

∴ P{‖n−1/2S′n − n−1/2Sn‖ > ε} ≤ P

{
k

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
+ P{τ > k}

For any fixed k, we have

lim
n→∞

P

{
k

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
= 0 (6)

Hence
lim sup

n→∞
P{‖n−1/2S′n − n−1/2Sn‖ > ε} ≤ P{τ > k}, ∀k ∈N

Since P{τ < ∞} = 1 taking k→ ∞ yields (5).

In view of Lemma 4.1, we can continue the proof of (4) while considering only the case LX1 = π. In this
case (T(Xt)) is a centered strict sense stationary stochastic processes inH, and we can apply the stationary
Hilbert CLT in Merlevède et al. [7, Theorem 4, Corollary 1]. From the latter we obtain the following result:
Let ξt := T(Xt) for all t. Define the corresponding mixing coefficients by

α(t) := sup |P(A ∩ B)−P(A)P(B)|

where the supremum is over all A ∈ σ(ξ1) and B ∈ σ(ξt+1). In this setting, the convergence in (4) will be
valid whenever there exists a constant δ > 0 such that

E‖ξt‖2+δ < ∞ and
∞

∑
t=1

t2/δα(t) < ∞ (7)
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(The definition of the mixing coefficient used here is slightly different to the one used in Merlevède et al. [7,
Definition 1]. However, in the Markov case it is well-known that the two are equivalent. See, for example,
Bradley [2, Section 3].)

We establish first the finite expectation on the left-hand side of (7). Let m0, m1, γ and V be the constants
and function in assumption 3.1. Let r := ‖ET(X1)‖2. Evidently

‖T(x)‖2/γ = ‖T0(x)− ET(X1)‖2/γ ≤
[
2‖T0(x)‖2 + 2r

]1/γ

From this bound, assumption 3.1 and Jensen’s inequality, we obtain

‖T(x)‖2/γ ≤ [2m0 + 2m1V(x)γ + 2r]1/γ ≤ 1
3

{
[6m0]

1/γ + [6m1V(x)γ]1/γ + [6r]1/γ
}

In other words, there exist finite constants c1 and c2 such that

‖ξt‖2/γ := ‖T(Xt)‖2/γ ≤ c1V(Xt) + c2

holds pointwise on Ω. Let δ := 2(1− γ)/γ, so that 2/γ = 2 + δ. Taking expectations and applying the first
expression in (1) gives E‖ξt‖2+δ < ∞ as required.

The last step of the proof of Theorem 3.1 is to verify the finiteness of the sum on the right-hand side of
(7). An elementary argument shows the following ordering of σ-algebras:

σ(ξ j) = σ(T(Xj)) ⊂ σ(Xj), ∀ j

As a result, we have

α(t) := sup
A∈σ(ξ1)

B∈σ(ξt+1)

|P(A ∩ B)−P(A)P(B)| ≤ sup
A∈σ(X1)

B∈σ(Xt+1)

|P(A ∩ B)−P(A)P(B)|

The right-hand side gives the strong mixing coefficients for (Xt), which, in the geometrically ergodic case,
are known to be O(λt) for the constant λ in (1). (See, for example, Jones [5, p. 304].) As a consequence, we
have α(t) = O(λt), and hence ∑∞

t=1 t2/δα(t) will be finite if ∑∞
t=1 t2/δλt is finite. Since λ < 1, this last sum is

clearly finite. This completes the proof of Theorem 3.1.
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